
Computer Vision Toolbox™
User's Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Computer Vision Toolbox™ User's Guide
© COPYRIGHT 2004–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
July 2004 First printing New for Version 1.0 (Release 14)
October 2004 Second printing Revised for Version 1.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.2 (Release 14SP3)
November 2005 Online only Revised for Version 2.0 (Release 14SP3+)
March 2006 Online only Revised for Version 2.1 (Release 2006a)
September 2006 Online only Revised for Version 2.2 (Release 2006b)
March 2007 Online only Revised for Version 2.3 (Release 2007a)
September 2007 Online only Revised for Version 2.4 (Release 2007b)
March 2008 Online only Revised for Version 2.5 (Release 2008a)
October 2008 Online only Revised for Version 2.6 (Release 2008b)
March 2009 Online only Revised for Version 2.7 (Release 2009a)
September 2009 Online only Revised for Version 2.8 (Release 2009b)
March 2010 Online only Revised for Version 3.0 (Release 2010a)
September 2010 Online only Revised for Version 3.1 (Release 2010b)
April 2011 Online only Revised for Version 4.0 (Release 2011a)
September 2011 Online only Revised for Version 4.1 (Release 2011b)
March 2012 Online only Revised for Version 5.0 (Release 2012a)
September 2012 Online only Revised for Version 5.1 (Release R2012b)
March 2013 Online only Revised for Version 5.2 (Release R2013a)
September 2013 Online only Revised for Version 5.3 (Release R2013b)
March 2014 Online only Revised for Version 6.0 (Release R2014a)
October 2014 Online only Revised for Version 6.1 (Release R2014b)
March 2015 Online only Revised for Version 6.2 (Release R2015a)
September 2015 Online only Revised for Version 7.0 (Release R2015b)
March 2016 Online only Revised for Version 7.1 (Release R2016a)
September 2016 Online only Revised for Version 7.2 (Release R2016b)
March 2017 Online only Revised for Version 7.3 (Release R2017a)
September 2017 Online only Revised for Version 8.0 (Release R2017b)
March 2018 Online only Revised for Version 8.1 (Release R2018a)
September 2018 Online only Revised for Version 8.2 (Release R2018b)
March 2019 Online only Revised for Version 9.0 (Release R2019a)
September 2019 Online only Revised for Version 9.1 (Release R2019b)
March 2020 Online only Revised for Version 9.2 (Release R2020a)
September 2020 Online only Revised for Version 9.3 (Release R2020b)
March 2021 Online only Revised for Version 10.0 (Release R2021a)
September 2021 Online only Revised for Version 10.1 (Release R2021b)
March 2022 Online only Revised for Version 10.2 (Release R2022a)
September 2022 Online only Revised for Version 10.3 (Release R2022b)
March 2023 Online only Revised for Version 10.4 (Release R2023a)

Camera Calibration and SfM Examples
1

Monocular Visual-Inertial Odometry Using Factor Graph 1-2

Visual SLAM with an RGB-D Camera . 1-26

Import Stereo Camera Parameters from ROS . 1-40

Import Camera Intrinsic Parameters from ROS . 1-44

Develop Visual SLAM Algorithm Using Unreal Engine Simulation 1-48

Visual Localization in a Parking Lot . 1-61

Stereo Visual SLAM for UAV Navigation in 3D Simulation 1-67

Camera Calibration Using AprilTag Markers . 1-73

Configure Monocular Fisheye Camera . 1-90

Monocular Visual Simultaneous Localization and Mapping 1-95

Structure From Motion From Two Views . 1-113

Stereo Visual Simultaneous Localization and Mapping 1-122

Evaluating the Accuracy of Single Camera Calibration 1-136

Measuring Planar Objects with a Calibrated Camera 1-141

Depth Estimation From Stereo Video . 1-150

Structure From Motion From Multiple Views . 1-158

Uncalibrated Stereo Image Rectification . 1-165

Code Generation and Third-Party Examples
2

Code Generation for Object Detection by Using Single Shot Multibox
Detector . 2-2

v

Contents

Code Generation for Object Detection by Using YOLO v2 2-5

Introduction to Code Generation with Feature Matching and Registration
. 2-9

Code Generation for Face Tracking with PackNGo 2-16

Code Generation for Depth Estimation From Stereo Video 2-24

Detect Face (Raspberry Pi2) . 2-29

Track Face (Raspberry Pi2) . 2-35

Video Display in a Custom User Interface . 2-41

Generate Code for Detecting Objects in Images by Using ACF Object
Detector . 2-46

Deep Learning, Semantic Segmentation, and Detection
Examples

3
Recognize Seven-Segment Digits Using OCR . 3-3

Train an OCR Model to Recognize Seven-Segment Digits 3-8

Automate Ground Truth Labeling for OCR . 3-19

Object Detection In Large Satellite Imagery Using Deep Learning 3-33

Augmented Reality Using AprilTag Markers . 3-52

Multiclass Object Detection Using YOLO v2 Deep Learning 3-62

Generate Adversarial Examples for Semantic Segmentation 3-72

Classify Defects on Wafer Maps Using Deep Learning 3-83

Detect Image Anomalies Using Explainable FCDD Network 3-99

Detect Image Anomalies Using Pretrained ResNet-18 Feature
Embeddings . 3-112

Detect Defects on Printed Circuit Boards Using YOLO v4 Network . . . 3-132

Train Object Detectors in Experiment Manager 3-138

Activity Recognition Using R(2+1)D Video Classification 3-145

Activity Recognition from Video and Optical Flow Data Using Deep
Learning . 3-168

vi Contents

Evaluate a Video Classifier . 3-196

Extract Training Data for Video Classification . 3-200

Classify Streaming Webcam Video Using SlowFast Video Classifier . . . 3-204

Gesture Recognition using Videos and Deep Learning 3-207

Explore Semantic Segmentation Network Using Grad-CAM 3-228

Point Cloud Classification Using PointNet Deep Learning 3-235

Object Detection Using SSD Deep Learning . 3-258

Object Detection in a Cluttered Scene Using Point Feature Matching 3-270

Semantic Segmentation Using Deep Learning . 3-281

Calculate Segmentation Metrics in Block-Based Workflow 3-300

Semantic Segmentation of Multispectral Images Using Deep Learning
. 3-305

3-D Brain Tumor Segmentation Using Deep Learning 3-323

Image Category Classification Using Bag of Features 3-333

Image Category Classification Using Deep Learning 3-340

Image Retrieval Using Customized Bag of Features 3-349

Create SSD Object Detection Network . 3-356

Train YOLO v2 Network for Vehicle Detection . 3-359

Import Pretrained ONNX YOLO v2 Object Detector 3-364

Export YOLO v2 Object Detector to ONNX . 3-371

Estimate Anchor Boxes From Training Data . 3-377

Object Detection Using YOLO v3 Deep Learning 3-381

Object Detection Using YOLO v2 Deep Learning 3-396

Create YOLO v2 Object Detection Network . 3-406

Train Object Detector Using R-CNN Deep Learning 3-411

Object Detection Using Faster R-CNN Deep Learning 3-424

Train Classification Network to Classify Object in 3-D Point Cloud . . . 3-434

Estimate Body Pose Using Deep Learning . 3-444

vii

Generate Image from Segmentation Map Using Deep Learning 3-452

Train Simple Semantic Segmentation Network in Deep Network Designer
. 3-466

Train ACF-Based Stop Sign Detector . 3-471

Train Fast R-CNN Stop Sign Detector . 3-474

Perform Instance Segmentation Using Mask R-CNN 3-477

Object Detection Using YOLO v4 Deep Learning 3-482

Feature Detection and Extraction Examples
4

Automatically Detect and Recognize Text Using MSER and OCR 4-2

Automatically Detect and Recognize Text Using Pretrained CRAFT
Network and OCR . 4-14

Digit Classification Using HOG Features . 4-17

Find Image Rotation and Scale Using Automated Feature Matching . . . 4-25

Feature Based Panoramic Image Stitching . 4-30

Cell Counting . 4-36

Object Counting . 4-39

Pattern Matching . 4-41

Recognize Text Using Optical Character Recognition (OCR) 4-46

Cell Counting . 4-59

Lidar and Point Cloud Processing Examples
5

Design Lidar SLAM Algorithm Using Unreal Engine Simulation
Environment . 5-2

Ground Plane and Obstacle Detection Using Lidar 5-12

Augment Point Cloud Data For Deep Learning . 5-21

Import Point Cloud Data For Deep Learning . 5-26

viii Contents

Encode Point Cloud Data For Deep Learning . 5-30

Build a Map from Lidar Data . 5-36

Build a Map from Lidar Data Using SLAM . 5-55

3-D Point Cloud Registration and Stitching . 5-71

Computer Vision with Simulink Examples
6

Multicore Simulation of Video Processing System 6-2

Concentricity Inspection . 6-6

Object Counting . 6-9

Video Focus Assessment . 6-11

Video Compression . 6-13

Motion Detection . 6-15

Pattern Matching . 6-17

Scene Change Detection . 6-20

Surveillance Recording . 6-22

Traffic Warning Sign Recognition . 6-24

Abandoned Object Detection . 6-27

Color-based Road Tracking . 6-30

Detect and Track Face . 6-34

Lane Departure Warning System . 6-41

Tracking Cars Using Foreground Detection . 6-45

Tracking Cars Using Optical Flow . 6-48

Tracking Based on Color . 6-50

Video Mosaicking . 6-52

Video Stabilization . 6-57

Periodic Noise Reduction . 6-59

ix

Rotation Correction . 6-61

Barcode Recognition Using Live Video Acquisition 6-65

Edge Detection Using Live Video Acquisition . 6-67

Noise Removal and Image Sharpening . 6-72

Track Marker Using Simulink Images . 6-78

Video and Image Ground Truth Labeling
7

Export Ground Truth Object to Custom and COCO JSON Files 7-2

Automate Ground Truth Labeling for Semantic Segmentation 7-7

Convert Image Labeler Polygons to Labeled Blocked Image for Semantic
Segmentation . 7-16

Automate Ground Truth Labeling for Object Detection 7-21

Tracking and Motion Estimation Examples
8

Visual Tracking of Occluded and Unresolved Objects 8-2

Implement Simple Online and Realtime Tracking 8-23

Import Camera-Based Datasets in MOT Challenge Format for Object
Tracking . 8-32

Video Stabilization . 8-39

Video Stabilization Using Point Feature Matching 8-42

Face Detection and Tracking Using CAMShift . 8-52

Face Detection and Tracking Using the KLT Algorithm 8-57

Face Detection and Tracking Using Live Video Acquisition 8-63

Motion-Based Multiple Object Tracking . 8-68

Tracking Pedestrians from a Moving Car . 8-77

Use Kalman Filter for Object Tracking . 8-87

x Contents

Detect Cars Using Gaussian Mixture Models . 8-98

Labelers
9

View Summary of ROI and Scene Labels . 9-2

Create Automation Algorithm Function for Labeling 9-4
How to Specify an Automation Function in an App 9-4
Use a Function to Automate Labeling with Your Custom Detector 9-4
Create an Automation Algorithm Function . 9-5

Create Automation Algorithm for Labeling . 9-8
Create New Algorithm . 9-8
Import Existing Algorithm . 9-9
Custom Algorithm Execution . 9-9

Label Large Images in the Image Labeler . 9-12
Import Blocked Image into Image Labeler . 9-12
Work with Blocked Images in the Image Labeler 9-14
Use Blocked Image Automation with Images . 9-15
Postprocess Exported Labels to Create a Labeled Blocked Image 9-17

Label Pixels for Semantic Segmentation . 9-19
Start Pixel Labeling . 9-19
Label Pixels Using Flood Fill Tool . 9-19
Label Pixels Using Superpixel Tool . 9-20
Label Pixels Using Smart Polygon Tool . 9-21
Label Pixels Using Polygon Tool . 9-22
Label Pixels Using Assisted Freehand Tool . 9-23
Replace Pixel Labels . 9-24
Refine Labels Using Brush Tool . 9-24
Visualize Pixel Labels . 9-24
Tips . 9-25

Label Objects Using Polygons . 9-27
About Polygon Labels . 9-27
Load Unlabeled Data . 9-27
Create Polygon Labels . 9-28
Draw Polygon ROI Labels . 9-28
Modify Polygon Preferences and Stacking Order 9-28
Postprocess Exported Labels for Instance or Semantic Segmentation

Networks . 9-31

Get Started with the Image Labeler . 9-34
Load Images . 9-34
Layout of the Image Labeler App . 9-35
Create Label Definitions . 9-36
Label Images . 9-40
Export Labeled Images . 9-41

Choose an App to Label Ground Truth Data . 9-44

xi

Get Started with the Video Labeler . 9-48
Load Unlabeled Data . 9-48
Create Label Definitions . 9-48
Label Ground Truth . 9-54
Export Labeled Ground Truth . 9-56
Label Data . 9-58
Save App Session . 9-59

Use Custom Image Source Reader for Labeling . 9-61
Create Custom Reader Function . 9-61
Import Data Source into Video Labeler App . 9-61
Import Data Source into Ground Truth Labeler App 9-62

Keyboard Shortcuts and Mouse Actions for Video Labeler 9-63
Label Definitions . 9-63
Frame Navigation and Time Interval Settings . 9-63
Labeling Window . 9-63
Polyline Drawing . 9-64
Polygon Drawing . 9-65
Zooming and Panning . 9-65
App Sessions . 9-65

Keyboard Shortcuts and Mouse Actions for Image Labeler 9-67
Label Definitions . 9-67
Image Browsing and Selection . 9-67
Labeling Window . 9-67
Polyline Drawing . 9-68
Polygon Drawing . 9-69
Zooming . 9-69
Zooming and Panning . 9-70
App Sessions . 9-70
Label and Sublabel Attribute Panel . 9-70
View Labels, Sublabels, and Attributes Right-Panel 9-70
Attribute Column: Drop-down Menu . 9-70
Attribute Column: Edit Field . 9-71

Share and Store Labeled Ground Truth Data . 9-72
Share Ground Truth . 9-72
Move Ground Truth . 9-75
Store Ground Truth . 9-76
Extract Labeled Video Scenes . 9-76

View Summary of Ground Truth Labels . 9-78
View Label Summary . 9-78
Compare Selected Labels . 9-80

Temporal Automation Algorithms . 9-82
Create Temporal Automation Algorithm . 9-82
Run Temporal Automation Algorithm . 9-82

Blocked Image Automation Algorithms . 9-84
Create Blocked Image Automation Algorithm . 9-84
Run Blocked Image Automation Algorithm . 9-84

xii Contents

Use Sublabels and Attributes to Label Ground Truth Data 9-85
When to Use Sublabels vs. Attributes . 9-85
Draw Sublabels . 9-86
Copy and Paste Sublabels . 9-86
Delete Sublabels . 9-87
Sublabel Limitations . 9-88

Training Data for Object Detection and Semantic Segmentation 9-89

Create Automation Algorithm . 9-93
Create New Algorithm . 9-93
Import Existing Algorithm . 9-94
Custom Algorithm Execution . 9-94

Featured Examples
10

Localize and Read Multiple Barcodes in Image . 10-2

Monocular Visual Odometry . 10-18

Detect and Track Vehicles Using Lidar Data . 10-30

Semantic Segmentation Using Dilated Convolutions 10-49

Define Custom Pixel Classification Layer with Tversky Loss 10-54

Track a Face in Scene . 10-61

Create 3-D Stereo Display . 10-66

Measure Distance from Stereo Camera to a Face 10-67

Reconstruct 3-D Scene from Disparity Map . 10-68

Visualize Stereo Pair of Camera Extrinsic Parameters 10-71

Remove Distortion from an Image Using Camera Parameters Object . 10-74

Structure from Motion and Visual SLAM
11

Choose SLAM Workflow Based on Sensor Data . 11-2
Choose SLAM Workflow . 11-2

Implement Visual SLAM in MATLAB . 11-8
Terms Used in Visual SLAM . 11-8
Typical Feature-based Visual SLAM Workflow . 11-8

xiii

Key Frame and Map Data Management . 11-9
Map Initialization . 11-10
Tracking . 11-11
Local Mapping . 11-12
Loop Detection . 11-14
Drift Correction . 11-14
Visualization . 11-15

Point Cloud Processing
12

Choose a Point Cloud Viewer . 12-2

Getting Started with Point Clouds Using Deep Learning 12-3
Import Point Cloud Data . 12-3
Augment Data . 12-3
Encode Point Cloud Data to Image-like Format . 12-4
Train a Deep Learning Classification Network with Encoded Point Cloud

Data . 12-4

Implement Point Cloud SLAM in MATLAB . 12-5
Mapping and Localization Workflow . 12-5
Manage Data for Mapping and Localization . 12-7
Preprocess Point Clouds . 12-7
Register Point Clouds . 12-7
Detect Loops . 12-10
Correct Drift . 12-10
Assemble Map . 12-10
Localize Vehicle in Map . 12-10
Alternate Workflows . 12-10

The PLY Format . 12-13
File Header . 12-13
Data . 12-14
Common Elements and Properties . 12-15

Using the Installer for Computer Vision System Toolbox
Product

13
Install Computer Vision Toolbox Add-on Support Files 13-2

Install OCR Language Data Files . 13-3
Installation . 13-3
Pretrained Language Data and the ocr function 13-3

Install and Use Computer Vision Toolbox Interface for OpenCV in
MATLAB . 13-6

Installation . 13-6

xiv Contents

Support Package Contents . 13-6

Build MEX-Files for OpenCV Interface . 13-8
Create MEX-File from OpenCV C++ file . 13-8
Create Your Own OpenCV MEX-files . 13-8
Run OpenCV Examples . 13-8

Use Prebuilt MATLAB Interface to OpenCV . 13-10
Call MATLAB Functions . 13-11
Call Functions in OpenCV Library . 13-11
Display Help for MATLAB Functions . 13-12
Display Help for MATLAB Interface to OpenCV Library 13-12
Limitations . 13-13

Perform Edge-Preserving Image Smoothing Using OpenCV in MATLAB
. 13-15

Subtract Image Background by Using OpenCV in MATLAB 13-19

Perform Face Detection by Using OpenCV in MATLAB 13-22

Install and Use Computer Vision Toolbox Interface for OpenCV in
Simulink . 13-24

Installation . 13-24
Import OpenCV Code into Simulink . 13-24
Limitations . 13-29

Draw Different Shapes by Using OpenCV Code in Simulink 13-31

Convert RGB Image to Grayscale Image by Using OpenCV Importer . . 13-38

Smile Detection by Using OpenCV Code in Simulink 13-45

Shadow Detection by Using OpenCV Code in Simulink 13-55

Vehicle and Pedestrian Detector by Using OpenCV Importer 13-60

Video Cartoonizer by Using OpenCV Code in Simulink 13-64

Convert Between Simulink Image Type and Matrices 13-69
Copy Example Model to a Writable Location . 13-69
Example Model . 13-69
Simulate Model . 13-69
Generate C++ Code . 13-70

Input, Output, and Conversions
14

Export to Video Files . 14-2
Setting Block Parameters for this Example . 14-2
Configuration Parameters . 14-3

xv

Import from Video Files . 14-4
Setting Block Parameters for this Example . 14-4
Configuration Parameters . 14-5

Batch Process Image Files . 14-6
Configuration Parameters . 14-6

Convert R'G'B' to Intensity Images . 14-7

Process Multidimensional Color Video Signals 14-10

Video Formats . 14-12
Defining Intensity and Color . 14-12
Video Data Stored in Column-Major Format . 14-12

Image Formats . 14-13
Binary Images . 14-13
Intensity Images . 14-13
RGB Images . 14-13

Display and Graphics
15

Choose Function to Visualize Detected Objects . 15-2

Display, Stream, and Preview Videos . 15-5
View Streaming Video in MATLAB . 15-5
Preview Video in MATLAB . 15-5
View Video in Simulink . 15-5

Draw Shapes and Lines . 15-7
Rectangle . 15-7
Line and Polyline . 15-7
Polygon . 15-9
Circle . 15-9

Registration and Stereo Vision
16

Select Calibration Pattern and Set Properties . 16-2

Prepare Camera and Capture Images . 16-4
Camera Setup . 16-4
Capture Images . 16-4

Calibration Patterns . 16-6
What Are Calibration Patterns? . 16-6
Supported Patterns . 16-8
Checkerboard Pattern . 16-8

xvi Contents

Circle Grid Patterns . 16-9
Custom Pattern Detector . 16-9

Fisheye Calibration Basics . 16-11
Fisheye Camera Model . 16-13
Fisheye Camera Calibration in MATLAB . 16-20

Using the Single Camera Calibrator App . 16-24
Camera Calibrator Overview . 16-24
Choose a Calibration Pattern . 16-24
Capture Calibration Images . 16-24
Using the Camera Calibrator App . 16-25

Using the Stereo Camera Calibrator App . 16-38
Stereo Camera Calibrator Overview . 16-38
Choose a Calibration Pattern . 16-39
Capture Calibration Images . 16-39
Using the Stereo Camera Calibrator App . 16-39

What Is Camera Calibration? . 16-51
Camera Models . 16-51
Pinhole Camera Model . 16-53
Camera Calibration Parameters . 16-59
Distortion in Camera Calibration . 16-63

Structure from Motion Overview . 16-67
Structure from Motion from Two Views . 16-67
Structure from Motion from Multiple Views . 16-68

Object Detection
17

Train Custom OCR Model . 17-2
Prepare Training Data . 17-2
Train an OCR model . 17-4
Evaluate OCR training . 17-5

Getting Started with OCR . 17-6
Text Detection . 17-6
Text Recognition . 17-7
Troubleshoot OCR Function Results . 17-8
Train Custom OCR Models . 17-9
Create Ground Truth Data . 17-9
Evaluate and Quantize OCR Results . 17-9

Getting Started with Anomaly Detection Using Deep Learning 17-11
Prepare Training and Calibration Data . 17-11
Train the Model . 17-12
Calibrate and Evaluate the Model . 17-12
Perform Classification Using the Model . 17-13
Deploy the Model . 17-13

xvii

Getting Started with Video Classification Using Deep Learning 17-14
Create Training Data for Video Classification . 17-15
Create Video Classifier . 17-15
Train Video Classifier and Evaluate Results . 17-22
Classify Using Deep Learning Video Classifiers 17-23

Choose an Object Detector . 17-24

Getting Started with SSD Multibox Detection . 17-31
Predict Objects in the Image . 17-31
Design an SSD Detection Network . 17-32
Train an Object Detector and Detect Objects with an SSD Model 17-32
Transfer Learning . 17-33
Code Generation . 17-33
Label Training Data for Deep Learning . 17-33

Getting Started with Object Detection Using Deep Learning 17-34
Create Training Data for Object Detection . 17-34
Create Object Detection Network . 17-35
Train Detector and Evaluate Results . 17-35
Detect Objects Using Deep Learning Detectors 17-35
Detect Objects Using Pretrained Object Detection Models 17-36
MathWorks GitHub . 17-37

How Labeler Apps Store Exported Pixel Labels 17-39
Location of Pixel Label Data Folder . 17-39
View Exported Pixel Label Data . 17-39
Examples . 17-40

Anchor Boxes for Object Detection . 17-44
What Is an Anchor Box? . 17-44
Advantage of Using Anchor Boxes . 17-44
How Do Anchor Boxes Work? . 17-45
Anchor Box Size . 17-48

Getting Started with YOLO v2 . 17-49
Predicting Objects in the Image . 17-49
Transfer Learning . 17-50
Design a YOLO v2 Detection Network . 17-50
Train an Object Detector and Detect Objects with a YOLO v2 Model . . . 17-51
Code Generation . 17-51
Label Training Data for Deep Learning . 17-51

Getting Started with YOLO v3 . 17-53
Predicting Objects in the Image . 17-53
Design a YOLO v3 Detection Network . 17-54
Transfer Learning . 17-54
Train an Object Detector and Detect Objects with a YOLO v3 Model . . . 17-54
Label Training Data for Deep Learning . 17-54

Getting Started with YOLO v4 . 17-56
Predict Objects Using YOLO v4 . 17-57
Create YOLO v4 Object Detection Network . 17-57
Train and Detect Objects Using YOLOv4 Network 17-58
Transfer Learning . 17-59

xviii Contents

Label Training Data for Deep Learning . 17-59

Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN 17-61
Object Detection Using R-CNN Algorithms . 17-61
Comparison of R-CNN Object Detectors . 17-63
Transfer Learning . 17-63
Design an R-CNN, Fast R-CNN, and a Faster R-CNN Model 17-64
Label Training Data for Deep Learning . 17-65

Getting Started with Mask R-CNN for Instance Segmentation 17-67
Design Mask R-CNN Model . 17-67
Prepare Mask R-CNN Training Data . 17-68
Train Mask R-CNN Model . 17-73
Perform Instance Segmentation and Evaluate Results 17-73

Getting Started with Semantic Segmentation Using Deep Learning . . 17-75
Label Training Data for Semantic Segmentation 17-75
Train and Test a Semantic Segmentation Network 17-76
Segment Objects Using Pretrained DeepLabv3+ Network 17-76

Point Feature Types . 17-78
Functions That Return Points Objects . 17-78
Functions That Accept Points Objects . 17-80

Local Feature Detection and Extraction . 17-84
What Are Local Features? . 17-84
Benefits and Applications of Local Features . 17-84
What Makes a Good Local Feature? . 17-85
Feature Detection and Feature Extraction . 17-85
Choose a Feature Detector and Descriptor . 17-86
Use Local Features . 17-88
Image Registration Using Multiple Features . 17-94

Get Started with Cascade Object Detector . 17-102
Why Train a Detector? . 17-102
What Kinds of Objects Can You Detect? . 17-102
How Does the Cascade Classifier Work? . 17-102
Create a Cascade Classifier Using the trainCascadeObjectDetector . . 17-103
Troubleshooting . 17-106
Examples . 17-108
Train Stop Sign Detector . 17-112

Using OCR Trainer App . 17-116
Open the OCR Trainer App . 17-116
Train OCR . 17-116
App Controls . 17-118

Create a Custom Feature Extractor . 17-120
Example of a Custom Feature Extractor . 17-120

Image Retrieval with Bag of Visual Words . 17-123
Retrieval System Workflow . 17-124
Evaluate Image Retrieval . 17-125

xix

Image Classification with Bag of Visual Words 17-126
Step 1: Set Up Image Category Sets . 17-126
Step 2: Create Bag of Features . 17-126
Step 3: Train an Image Classifier With Bag of Visual Words 17-127
Step 4: Classify an Image or Image Set . 17-128

Motion Estimation and Tracking
18

Multiple Object Tracking . 18-2
Detection . 18-2
Prediction . 18-3
Data Association . 18-3
Track Management . 18-4

Filters, Transforms, and Enhancements
19

Adjust the Contrast of Intensity Images . 19-2

Adjust the Contrast of Color Images . 19-6

Remove Salt and Pepper Noise from Images . 19-10

Sharpen an Image . 19-14

Statistics and Morphological Operations
20

Correct Nonuniform Illumination . 20-2

Count Objects in an Image . 20-8

Fixed-Point Design
21

Fixed-Point Signal Processing . 21-2
Fixed-Point Features . 21-2
Benefits of Fixed-Point Hardware . 21-2
Benefits of Fixed-Point Design with System Toolboxes Software 21-2

Fixed-Point Concepts and Terminology . 21-4
Fixed-Point Data Types . 21-4

xx Contents

Scaling . 21-5
Precision and Range . 21-6

Arithmetic Operations . 21-8
Modulo Arithmetic . 21-8
Two's Complement . 21-8
Addition and Subtraction . 21-9
Multiplication . 21-10
Casts . 21-12

Fixed-Point Support for MATLAB System Objects 21-15
Getting Information About Fixed-Point System Objects 21-15
Setting System Object Fixed-Point Properties . 21-15

Specify Fixed-Point Attributes for Blocks . 21-16
Fixed-Point Block Parameters . 21-16
Specify System-Level Settings . 21-18
Inherit via Internal Rule . 21-18
Specify Data Types for Fixed-Point Blocks . 21-20

Code Generation and Shared Library
22

Simulink Shared Library Dependencies . 22-2

Accelerating Simulink Models . 22-3

Portable C Code Generation for Functions That Use OpenCV Library . . 22-4
Limitations . 22-4

Vision Blocks Examples
23

Rotate ROI in Image . 23-4

Apply Horizontal Shear Transformation to Image 23-7

Find Location of Object in Image Using Template Matching 23-10

Compute Optical Flow Velocities . 23-13

Rotate an Image . 23-15

Generate Image Histogram . 23-18

Export Image to MATLAB Workspace . 23-20

Import Video from MATLAB Workspace . 23-23

xxi

Find Minimum Value in ROI . 23-25

Write Image to Binary File . 23-29

Compute Standard Deviation of ROIs . 23-30

Read Video Stored as Binary Data . 23-33

Compare Image Quality Using PSNR . 23-37

Compute Autocorrelation of Input Matrix . 23-39

Compute Correlation between Two Matrices . 23-40

Find Statistics of Circular Blobs in Image . 23-41

Replace Intensity Values in ROI with its Maximum Value 23-45

Median based Image Thresholding . 23-49

Import Image From MATLAB Workspace . 23-52

Import Image from Specified Location . 23-54

Remove Interlacing Effect From Image . 23-58

Estimate Motion between Two Images . 23-61

Enhance Contrast of Grayscale Image Using Histogram Equalization
. 23-63

Enhance Contrast of Color Image Using Histogram Equalization 23-66

Compute Mean of ROIs in Image . 23-69

Detect Corners in Image . 23-72

Edge Detection of Intensity Image . 23-76

Read, Process, and Write Video Frames to File 23-79

Find Local Maxima in Image . 23-81

Read, Convert, and View Video from File . 23-84

Read and Display YCbCr Video from File . 23-86

Display Frame Rate of Input Video . 23-88

Draw Rectangles on Image . 23-89

Draw Circles on Image . 23-91

Overlay Images Using Binary Mask . 23-93

xxii Contents

Linearly Combine Two Images . 23-98

Pad Zeros to Image . 23-102

Insert Text into Image . 23-105

Compress Image Using 2-D DCT . 23-108

Draw Markers on Image . 23-112

Read and Display RGB Video from File . 23-115

Label Objects in Binary Image . 23-117

Boundary Extraction of Binary Image . 23-121

Select String to Insert into Image . 23-125

Insert Two Strings into Image at Different Locations 23-128

Dilation of Binary Image . 23-130

Find Complement of Intensity Image . 23-132

Perform Top-Hat Filtering of Binary Image . 23-135

Perform Bottom-hat Filtering of Binary Image 23-138

Perform Opening of Binary Image . 23-141

Perform Closing of Binary Image . 23-144

Blur Image Using Gaussian Kernel . 23-147

Convert Image Color Space from RGB to YCbCr 23-150

Convert Data Type and Color Space of Image from RGB to HSV 23-153

Perform Gamma Correction of Image . 23-156

Adjust Contrast of Image . 23-159

Remove Impulse Noise from Image . 23-162

Draw Hough Lines on Image . 23-165

Construct Laplacian Pyramid Image . 23-167

Apply Affine Transformation to Image . 23-170

Trace Boundary of Object in Image . 23-173

Convert Grayscale Image to Binary Image . 23-177

xxiii

Perform Chroma Resampling of Image . 23-180

Compute Variance of ROIs . 23-183

Smooth Image Using Gaussian Kernel . 23-187

Plot Hough Transform of Image . 23-190

Apply Vertical Shear Transformation to Image 23-194

Resize ROI in Image . 23-197

Demosaic an Image . 23-200

Rotate an Image in Simulink . 23-202

Filter Image Using FIR Filter . 23-205

Visualize Point Cloud Sequence . 23-209

xxiv Contents

Camera Calibration and SfM Examples

• “Monocular Visual-Inertial Odometry Using Factor Graph” on page 1-2
• “Visual SLAM with an RGB-D Camera” on page 1-26
• “Import Stereo Camera Parameters from ROS” on page 1-40
• “Import Camera Intrinsic Parameters from ROS” on page 1-44
• “Develop Visual SLAM Algorithm Using Unreal Engine Simulation” on page 1-48
• “Visual Localization in a Parking Lot” on page 1-61
• “Stereo Visual SLAM for UAV Navigation in 3D Simulation” on page 1-67
• “Camera Calibration Using AprilTag Markers” on page 1-73
• “Configure Monocular Fisheye Camera” on page 1-90
• “Monocular Visual Simultaneous Localization and Mapping” on page 1-95
• “Structure From Motion From Two Views” on page 1-113
• “Stereo Visual Simultaneous Localization and Mapping” on page 1-122
• “Evaluating the Accuracy of Single Camera Calibration” on page 1-136
• “Measuring Planar Objects with a Calibrated Camera” on page 1-141
• “Depth Estimation From Stereo Video” on page 1-150
• “Structure From Motion From Multiple Views” on page 1-158
• “Uncalibrated Stereo Image Rectification” on page 1-165

1

Monocular Visual-Inertial Odometry Using Factor Graph

Monocular visual-inertial odometry estimates the position and orientation of the robot using camera
and inertial measurement unit (IMU) sensor data. Camera-based state estimation is accurate during
low-speed navigation. However, camera-based estimation faces challenges such as motion blur and
track loss at higher speeds. Also monocular camera-based estimation can estimate poses at an
arbitrary scale. On the other hand, inertial navigation can handle high-speed navigation easily and
estimate poses at world scale. You can combine the advantages of both types of sensor data to
achieve better accuracy using tightly coupled factor graph optimization.

Overview

The visual-inertial system implemented in this example consists of a simplified version of the
monocular visual odometry front-end of the VINS [1 on page 1-25] algorithm and a factor graph
back-end.

The visual odometry front-end has responsibilities similar to standard structure from motion (SfM)
algorithms, such as oriented FAST and rotated BRIEF (ORB) and simultaneous localization and
mapping (SLAM). The visual odometry front-end detects and tracks key points across multiple
frames, estimates camera poses, and triangulates 3-D points using multi-view geometry. The factor
graph back-end jointly optimizes the estimated camera poses, 3-D points, IMU velocity, and bias.
Before fusing the camera and IMU measurements, you must align the camera and IMU to compute
the camera pose scale, gravity rotation, and initial IMU velocity and bias.

1 Camera Calibration and SfM Examples

1-2

Set Up

This example uses the Blackbird data set (NYC Subway Winter) to demonstrate the visual-inertial
odometry workflow. Download the data set.

data = helperDownloadData();

Fix the random seed for repeatability.

rng(0)

Initialize Algorithm Parameters

Use the helperVIOParameters function to initialize and tune these parameters:

Visual Front-End Parameters

• Random sample consensus (RANSAC) threshold (F_Threshold), confidence (F_Confidence),
and iterations (F_Iterations)

• Kanade-Lucas-Tomasi (KLT) tracker bidirectional error (KLT_BiErr), number of levels
(KLT_Levels), and block size (KLT_Block)

• Minimum parallax for key frame selection and triangulating new 3-D points
• Minimum number of key points to track in each frame (numTrackedThresh)
• Maximum number of key points to track in each frame (maxPointsToTrack)

Factor Graph Optimization Back-End Parameters

• Factor graph solver options (SolverOpts)

 Monocular Visual-Inertial Odometry Using Factor Graph

1-3

https://github.com/mit-aera/Blackbird-Dataset

• Sliding window size (windowSize) - Maximum number of frames in the sliding window.
• Frame rate at which to run the sliding window optimization (optimizationFrequency)

params = helperVIOParameters();
% Set to true if IMU data is available.
useIMU = true;

Initialize variables.

status = struct("firstFrame",true,"isMapInitialized",false,"isIMUAligned",false,"Mediandepth",false);
% Set to true to attempt camera-IMU alignment.
readyToAlignCameraAndIMU = false;
% Set initial scene median depth.
initialSceneMedianDepth = 4;
viewId = 0;
removedFrameIds = [];
allCameraTracks = cell(1,5000);

% Enable visualization.
vis = true;
showMatches = false;
if vis
 % Figure variables.
 axMatches = [];
 axTraj = [];
 axMap = [];
end

Set up factor graph for back-end tightly coupled factor graph optimization.

% Set up factor graph for fusion.
slidingWindowFactorGraph = factorGraph;
maxFrames = 10000;
maxLandmarks = 100000;
ids = helperGenerateNodeID(slidingWindowFactorGraph,maxFrames,maxLandmarks);
% Information matrix (measure of accuracy) associated with the camera
% projection factors that relate 3-D points and estimated camera poses.
cameraInformation = ((data.intrinsics.K(1,1)/1.5)^2)*eye(2);
% Initialize IMU parameters. The fusion accuracy depends on these parameters.
imuParams = factorIMUParameters(SampleRate=100,GyroscopeNoise=0.1, ...
 GyroscopeBiasNoise=3e-3,AccelerometerNoise=0.3, ...
 AccelerometerBiasNoise=1e-3,ReferenceFrame="ENU");

Create the point tracker to track key points across multiple frames.

tracker = vision.PointTracker(MaxBidirectionalError=params.KLT_BiErr, ...
 NumPyramidLevels=params.KLT_Levels,BlockSize=params.KLT_Block);

Set up the feature manager to maintain key point tracks.

fManager = helperFeaturePointManager(data.intrinsics,params,maxFrames,maxLandmarks);
% Set up the key point detector.
fManager.DetectorFunc = @(I)helperDetectKeyPoints(I);

Create an image view set to maintain frame poses.

vSet = imageviewset;

Specify the first and last frames to process from the data set. Then, process the first frame.

1 Camera Calibration and SfM Examples

1-4

% IMU data is available from frame number 40 in the data set.
startFrameIdx = 40;
% Index of the last frame to process in this example. For reasonable
% example execution time, process up to only frame 1000 of the data set.
endFrameIdx = 1000;
allFrameIds = startFrameIdx:endFrameIdx;

% In the first frame, detect new key points and initialize the tracker for
% future tracking.
status.firstFrame = false;
I = data.images{startFrameIdx};
if params.Equalize
 % Enhance contrast if images are dark.
 I = adapthisteq(I,NumTiles=params.NumTiles,ClipLimit=params.ClipLimit);
end
if params.Undistort
 % Undistort if images contain perspective distortion.
 I = undistortImage(I,data.intrinsics);
end
% Assign a unique view ID for each processed camera frame or image.
viewId = viewId + 1;
currPoints = createNewFeaturePoints(fManager,I);
updateSlidingWindow(fManager,I,currPoints,true(size(currPoints,1),1),viewId);
initialize(tracker, currPoints, I);
prevI = I;
firstI = I;
vSet = addView(vSet,viewId,rigidtform3d);

Begin a loop through the entire dataset.

for curIdx = allFrameIds(2:end)

Image Preprocessing

Image preprocessing involves these steps:

• Equalize — Enhance the contrast of an image to correct for dim lighting, which can affect feature
extraction and tracking.

• Undistort — Correct for radial and tangential distortions that can impact state estimation.

 % Read image data.
 I = data.images{curIdx};
 if params.Equalize
 % Enhance contrast if images are dark.
 I = adapthisteq(I,NumTiles=params.NumTiles,ClipLimit=params.ClipLimit);
 end
 if params.Undistort
 % Undistort if images contain perspective distortion.
 I = undistortImage(I,data.intrinsics);
 end
 % Assign a unique view ID for each processed camera frame or image.
 viewId = viewId + 1;

Feature Tracking

To compute a camera frame pose, you must calculate 2D-2D correspondences (2-D image point tracks
across multiple frames). There are several ways to estimate 2-D feature points that see the same

 Monocular Visual-Inertial Odometry Using Factor Graph

1-5

landmark (key point tracks), but this example uses a Kalman tracker for tracking feature points in
multiple images.

Tracks are not all accurate and can contain outliers. Tracking performance also depends on the
Kalman tracker parameters, such as bidirectional error. Even in an ideal case, you can expect some
invalid tracks, such as those due to repetitive structures. As such, outlier rejection is a critical task in
feature tracking. To reject outliers from tracks, use fundamental matrix decomposition in the feature
point manager while updating the sliding window with the latest feature point tracks.

 % Track previous frame points in the current frame.
 [currPoints,validIdx] = tracker(I);
 if status.isMapInitialized
 [prevPoints,pointIds,isTriangulated] = getKeyPointsInView(fManager,viewId-1);
 end
 % Update the sliding window after tracking features in the current
 % frame. If the sliding window already contains maximum number of
 % frames specified using windowSize, one frame with id
 % removeFrameId will be removed from the window to accommodate
 % space for the current frame.
 [removedFrameId,windowState] = updateSlidingWindow(fManager,I,currPoints,validIdx,viewId);
 if (removedFrameId > fManager.slidingWindowViewIds(1))
 % Store non-key frames or removed frame IDs.
 removedFrameIds(end + 1) = removedFrameId; %#ok
 end

Visualize the feature point tracks between the last key frame and current frame.

 if status.isMapInitialized
 svIds = getSlidingWindowIds(fManager);
 if length(svIds) > 2
 [matches1,matches2] = get2DCorrespondensesBetweenViews(fManager,svIds(end-2),viewId);

 if vis && showMatches
 if isempty(axMatches)
 axMatches = axes(figure); %#ok
 end
 % Visualize matches between the last key frame and the
 % current view.
 showMatchedFeatures(data.images{allFrameIds(svIds(end-2))},I,matches1,matches2, ...
 Parent=axMatches);
 end
 end
 end

Initial Structure from Motion (SfM)

The accelerometer and gyroscope readings of the IMU data contain some bias and noise. To estimate
bias values, you must obtain accurate pose estimates between the first few frames. You can achieve
this by using SfM. SfM involves these major steps:

• When there is enough parallax between the first key frame and the current frame, estimate the
relative pose between the two, using 2D-2D correspondences (key point tracks across multiple
frames).

• Triangulate 3-D points using the world poses of key frames and 2D-2D correspondences.

1 Camera Calibration and SfM Examples

1-6

• Track the 3-D points in the current frame, and compute the current frame pose using 3D-2D
correspondences.

 if ~status.isMapInitialized
 if windowState.FirstFewViews
 % Accept the first few camera views.
 vSet = addView(vSet,viewId,rigidtform3d);
 elseif windowState.EnoughParallax
 % Estimate relative pose between the first key frame in the
 % window and the current frame.
 svIds = getSlidingWindowIds(fManager);
 [matches1,matches2] = get2DCorrespondensesBetweenViews(fManager,svIds(end-1),svIds(end-0));

 valRel = false(size(matches1,1),1);
 for k = 1:10
 [F1,valRel1] = estimateFundamentalMatrix(...
 matches1,matches2,Method="RANSAC", ...
 NumTrials=params.F_Iterations,DistanceThreshold=params.F_Threshold, ...
 Confidence=params.F_Confidence);
 if length(find(valRel)) < length(find(valRel1))
 valRel = valRel1;
 F = F1;
 end
 end

 inlierPrePoints = matches1(valRel,:);
 inlierCurrPoints = matches2(valRel,:);
 relPose = estrelpose(F,data.intrinsics, ...
 inlierPrePoints,inlierCurrPoints);

 % Get the table containing the previous camera pose.
 prevPose = rigidtform3d;

 % Compute the current camera pose in the global coordinate
 % system relative to the first view.
 currPose = relPose;

 %vSet = addView(vSet,svIds(end-1),currPose);
 vSet = addView(vSet,viewId,currPose);

 status.isMapInitialized = true;

 axisSFM = axes(figure); %#ok
 showMatchedFeatures(firstI,I,matches1,matches2, ...
 Parent=axisSFM);
 title(axisSFM,"Enough Parallax Between Key Frames");
 end
 else

 Monocular Visual-Inertial Odometry Using Factor Graph

1-7

Camera-IMU Alignment

To optimize camera and IMU measurements, you must align them by bringing them to the same base
coordinate frame and scale. Alignment primarily consists of these major tasks:

• Compute the camera pose scale to make it similar to the IMU or world scale.
• Calculate the gravity rotation required to rotate gravity vector from local navigation reference

frame of IMU to initial camera reference frame. The inverse of this rotation aligns the z-axis of the
camera with the local navigation reference frame.

• Estimate the initial IMU bias.

 if ~status.isIMUAligned && readyToAlignCameraAndIMU
 svIds = getSlidingWindowIds(fManager);
 % Because you have not yet computed the latest frame pose,
 % So use only the past few frames for alignment.
 svIds = svIds(1:end-1);
 [gyro,accel] = helperExtractIMUDataBetweenViews(...
 data.gyroReadings,data.accelReadings,data.timeStamps,allFrameIds(svIds));
 [xyz] = getXYZPoints(fManager,xyzIds);
 % Align camera with IMU.
 camPoses = poses(vSet,svIds);
 [gRot,scale,info] = ...

1 Camera Calibration and SfM Examples

1-8

 estimateGravityRotationAndPoseScale(camPoses,gyro,accel, ...
 SensorTransform=data.camToIMUTransform,IMUParameters=imuParams);
 disp("Estimated scale: " + scale);

If the alignment is successful, update the camera poses, 3-D points, and add IMU factors between the
initial frames in the current sliding window.

 if info.IsSolutionUsable && scale > 1e-3
 status.isIMUAligned = true;
 posesUpdated = poses(vSet);
 % Transform camera poses to navigation frame using
 % computed gravity rotation and pose scale.
 [posesUpdated,xyz] = helperTransformToNavigationFrame(posesUpdated,xyz,gRot,scale);
 vSet = updateView(vSet,posesUpdated);
 % Plot the scaled and unscaled estimated trajectory against
 % ground truth.
 if vis
 p1 = data.camToIMUTransform.transform(vertcat(camPoses.AbsolutePose.Translation));
 axAlign = axes(figure); %#ok
 g1 = data.gTruth(allFrameIds(camPoses.ViewId),1:3);
 plot3(g1(:,1),g1(:,2),g1(:,3),"g",Parent=axAlign);
 hold(axAlign,"on")
 plot3(scale*p1(:,1),scale*p1(:,2),scale*p1(:,3),"r",Parent=axAlign);
 plot3(p1(:,1),p1(:,2),p1(:,3),"b",Parent=axAlign);
 hold(axAlign,"off")
 legend(axAlign,"Ground Truth","Estimated scaled trajectory","Estimated trajectory")
 title("Camera-IMU Alignment")
 drawnow
 end

 if status.isIMUAligned
 % After alignment, add IMU factors to factor graph.
 for k = 1:length(gyro)
 nId = [ids.pose(svIds(k)),ids.vel(svIds(k)),ids.bias(svIds(k)), ...
 ids.pose(svIds(k+1)),ids.vel(svIds(k+1)),ids.bias(svIds(k+1))];
 fIMU = factorIMU(nId,gyro{k},accel{k},imuParams,SensorTransform=data.camToIMUTransform);
 slidingWindowFactorGraph.addFactor(fIMU);
 end
 end

 % Set camera pose node guesses and 3-D point guesses
 % after alignment.
 slidingWindowFactorGraph.nodeState(...
 ids.pose(svIds), ...
 helperCameraPoseTableToSE3Vector(...
 poses(vSet,svIds)));
 slidingWindowFactorGraph.nodeState(...
 ids.point3(xyzIds),xyz);

Estimate an initial guess for IMU bias by using factor graph optimization with the camera projection
and IMU factors.

 % Add prior to first camera pose to fix it softly during
 % optimization.
 fixNode(slidingWindowFactorGraph,ids.pose(svIds));
 fixNode(slidingWindowFactorGraph,ids.point3(xyzIds));
 % Add velocity prior to first IMU velocity node.
 fVelPrior = factorVelocity3Prior(ids.vel(svIds(1)));

 Monocular Visual-Inertial Odometry Using Factor Graph

1-9

 addFactor(slidingWindowFactorGraph,fVelPrior);

 % Add bias prior to first bias node.
 fBiasPrior = factorIMUBiasPrior(ids.bias(svIds(1)));
 addFactor(slidingWindowFactorGraph,fBiasPrior);

 % Perform visual-inertial optimization after alignment to estimate
 % initial IMU bias values.
 soll1 = optimize(slidingWindowFactorGraph, ...
 params.SolverOpts);
 fixNode(slidingWindowFactorGraph,ids.pose(svIds),false);
 fixNode(slidingWindowFactorGraph,ids.point3(xyzIds),false);

 fixNode(slidingWindowFactorGraph,ids.pose(svIds(1)));
 soll = optimize(slidingWindowFactorGraph, ...
 params.SolverOpts);
 fixNode(slidingWindowFactorGraph,ids.pose(svIds(1)),false);

 % Update feature manager and view set after optimization.
 vSet = updateView(vSet,helperUpdateCameraPoseTable(poses(vSet,svIds), ...
 slidingWindowFactorGraph.nodeState(...
 ids.pose(svIds))));
 xyz = slidingWindowFactorGraph.nodeState(...
 ids.point3(xyzIds));
 setXYZPoints(fManager,xyz,xyzIds);
 end
 end

Estimated scale: 1.9661

1 Camera Calibration and SfM Examples

1-10

IMU Pose Prediction

When IMU data is available, you can predict the world pose of the camera by integrating
accelerometer and gyroscope readings. Use factor graph optimization to further refine this
prediction.

 imuGuess = false;
 if status.isIMUAligned
 % Extract gyro and accel reading between current image frame
 % and last acquired image frame to create IMU factor.
 svIds = getSlidingWindowIds(fManager);
 svs = svIds((end-1):end);
 [gyro,accel] = helperExtractIMUDataBetweenViews(data.gyroReadings, ...
 data.accelReadings,data.timeStamps,allFrameIds(svs));
 nodeID = [ids.pose(svs(1)) ...
 ids.vel(svs(1)) ...
 ids.bias(svs(1)) ...
 ids.pose(svs(2)) ...
 ids.vel(svs(2)) ...
 ids.bias(svs(2))];
 % Create the transformation required to trasform a camera pose
 % to IMU base frame for the IMU residual computation.
 fIMU = factorIMU(nodeID,gyro{1},accel{1},imuParams, ...
 SensorTransform=data.camToIMUTransform);

 Monocular Visual-Inertial Odometry Using Factor Graph

1-11

 % Add camera pose and IMU factor to graph.
 slidingWindowFactorGraph.addFactor(fIMU);
 % Set velocity and bias guess.
 prevP = nodeState(slidingWindowFactorGraph,ids.pose(svs(1)));
 prevVel = nodeState(slidingWindowFactorGraph,ids.vel(svs(1)));
 prevBias = nodeState(slidingWindowFactorGraph,ids.bias(svs(1)));
 [pp,pv] = fIMU.predict(prevP,prevVel,prevBias);
 imuGuess = true;
 end

 [currPoints,pointIds,isTriangulated] = getKeyPointsInView(fManager,viewId);
 cVal = true(size(currPoints,1),1);
 cTrf = find(isTriangulated);

If no IMU prediction is available, then use 3D-2D correspondences to estimate the current view pose.

 if ~imuGuess
 x3D = getXYZPoints(fManager,pointIds(isTriangulated));
 c2D = currPoints(isTriangulated,:);
 ii = false(size(x3D,1),1);
 currPose = rigidtform3d;
 for k = 1:params.F_loop
 [currPosel,iil] = estworldpose(...
 currPoints(isTriangulated,:),x3D, ...
 data.intrinsics,MaxReprojectionError=params.F_Threshold,Confidence=params.F_Confidence, ...
 MaxNumTrials=params.F_Iterations);
 if length(find(ii)) < length(find(iil))
 ii = iil;
 currPose = currPosel;
 end
 end
 cVal(cTrf(~ii)) = false;
 else

Use the IMU predicted pose as an initial guess for motion-only bundle adjustment.

 x3D = getXYZPoints(fManager,pointIds(isTriangulated));
 c2D = currPoints(isTriangulated,:);
 [currPose,velRefined,biasRefined,ii] = helperBundleAdjustmentMotion(...
 x3D,c2D,data.intrinsics,size(I),pp,pv,prevP,prevVel,prevBias,fIMU);
 slidingWindowFactorGraph.nodeState(...
 ids.vel(viewId),velRefined);
 slidingWindowFactorGraph.nodeState(...
 ids.bias(viewId),biasRefined);
 cVal(cTrf(~ii)) = false;
 end
 setKeyPointValidityInView(fManager,viewId,cVal);
 vSet = addView(vSet,viewId,currPose);

Add camera projection factors related to the 3-D point tracks of the current view.

 obs2 = pointIds(isTriangulated);
 obs2 = obs2(ii);
 fCam = factorCameraSE3AndPointXYZ(...
 [ids.pose(viewId*ones(size(obs2))) ids.point3(obs2)], ...
 data.intrinsics.K,Measurement=c2D(ii,:), ...
 Information=cameraInformation);
 allCameraTracks{viewId} = [viewId*ones(size(obs2)) obs2 fCam.Measurement];

1 Camera Calibration and SfM Examples

1-12

 slidingWindowFactorGraph.addFactor(fCam);
 end

3-D Point Triangulation

When using the latest 2D-2D correspondences for camera-world pose estimation, you must frequently
create new 3-D points.

 if status.isMapInitialized
 [newXYZ,newXYZID,newPointViews,newPointObs] = triangulateNew3DPoints(fManager,vSet);

 if isempty(axMap) && windowState.WindowFull
 axMap = axes(figure); %#ok
 % Plot the map created by Initial SfM
 helperPlotCameraPosesAndLandmarks(axMap,fManager,vSet,removedFrameIds,true);
 end

Estimated Pose Refinement Using Factor Graph Optimization

Factor graph optimization reduces the error in trajectory or camera pose estimation. Various factors,
like inaccurate tracking and outliers, can contribute to estimation errors.

Graph optimization adjusts camera poses to satisfy various sensor measurement constraints, like
camera observations (3-D point projection onto an image-frame-generating 2-D image point

 Monocular Visual-Inertial Odometry Using Factor Graph

1-13

observation), IMU relative poses, and relative velocity change. You can categorize optimization based
on the type of factors used.

• Bundle adjustment — Uses only camera measurements. factorCameraSE3AndPointXYZ
(Navigation Toolbox) is useful for adding camera measurement constraints to the graph.

• Visual-inertial optimization — Along with camera measurements, add IMU measurements, like
gyroscope and accelerometer readings, to the graph by using factorIMU (Navigation Toolbox).

The visual-inertial factor graph system consists of these processes:

• Estimate the camera pose nodes at different timestamps, and connect them to both the camera
projection and the IMU factors.

• Connect the 3-D point landmark nodes to the camera projection factor.
• Connect the IMU velocity and bias nodes to only IMU factors.

Update the sliding window with the latest 3-D points and camera view pose.

 newPointsTriangulated = false;
 if ~isempty(newXYZ)
 newPointsTriangulated = true;
 % Store all new 3D-2D correspondenses.
 for pIte = 1:length(newPointViews)
 allCameraTracks{newPointViews(pIte)} = [allCameraTracks{newPointViews(pIte)}; newPointObs{pIte}];
 end
 obs = vertcat(allCameraTracks{:});
 % Create camera projection factors with the latest

1 Camera Calibration and SfM Examples

1-14

 % 3-D point landmark observations in the current image.
 fCam = factorCameraSE3AndPointXYZ([ids.pose(obs(:,1)) ...
 ids.point3(obs(:,2))],data.intrinsics.K, ...
 Measurement=obs(:,3:4), ...
 Information=cameraInformation);
 addFactor(slidingWindowFactorGraph,fCam);
 end

 % Set current camera pose node state guess.
 svIdds = getSlidingWindowIds(fManager);
 slidingWindowFactorGraph.nodeState(ids.pose(svIdds), ...
 helperCameraPoseTableToSE3Vector(poses(vSet,svIdds)));

Refine the estimated camera frame poses and 3-D points using factor graph optimization. The
optimization is time consuming. So, the optimization is not run after estimating the pose of each
frame. The frame frequency at which the optimization is run can be controlled using a parameter.

 if helperDecideToRunGraphOptimization(curIdx,newPointsTriangulated,params)
 % Recreate sliding window factor graph with only the latest key
 % frames, for performance.
 [slidingWindowFactorGraph,xyzIds] = helperRecreateSlidingWindowFactorGraph(...
 slidingWindowFactorGraph,fManager,allCameraTracks,data.intrinsics,cameraInformation, ...
 imuParams,data.gyroReadings,data.accelReadings,data.timeStamps,allFrameIds,ids,data.camToIMUTransform);

 % Add guess for newly triangulated 3-D point node states.
 xyz = getXYZPoints(fManager,xyzIds);
 slidingWindowFactorGraph.nodeState(...
 ids.point3(xyzIds),xyz);

 % Fix a few nodes during graph optimization
 % to fix the camera pose scale. Unfix them after optimization.
 if windowState.WindowFull
 fixNode(slidingWindowFactorGraph, ...
 ids.pose(fManager.slidingWindowViewIds(1:11)));
 else
 fixNode(slidingWindowFactorGraph, ...
 ids.pose(fManager.slidingWindowViewIds(1)));
 end
 if status.isIMUAligned
 % Fix the first velocity and bias nodes in the sliding
 % window.
 fixNode(slidingWindowFactorGraph, ...
 ids.vel(fManager.slidingWindowViewIds(1)));
 fixNode(slidingWindowFactorGraph, ...
 ids.bias(fManager.slidingWindowViewIds(1)));
 end
 % Optimize the sliding window.
 optiInfo = optimize(slidingWindowFactorGraph,params.SolverOpts);

Update the feature manager and view set with your optimization results.

 slidingWindowViewIds = getSlidingWindowIds(fManager);
 if ~status.Mediandepth
 status.Mediandepth = true;
 xyz = slidingWindowFactorGraph.nodeState(...
 ids.point3(xyzIds));
 medianDepth = median(vecnorm(xyz.'));
 [posesUpdated,xyz] = helperTransformToNavigationFrame(helperUpdateCameraPoseTable(poses(vSet,slidingWindowViewIds), ...

 Monocular Visual-Inertial Odometry Using Factor Graph

1-15

 slidingWindowFactorGraph.nodeState(ids.pose(slidingWindowViewIds))), ...
 xyz,rigidtform3d,initialSceneMedianDepth/medianDepth);
 % Set current camera pose node state guess.
 slidingWindowFactorGraph.nodeState(ids.pose(slidingWindowViewIds), ...
 helperCameraPoseTableToSE3Vector(posesUpdated));
 % Add guess for newly triangulated 3-D points node states.
 slidingWindowFactorGraph.nodeState(...
 ids.point3(xyzIds),xyz);
 else
 posesUpdated = helperUpdateCameraPoseTable(poses(vSet,slidingWindowViewIds), ...
 slidingWindowFactorGraph.nodeState(...
 ids.pose(slidingWindowViewIds)));

 xyz = slidingWindowFactorGraph.nodeState(...
 ids.point3(xyzIds));
 end
 % Update the view set after visual-inertial optimization.
 vSet = updateView(vSet,posesUpdated);
 setXYZPoints(fManager,xyz,xyzIds);
 end

 end

Add a new feature point to the Kalman tracker, in case the number of points goes below the feature
tracking threshold.

 createNewFeaturePoints(fManager,I);
 currPoints = getKeyPointsInView(fManager,viewId);
 setPoints(tracker,currPoints);

 if ~status.isIMUAligned && useIMU && status.isMapInitialized && windowState.WindowFull
 % The sliding window is full and the camera and IMU are not yet aligned.
 readyToAlignCameraAndIMU = true;
 end

 prevPrevI = prevI;
 prevI = I;

Visualize the estimated trajectory.

 if status.isMapInitialized && (mod(curIdx,10)==0)
 if vis
 if isempty(axTraj)
 axTraj = helperCreateTrajectoryVisualization([-4 7 -8 3 -3 1]);
 end
 % Visualize the estimated trajectory.
 helperVisualizeTrajectory(axTraj,fManager,vSet,removedFrameIds);
 end
 end
end

1 Camera Calibration and SfM Examples

1-16

Sample image of the scene.

 Monocular Visual-Inertial Odometry Using Factor Graph

1-17

Plot all key frame camera poses and 3-D points. Observe the landmarks on features such as the
ceiling, floor, and pillars.

helperPlotCameraPosesAndLandmarks(axMap,fManager,vSet,removedFrameIds);

1 Camera Calibration and SfM Examples

1-18

 Monocular Visual-Inertial Odometry Using Factor Graph

1-19

Compare Estimated Trajectory with Ground Truth

As a measure of accuracy, compute these metrics:

• Absolute trajectory error (ATE) - Root Mean Squared Error (RMSE) between computed camera
locations and ground truth camera locations.

• Scale error - Percentage of how far the computed median scale is to original scale.

Plot the estimated trajectory against the ground truth.

addedFrameIds = allFrameIds(vSet.Views.ViewId);
axf = axes(figure);
helperPlotAgainstGroundTruth(vSet,data.gTruth,data.camToIMUTransform, ...
 addedFrameIds,axf,removedFrameIds);

1 Camera Calibration and SfM Examples

1-20

Evaluate the tracking accuracy, based on root mean square error (RMSE) and median scale error.

helperComputeErrorAgainstGroundTruth(data.gTruth,vSet,allFrameIds,removedFrameIds,data.camToIMUTransform);

 "Absolute RMSE for key frame trajectory (m): " "0.20406"

 "Percentage of median scale error: " "2.3038"

Supporting Functions

This section details the short helper functions included in this example. Larger helper functions have
been included in separate files.

helperFeaturePointManager manages key point tracks.

helperVIOParameters initializes visual-inertial odometry algorithm tunable parameters.

helperBundleAdjustmentMotion refines pose of current frame using motion-only bundle
adjustment.

helperSelectNewKeyPointsUniformly selects specified number of newly created key points a
specified distance from tracked points in current key frame.

helperRecreateSlidingWindowFactorGraph recreates factor graph with key frame data within
current sliding window.

 Monocular Visual-Inertial Odometry Using Factor Graph

1-21

helperCreateTrajectoryVisualization creates trajectory plot with highlighted sliding window.

helperVisualizeTrajectory updates trajectory plot with latest data stored in view set and
feature manager.

helperPlotAgainstGroundTruth plots estimated trajectory and ground truth trajectory for visual
comparison.

helperGenerateNodeID generates unique factor graph node IDs for fixed number of camera view
poses, IMU velocities, IMU biases, and 3-D point nodes.

function ids = helperGenerateNodeID(fg,maxFrames,maxLandmarks)
% helperGenerateNodeID

ids.pose = generateNodeID(fg,[maxFrames 1]);
ids.vel = generateNodeID(fg,[maxFrames 1]);
ids.bias = generateNodeID(fg,[maxFrames 1]);
ids.point3 = generateNodeID(fg,[maxLandmarks 1]);
end

helperCameraPoseTableToSE3Vector converts pose table to N-by-7 SE(3) pose matrix.

function cameraPoses = helperCameraPoseTableToSE3Vector(cameraPoseTable)
% helperCameraPoseTableToSE3Vector converts camera pose table returned by
% poses method of imageviewset to N-by-7 SE3 pose vector format.

cameraPoses = [cat(1,cameraPoseTable.AbsolutePose.Translation) rotm2quat(cat(3,cameraPoseTable.AbsolutePose.R))];
end

helperUpdateCameraPoseTable updates pose table with latest estimated N-by-7 SE(3) poses.

function cameraPoseTableUpdated = helperUpdateCameraPoseTable(cameraPoseTable,cameraPoses)
% helperUpdateCameraPoseTable updates camera pose table with specified
% N-by-7 SE(3) camera poses.

cameraPoseTableUpdated = cameraPoseTable;
R = quat2rotm(cameraPoses(:,4:7));
for k = 1:size(cameraPoses,1)
 cameraPoseTableUpdated.AbsolutePose(k).Translation = cameraPoses(k,1:3);
 cameraPoseTableUpdated.AbsolutePose(k).R = R(:,:,k);
end
end

helperDetectKeyPoints detects key points.

function keyPoints = helperDetectKeyPoints(grayImage)
%helperDetectKeyPoints

% Detect multi-scale FAST corners.
keyPoints = detectORBFeatures(grayImage,ScaleFactor=1.2,NumLevels=4);
% Uncomment any of the following or try different detectors to tune
% keyPoints = detectFASTFeatures(grayImage,MinQuality=0.0786);
% keyPoints = detectMinEigenFeatures(grayImage,MinQuality=0.01,FilterSize=3);
end

helperDecideToRunGraphOptimization decides whether to run or skip graph optimization at
current frame.

1 Camera Calibration and SfM Examples

1-22

function shouldOptimize = helperDecideToRunGraphOptimization(curIdx,newPointsTriangulated,params)
% helperDecideToRunGraphOptimization

% If the current frame belongs to the initial set of frames, then run graph
% optimization every frame, because the initial SfM is still running.
% Otherwise, after a number of frames specified by optimization frequency,
% run graph optimization. Lower frequency can result in a more accurate
% estimation, but can increase execution time.
numberOfInitialFrames = 250;
shouldOptimize = (curIdx < numberOfInitialFrames) || (mod(curIdx,params.optimizationFrequency) == 0) || newPointsTriangulated;
end

helperTransformToNavigationFrame transforms and scales input poses and XYZ 3-D points to
local navigation reference frame of IMU using gravity rotation and pose scale.

function [posesUpdated,xyzUpdated] = helperTransformToNavigationFrame(poses,xyz,gRot,poseScale)
% helperTransformToNavigationFrame transforms and scales the input poses and XYZ points
% using specified gravity rotation and pose scale.

posesUpdated = poses;
% Input gravity rotation transforms the gravity vector from local
% navigation reference frame to initial camera pose reference frame.
% The inverse of this transforms the poses from camera reference frame
% to local navigation reference frame.
Ai = gRot.A';
for k = 1:length(poses.AbsolutePose)
 T = Ai*poses.AbsolutePose(k).A;
 T(1:3,4) = poseScale*T(1:3,4);
 posesUpdated.AbsolutePose(k) = rigidtform3d(T);
end
% Transform points from initial camera pose reference frame to
% local navigation reference frame of IMU.
xyzUpdated = poseScale*gRot.transformPointsInverse(xyz);
end

helperExtractIMUDataBetweenViews extracts IMU data between specified views.

function [gyro,accel] = helperExtractIMUDataBetweenViews(gyroReadings,accelReadings,timeStamps,frameIds)
% helperExtractIMUDataBetweenViews extracts IMU Data (accelerometer and
% gyroscope readings) between specified consecutive frames.

len = length(frameIds);
gyro = cell(1,len-1);
accel = cell(1,len-1);
for k = 2:len
 % Assumes the IMU data is time-synchorized with the camera data. Compute
 % indices of accelerometer readings between consecutive view IDs.
 [~,ind1] = min(abs(timeStamps.imuTimeStamps - timeStamps.imageTimeStamps(frameIds(k-1))));
 [~,ind2] = min(abs(timeStamps.imuTimeStamps - timeStamps.imageTimeStamps(frameIds(k))));
 imuIndBetweenFrames = ind1:(ind2-1);
 % Extract the data at the computed indices and store in a cell.
 gyro{k-1} = gyroReadings(imuIndBetweenFrames,:);
 accel{k-1} = accelReadings(imuIndBetweenFrames,:);
end
end

helperPlotCameraPosesAndLandmarks plots estimated trajectory and 3-D landmarks.

 Monocular Visual-Inertial Odometry Using Factor Graph

1-23

function helperPlotCameraPosesAndLandmarks(axisHandle,fManager,vSet,removedFrameIds,plotCams)
% helperPlotCameraPosesAndLandmarks plots the key frame camera poses and
% triangulated 3-D point landmarks.

if nargin < 5
 % By deafult plot trajectory as a line plot. If plotCams is true the
 % function uses the plotCamera utility to draw trajectory.
 plotCams = false;
end

% Extract key frame camera poses from view set
vId = vSet.Views.ViewId;
kfInd = true(length(vId),1);
[~,ind] = intersect(vId,removedFrameIds);
kfInd(ind) = false;
camPoses = poses(vSet,vId(kfInd));
% Extract triangulated 3-D point landmarks
xyzPoints = getXYZPoints(fManager);
% Compute indices of nearby points
indToPlot = vecnorm(xyzPoints,2,2) < 10;

pcshow(xyzPoints(indToPlot,:),Parent=axisHandle,Projection="orthographic");
hold(axisHandle,"on")
if plotCams
 c = table(camPoses.AbsolutePose,VariableNames={'AbsolutePose'});
 plotCamera(c,Parent=axisHandle,Size=0.25);
 title(axisHandle,"Initial Structure from Motion")
else
 traj = vertcat(camPoses.AbsolutePose.Translation);
 plot3(traj(:,1),traj(:,2),traj(:,3),"r-",Parent=axisHandle);
 view(axisHandle,27.28,-2.81)
 title(axisHandle,"Estimated Trajectory and Landmarks")
end
hold off
drawnow
end

helperComputeErrorAgainstGroundTruth computes absolute trajectory error and scale error
compared to known ground truth.

function [rmse,scaleError] = helperComputeErrorAgainstGroundTruth(gTruth,vSet,allFrameIds,removedFrameIds,camToIMUTransform)
% helperComputeErrorAgainstGroundTruth computes the absolute trajectory
% error and scale error.

% Extract key frame camera poses from view set
vId = vSet.Views.ViewId;
kfInd = true(length(vId),1);
[~,ind] = intersect(vId,removedFrameIds);
kfInd(ind) = false;
camPoses = poses(vSet,vId(kfInd));
locations = vertcat(camPoses.AbsolutePose.Translation);
% Convert camera positions to first IMU reference frame
T = se3(camPoses.AbsolutePose(1).R*(camToIMUTransform.rotm')).inv;
locations = T.transform(locations);
% Convert ground truth to first IMU reference frame
g1 = se3(quat2rotm(gTruth(:,4:7)),gTruth(:,1:3));
g11 = (g1(1).inv)*g1;
gl = vertcat(g11.trvec);

1 Camera Calibration and SfM Examples

1-24

gLocations = gl(allFrameIds(vId(kfInd)),1:3);
scale = median(vecnorm(gLocations,2,2))/median(vecnorm(locations,2,2));

rmse = sqrt(mean(sum((locations - gLocations).^2,2)));
scaleError = abs(scale-1)*100;

disp(["Absolute RMSE for key frame trajectory (m): ",num2str(rmse)])
disp(["Percentage of median scale error: ",num2str(scaleError)])
end

helperDownloadData downloads data set from specified URL to specified output folder.

function vioData = helperDownloadData()
% helperDownloadData downloads the data set from the specified URL to the
% specified output folder.

 vioDataTarFile = matlab.internal.examples.downloadSupportFile(...
 'shared_nav_vision/data','BlackbirdVIOData.tar');

 % Extract the file.
 outputFolder = fileparts(vioDataTarFile);
 if (~exist(fullfile(outputFolder,"BlackbirdVIOData"),"dir"))
 untar(vioDataTarFile,outputFolder);
 end

 vioData = load(fullfile(outputFolder,"BlackbirdVIOData","data.mat"));
end

References

[1] Qin, Tong, Peiliang Li, and Shaojie Shen. “VINS-Mono: A Robust and Versatile Monocular Visual-
Inertial State Estimator.” IEEE Transactions on Robotics 34, no. 4 (August 2018): 1004–20. https://
doi.org/10.1109/TRO.2018.2853729

[2] Antonini, Amado, Winter Guerra, Varun Murali, Thomas Sayre-McCord, and Sertac Karaman. “The
Blackbird Dataset: A Large-Scale Dataset for UAV Perception in Aggressive Flight.” In Proceedings of
the 2018 International Symposium on Experimental Robotics, edited by Jing Xiao, Torsten Kröger, and
Oussama Khatib, 11:130–39. Cham: Springer International Publishing, 2020. https://doi.org/
10.1007/978-3-030-33950-0_12

 Monocular Visual-Inertial Odometry Using Factor Graph

1-25

Visual SLAM with an RGB-D Camera

Visual simultaneous localization and mapping (vSLAM), refers to the process of calculating the
position and orientation of a camera with respect to its surroundings, while simultaneously mapping
the environment.

You can perform vSLAM using a monocular camera. However, the depth cannot be accurately
calculated, and the estimated trajectory is unknown and drifts over time. To produce an initial map,
which cannot be triangulated from the first frame, you must use multiple views of a monocular
camera. A better, more reliable solution is to use an RGB-D camera, which is composed of one RGB
color image and one depth image.

This example shows how to process RGB-D image data to build a map of an indoor environment and
estimate the trajectory of the camera. The example uses a version of the ORB-SLAM2 [1] algorithm,
which is feature-based and supports RGB-D cameras.

Overview of Processing Pipeline

The pipeline for RGB-D vSLAM is very similar to the monocular vSLAM pipeline in the “Monocular
Visual Simultaneous Localization and Mapping” on page 1-95 example. The major difference is that
in the Map Initialization stage, the 3-D map points are created from a pair of images consisting of
one color image and one depth image instead of two frames of color images.

• Map Initialization: The initial 3-D world points can be constructed by extracting ORB feature
points from the color image and then computing their 3-D world locations from the depth image.
The color image is stored as the first key frame.

• Tracking: Once a map is initialized, the pose of the camera is estimated for each new RGB-D
image by matching features in the color image to features in the last key frame.

• Local Mapping: If the current color image is identified as a key frame, new 3-D map points are
computed from the depth image. At this stage, bundle adjustment is used to minimize reprojection
errors by adjusting the camera pose and 3-D points.

• Loop Closure: Loops are detected for each key frame by comparing it against all previous key
frames using the bag-of-features approach. Once a loop closure is detected, the pose graph is
optimized to refine the camera poses of all the key frames.

1 Camera Calibration and SfM Examples

1-26

Download and Explore the Input Image Sequence

The data used in this example is from the TUM RGB-D benchmark [2]. You can download the data to a
temporary folder using a web browser or by running the following code:

baseDownloadURL = 'https://vision.in.tum.de/rgbd/dataset/freiburg3/rgbd_dataset_freiburg3_long_office_household.tgz';
dataFolder = fullfile(tempdir, 'tum_rgbd_dataset', filesep);
options = weboptions('Timeout', Inf);
tgzFileName = [dataFolder, 'fr3_office.tgz'];
folderExists = exist(dataFolder, 'dir');

% Create a folder in a temporary directory to save the downloaded file
if ~folderExists
 mkdir(dataFolder);
 disp('Downloading fr3_office.tgz (1.38 GB). This download can take a few minutes.')
 websave(tgzFileName, baseDownloadURL, options);

 % Extract contents of the downloaded file
 disp('Extracting fr3_office.tgz (1.38 GB) ...')
 untar(tgzFileName, dataFolder);
end
imageFolder = [dataFolder, 'rgbd_dataset_freiburg3_long_office_household/'];

Create two imageDatastore objects to store the color and depth images, respectively.

imgFolderColor = [imageFolder,'rgb/'];
imgFolderDepth = [imageFolder,'depth/'];
imdsColor = imageDatastore(imgFolderColor);
imdsDepth = imageDatastore(imgFolderDepth);

Note that the color and depth images are generated in an un-synchronized way in the dataset.
Therefore, we need to associate color images to depth images based on the time stamp.

% Load time stamp data of color images
timeColor = helperImportTimestampFile([imageFolder, 'rgb.txt']);

% Load time stamp data of depth images
timeDepth = helperImportTimestampFile([imageFolder, 'depth.txt']);

% Align the time stamp
indexPairs = helperAlignTimestamp(timeColor, timeDepth);

% Select the synchronized image data
imdsColor = subset(imdsColor, indexPairs(:, 1));
imdsDepth = subset(imdsDepth, indexPairs(:, 2));

% Inspect the first RGB-D image
currFrameIdx = 1;
currIcolor = readimage(imdsColor, currFrameIdx);
currIdepth = readimage(imdsDepth, currFrameIdx);
imshowpair(currIcolor, currIdepth, "montage");

 Visual SLAM with an RGB-D Camera

1-27

https://vision.in.tum.de/data/datasets/rgbd-dataset
https://www.mathworks.com/help/vision/ug/monocular-visual-simultaneous-localization-and-mapping.html#mw_rtc_MonocularVisualSimultaneousLocalizationAndMappingExample_AA8F9725

Map Initialization

The pipeline starts by initializing the map that holds 3-D world points. This step is crucial and has a
significant impact on the accuracy of the final SLAM result. Initial ORB feature points are extracted
from the first color image using helperDetectAndExtractFeatures on page 1-37. Their
corresponding 3-D world locations can be computed from the pixel coordinates of the feature points
and the depth value using helperReconstructFromRGBD on page 1-38.

% Set random seed for reproducibility
rng(0);

% Create a cameraIntrinsics object to store the camera intrinsic parameters.
% The intrinsics for the dataset can be found at the following page:
% https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats
focalLength = [535.4, 539.2]; % in units of pixels
principalPoint = [320.1, 247.6]; % in units of pixels
imageSize = size(currIcolor,[1,2]); % in pixels [mrows, ncols]
depthFactor = 5e3;
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

% Detect and extract ORB features from the color image
scaleFactor = 1.2;
numLevels = 8;
[currFeatures, currPoints] = helperDetectAndExtractFeatures(currIcolor, scaleFactor, numLevels);

initialPose = rigidtform3d();
[xyzPoints, validIndex] = helperReconstructFromRGBD(currPoints, currIdepth, intrinsics, initialPose, depthFactor);

Initialize Place Recognition Database

Loop detection is performed using the bags-of-words approach. A visual vocabulary represented as a
bagOfFeatures object is created offline with the ORB descriptors extracted from a large set of
images in the dataset by calling:

bag = bagOfFeatures(imds,CustomExtractor=@helperORBFeatureExtractorFunction,
TreeProperties=[5, 10], StrongestFeatures=1);

where imds is an imageDatastore object storing the training images and
helperORBFeatureExtractorFunction is the ORB feature extractor function. See “Image
Retrieval with Bag of Visual Words” on page 17-123 for more information.

The loop closure process incrementally builds a database, represented as an invertedImageIndex
object, that stores the visual word-to-image mapping based on the bag of ORB features.

1 Camera Calibration and SfM Examples

1-28

% Load the bag of features data created offline
bofData = load("bagOfFeaturesDataSLAM.mat");

% Initialize the place recognition database
loopDatabase = invertedImageIndex(bofData.bof, SaveFeatureLocations=false);

% Add features of the first key frame to the database
currKeyFrameId = 1;
addImageFeatures(loopDatabase, currFeatures, currKeyFrameId);

Data Management and Visualization

After the map is initialized using the first pair of color and depth image, you can use imageviewset
and worldpointset to store the first key frames and the corresponding map points:

% Create an empty imageviewset object to store key frames
vSetKeyFrames = imageviewset;

% Create an empty worldpointset object to store 3-D map points
mapPointSet = worldpointset;

% Add the first key frame
vSetKeyFrames = addView(vSetKeyFrames, currKeyFrameId, initialPose, Points=currPoints,...
 Features=currFeatures.Features);

% Add 3-D map points
[mapPointSet, rgbdMapPointsIdx] = addWorldPoints(mapPointSet, xyzPoints);

% Add observations of the map points
mapPointSet = addCorrespondences(mapPointSet, currKeyFrameId, rgbdMapPointsIdx, validIndex);

% Update view direction and depth
mapPointSet = updateLimitsAndDirection(mapPointSet, rgbdMapPointsIdx, vSetKeyFrames.Views);

% Update representative view
mapPointSet = updateRepresentativeView(mapPointSet, rgbdMapPointsIdx, vSetKeyFrames.Views);

% Visualize matched features in the first key frame
featurePlot = helperVisualizeMatchedFeaturesRGBD(currIcolor, currIdepth, currPoints(validIndex));

% Visualize initial map points and camera trajectory
xLim = [-4 4];
yLim = [-3 1];
zLim = [-1 6];
mapPlot = helperVisualizeMotionAndStructure(vSetKeyFrames, mapPointSet, xLim, yLim, zLim);

% Show legend
showLegend(mapPlot);

Tracking

The tracking process is performed using every RGB-D image and determines when to insert a new
key frame.

% ViewId of the last key frame
lastKeyFrameId = currKeyFrameId;

% Index of the last key frame in the input image sequence

 Visual SLAM with an RGB-D Camera

1-29

lastKeyFrameIdx = currFrameIdx;

% Indices of all the key frames in the input image sequence
addedFramesIdx = lastKeyFrameIdx;

currFrameIdx = 2;
isLoopClosed = false;

Each frame is processed as follows:

1 ORB features are extracted for each new color image and then matched (using
matchFeatures), with features in the last key frame that have known corresponding 3-D map
points.

2 Estimate the camera pose using Perspective-n-Point algorithm, which estimates the pose of a
calibrated camera given a set of 3-D points and their corresponding 2-D projections using
estworldpose.

3 Given the camera pose, project the map points observed by the last key frame into the current
frame and search for feature correspondences using matchFeaturesInRadius.

4 With 3-D to 2-D correspondences in the current frame, refine the camera pose by performing a
motion-only bundle adjustment using bundleAdjustmentMotion.

5 Project the local map points into the current frame to search for more feature correspondences
using matchFeaturesInRadius and refine the camera pose again using
bundleAdjustmentMotion.

6 The last step of tracking is to decide if the current frame should be a new key frame. A frame is a
key frame if both of the following conditions are satisfied:

• At least 20 frames have passed since the last key frame or the current frame tracks fewer than
100 map points or 25% of points tracked by the reference key frame.

• The map points tracked by the current frame are fewer than 90% of points tracked by the
reference key frame.

If the current frame is to become a key frame, continue to the Local Mapping process. Otherwise,
start Tracking for the next frame.

% Main loop
isLastFrameKeyFrame = true;
while ~isLoopClosed && currFrameIdx < numel(imdsColor.Files)

 currIcolor = readimage(imdsColor, currFrameIdx);
 currIdepth = readimage(imdsDepth, currFrameIdx);

 [currFeatures, currPoints] = helperDetectAndExtractFeatures(currIcolor, scaleFactor, numLevels);

 % Track the last key frame
 % trackedMapPointsIdx: Indices of the map points observed in the current left frame
 % trackedFeatureIdx: Indices of the corresponding feature points in the current left frame
 [currPose, trackedMapPointsIdx, trackedFeatureIdx] = helperTrackLastKeyFrame(mapPointSet, ...
 vSetKeyFrames.Views, currFeatures, currPoints, lastKeyFrameId, intrinsics, scaleFactor);

 if isempty(currPose) || numel(trackedMapPointsIdx) < 30
 currFrameIdx = currFrameIdx + 1;
 continue
 end

1 Camera Calibration and SfM Examples

1-30

 % Track the local map and check if the current frame is a key frame.
 % A frame is a key frame if both of the following conditions are satisfied:
 %
 % 1. At least 20 frames have passed since the last key frame or the
 % current frame tracks fewer than 100 map points.
 % 2. The map points tracked by the current frame are fewer than 90% of
 % points tracked by the reference key frame.
 %
 % localKeyFrameIds: ViewId of the connected key frames of the current frame
 numSkipFrames = 20;
 numPointsKeyFrame = 100;
 [localKeyFrameIds, currPose, trackedMapPointsIdx, trackedFeatureIdx, isKeyFrame] = ...
 helperTrackLocalMap(mapPointSet, vSetKeyFrames, trackedMapPointsIdx, ...
 trackedFeatureIdx, currPose, currFeatures, currPoints, intrinsics, scaleFactor, numLevels, ...
 isLastFrameKeyFrame, lastKeyFrameIdx, currFrameIdx, numSkipFrames, numPointsKeyFrame);

 % Visualize matched features
 updatePlot(featurePlot, currIcolor, currIdepth, currPoints(trackedFeatureIdx));

 if ~isKeyFrame
 currFrameIdx = currFrameIdx + 1;
 isLastFrameKeyFrame = false;
 continue
 else
 % Match feature points between the stereo images and get the 3-D world positions
 [xyzPoints, validIndex] = helperReconstructFromRGBD(currPoints, currIdepth, ...
 intrinsics, currPose, depthFactor);

 [untrackedFeatureIdx, ia] = setdiff(validIndex, trackedFeatureIdx);
 xyzPoints = xyzPoints(ia, :);
 isLastFrameKeyFrame = true;
 end

 % Update current key frame ID
 currKeyFrameId = currKeyFrameId + 1;

Local Mapping

Local mapping is performed for every key frame. When a new key frame is determined, add it to the
key frames and update the attributes of the map points observed by the new key frame. To ensure
that mapPointSet contains as few outliers as possible, a valid map point must be observed in at least
3 key frames.

New map points are created by triangulating ORB feature points in the current key frame and its
connected key frames. For each unmatched feature point in the current key frame, search for a match
with other unmatched points in the connected key frames using matchFeatures. The local bundle
adjustment refines the pose of the current key frame, the poses of connected key frames, and all the
map points observed in these key frames.

 % Add the new key frame
 [mapPointSet, vSetKeyFrames] = helperAddNewKeyFrame(mapPointSet, vSetKeyFrames, ...
 currPose, currFeatures, currPoints, trackedMapPointsIdx, trackedFeatureIdx, localKeyFrameIds);

 % Remove outlier map points that are observed in fewer than 3 key frames
 if currKeyFrameId == 2
 triangulatedMapPointsIdx = [];

 Visual SLAM with an RGB-D Camera

1-31

 end

 [mapPointSet, trackedMapPointsIdx] = ...
 helperCullRecentMapPoints(mapPointSet, trackedMapPointsIdx, triangulatedMapPointsIdx, ...
 rgbdMapPointsIdx);

 % Add new map points computed from disparity
 [mapPointSet, rgbdMapPointsIdx] = addWorldPoints(mapPointSet, xyzPoints);
 mapPointSet = addCorrespondences(mapPointSet, currKeyFrameId, rgbdMapPointsIdx, ...
 untrackedFeatureIdx);

 % Create new map points by triangulation
 minNumMatches = 10;
 minParallax = 0.35;
 [mapPointSet, vSetKeyFrames, triangulatedMapPointsIdx, rgbdMapPointsIdx] = helperCreateNewMapPointsStereo(...
 mapPointSet, vSetKeyFrames, currKeyFrameId, intrinsics, scaleFactor, minNumMatches, minParallax, ...
 untrackedFeatureIdx, rgbdMapPointsIdx);

 % Update view direction and depth
 mapPointSet = updateLimitsAndDirection(mapPointSet, [triangulatedMapPointsIdx; rgbdMapPointsIdx], ...
 vSetKeyFrames.Views);

 % Update representative view
 mapPointSet = updateRepresentativeView(mapPointSet, [triangulatedMapPointsIdx; rgbdMapPointsIdx], ...
 vSetKeyFrames.Views);

 % Local bundle adjustment
 [mapPointSet, vSetKeyFrames, triangulatedMapPointsIdx, rgbdMapPointsIdx] = ...
 helperLocalBundleAdjustmentStereo(mapPointSet, vSetKeyFrames, ...
 currKeyFrameId, intrinsics, triangulatedMapPointsIdx, rgbdMapPointsIdx);

 % Visualize 3-D world points and camera trajectory
 updatePlot(mapPlot, vSetKeyFrames, mapPointSet);

Loop Closure

The loop closure detection step takes the current key frame processed by the local mapping process
and tries to detect and close the loop. Loop candidates are identified by querying images in the
database that are visually similar to the current key frame using evaluateImageRetrieval. A
candidate key frame is valid if it is not connected to the last key frame and three of its neighbor key
frames are loop candidates.

When a valid loop candidate is found, use estgeotform3d to compute the relative pose between the
loop candidate frame and the current key frame. The relative pose represents a 3-D rigid
transformation stored in a rigidtform3d object. Then add the loop connection with the relative
pose and update mapPointSet and vSetKeyFrames.

 % Check loop closure after some key frames have been created
 if currKeyFrameId > 20

 % Minimum number of feature matches of loop edges
 loopEdgeNumMatches = 120;

 % Detect possible loop closure key frame candidates
 [isDetected, validLoopCandidates] = helperCheckLoopClosure(vSetKeyFrames, currKeyFrameId, ...
 loopDatabase, currIcolor, loopEdgeNumMatches);

1 Camera Calibration and SfM Examples

1-32

 if isDetected
 % Add loop closure connections
 maxDistance = 0.1;
 [isLoopClosed, mapPointSet, vSetKeyFrames] = helperAddLoopConnectionsStereo(...
 mapPointSet, vSetKeyFrames, validLoopCandidates, currKeyFrameId, ...
 currFeatures, currPoints, loopEdgeNumMatches, maxDistance);
 end
 end

 % If no loop closure is detected, add current features into the database
 if ~isLoopClosed
 addImageFeatures(loopDatabase, currFeatures, currKeyFrameId);
 end

 % Update IDs and indices
 lastKeyFrameId = currKeyFrameId;
 lastKeyFrameIdx = currFrameIdx;
 addedFramesIdx = [addedFramesIdx; currFrameIdx]; %#ok<AGROW>
 currFrameIdx = currFrameIdx + 1;
end % End of main loop

Loop edge added between keyframe: 3 and 87

Finally, apply pose graph optimization over the essential graph in vSetKeyFrames to correct the
drift. The essential graph is created internally by removing connections with fewer than
minNumMatches matches in the covisibility graph. After pose graph optimization, update the 3-D
locations of the map points using the optimized poses.

% Optimize the poses
minNumMatches = 50;
vSetKeyFramesOptim = optimizePoses(vSetKeyFrames, minNumMatches, Tolerance=1e-16);

% Update map points after optimizing the poses
mapPointSet = helperUpdateGlobalMap(mapPointSet, vSetKeyFrames, vSetKeyFramesOptim);

updatePlot(mapPlot, vSetKeyFrames, mapPointSet);

% Plot the optimized camera trajectory

 Visual SLAM with an RGB-D Camera

1-33

optimizedPoses = poses(vSetKeyFramesOptim);
plotOptimizedTrajectory(mapPlot, optimizedPoses)

% Update legend
showLegend(mapPlot);

Compare with the Ground Truth

You can compare the optimized camera trajectory with the ground truth to evaluate the accuracy. The
downloaded data contains a groundtruth.txt file that stores the ground truth of camera pose of
each frame. The data has been saved in the form of a MAT-file. You can also calculate the root-mean-
square-error (RMSE) of trajectory estimates.

% Load ground truth
gTruthData = load("orbslamGroundTruth.mat");
gTruth = gTruthData.gTruth;

% Plot the actual camera trajectory
plotActualTrajectory(mapPlot, gTruth(indexPairs(addedFramesIdx, 1)), optimizedPoses);

% Show legend
showLegend(mapPlot);

1 Camera Calibration and SfM Examples

1-34

% Evaluate tracking accuracy
helperEstimateTrajectoryError(gTruth(indexPairs(addedFramesIdx, 1)), optimizedPoses);

Absolute RMSE for key frame trajectory (m): 0.17171

Dense Reconstruction from Depth Image

Given the refined camera poses, you can reproject all the valid image points in the associated depth
images back to the 3-D space to perform dense reconstruction.

% Create an array of pointCloud objects to store the world points constructed
% from the key frames
ptClouds = repmat(pointCloud(zeros(1, 3)), numel(addedFramesIdx), 1);

% Ignore image points at the boundary
offset = 40;
[X, Y] = meshgrid(offset:2:imageSize(2)-offset, offset:2:imageSize(1)-offset);

for i = 1: numel(addedFramesIdx)
 Icolor = readimage(imdsColor, addedFramesIdx(i));
 Idepth = readimage(imdsDepth, addedFramesIdx(i));

 Visual SLAM with an RGB-D Camera

1-35

 [xyzPoints, validIndex] = helperReconstructFromRGBD([X(:), Y(:)], ...
 Idepth, intrinsics, optimizedPoses.AbsolutePose(i), depthFactor);

 colors = zeros(numel(X), 1, 'like', Icolor);
 for j = 1:numel(X)
 colors(j, 1:3) = Icolor(Y(j), X(j), :);
 end
 ptClouds(i) = pointCloud(xyzPoints, Color=colors(validIndex, :));
end

% Concatenate the point clouds
pointCloudsAll = pccat(ptClouds);

figure
pcshow(pointCloudsAll,VerticalAxis="y", VerticalAxisDir="down");
xlabel('X')
ylabel('Y')
zlabel('Z')

Supporting Functions

Short helper functions are listed below. Larger function are included in separate files.

helperImportTimestampFile Import time stamp file

function timestamp = helperImportTimestampFile(filename)

% Input handling
dataLines = [4, Inf];

%% Set up the Import Options and import the data
opts = delimitedTextImportOptions("NumVariables", 2);

1 Camera Calibration and SfM Examples

1-36

% Specify range and delimiter
opts.DataLines = dataLines;
opts.Delimiter = " ";

% Specify column names and types
opts.VariableNames = ["VarName1", "Var2"];
opts.SelectedVariableNames = "VarName1";
opts.VariableTypes = ["double", "string"];

% Specify file level properties
opts.ExtraColumnsRule = "ignore";
opts.EmptyLineRule = "read";
opts.ConsecutiveDelimitersRule = "join";
opts.LeadingDelimitersRule = "ignore";

% Specify variable properties
opts = setvaropts(opts, "Var2", "WhitespaceRule", "preserve");
opts = setvaropts(opts, "Var2", "EmptyFieldRule", "auto");

% Import the data
data = readtable(filename, opts);

% Convert to output type
timestamp = table2array(data);
end

helperAlignTimestamp align time stamp of color and depth images.

function indexPairs = helperAlignTimestamp(timeColor, timeDepth)
idxDepth = 1;
indexPairs = zeros(numel(timeColor), 2);
for i = 1:numel(timeColor)
 for j = idxDepth : numel(timeDepth)
 if abs(timeColor(i) - timeDepth(j)) < 1e-4
 idxDepth = j;
 indexPairs(i, :) = [i, j];
 break
 elseif timeDepth(j) - timeColor(i) > 1e-3
 break
 end
 end
end
indexPairs = indexPairs(indexPairs(:,1)>0, :);
end

helperDetectAndExtractFeatures detect and extract and ORB features from the image.

function [features, validPoints] = helperDetectAndExtractFeatures(Irgb, scaleFactor, numLevels)

numPoints = 1000;

% Detect ORB features
Igray = rgb2gray(Irgb);

points = detectORBFeatures(Igray, ScaleFactor=scaleFactor, NumLevels=numLevels);

 Visual SLAM with an RGB-D Camera

1-37

% Select a subset of features, uniformly distributed throughout the image
points = selectUniform(points, numPoints, size(Igray, 1:2));

% Extract features
[features, validPoints] = extractFeatures(Igray, points);
end

helperReconstructFromRGBD reconstruct scene from color and depth image.

function [xyzPoints, validIndex] = helperReconstructFromRGBD(points, ...
 depthMap, intrinsics, currPose, depthFactor)

ptcloud = pcfromdepth(depthMap,depthFactor,intrinsics,ImagePoints=points, DepthRange=[0.1, 5]);

isPointValid = ~isnan(ptcloud.Location(:, 1));
xyzPoints = ptcloud.Location(isPointValid, :);
xyzPoints = transformPointsForward(currPose, xyzPoints);
validIndex = find(isPointValid);
end

helperCullRecentMapPoints cull recently added map points.

function [mapPointSet, mapPointsIdx] = ...
 helperCullRecentMapPoints(mapPointSet, mapPointsIdx, newPointIdx, rgbdMapPointsIndices)
outlierIdx = setdiff([newPointIdx; rgbdMapPointsIndices], mapPointsIdx);
if ~isempty(outlierIdx)
 mapPointSet = removeWorldPoints(mapPointSet, outlierIdx);
 mapPointsIdx = mapPointsIdx - arrayfun(@(x) nnz(x>outlierIdx), mapPointsIdx);
end
end

helperEstimateTrajectoryError calculate the tracking error.

function rmse = helperEstimateTrajectoryError(gTruth, cameraPoses)
locations = vertcat(cameraPoses.AbsolutePose.Translation);
gLocations = vertcat(gTruth.Translation);
scale = median(vecnorm(gLocations, 2, 2))/ median(vecnorm(locations, 2, 2));
scaledLocations = locations * scale;

rmse = sqrt(mean(sum((scaledLocations - gLocations).^2, 2)));
disp(['Absolute RMSE for key frame trajectory (m): ', num2str(rmse)]);
end

helperUpdateGlobalMap update 3-D locations of map points after pose graph optimization

function mapPointSet = helperUpdateGlobalMap(mapPointSet, vSetKeyFrames, vSetKeyFramesOptim)

posesOld = vSetKeyFrames.Views.AbsolutePose;
posesNew = vSetKeyFramesOptim.Views.AbsolutePose;
positionsOld = mapPointSet.WorldPoints;
positionsNew = positionsOld;
indices = 1:mapPointSet.Count;

% Update world location of each map point based on the new absolute pose of
% the corresponding major view
for i = 1: mapPointSet.Count

1 Camera Calibration and SfM Examples

1-38

 majorViewIds = mapPointSet.RepresentativeViewId(i);
 tform = rigidtform3d(posesNew(majorViewIds).A/posesOld(majorViewIds).A);
 positionsNew(i, :) = transformPointsForward(tform, positionsOld(i, :));
end
mapPointSet = updateWorldPoints(mapPointSet, indices, positionsNew);
end

References

[1] Mur-Artal, Raul, and Juan D. Tardós. "ORB-SLAM2: An open-source SLAM system for monocular,
stereo, and RGB-D cameras." IEEE Transactions on Robotics 33, no. 5 (2017): 1255-1262.

 Visual SLAM with an RGB-D Camera

1-39

Import Stereo Camera Parameters from ROS

The ROS camera calibration package estimates stereo camera parameters using the OpenCV camera
calibration tools [1]. After calibrating a stereo camera in ROS, you can export its camera parameters
to an INI file using the camera calibration parser. To use the calibrated stereo camera with Computer
Vision Toolbox™ functions, such as rectifyStereoImages, you must read the camera parameters
from the INI file and convert them into a stereoParameters object using
stereoParametersFromOpenCV.

Note: The stereoParametersFromOpenCV function supports importing stereo camera parameters
for only those pinhole camera models that use the ROS plumb-bob distortion model.

Read Stereo Camera Parameters from ROS INI File

Read the stereo camera parameters stored in stereoParams.ini using the helper function
helperReadINI.

stereoParamsINI = helperReadINI("stereoParams.ini");

Compute Baseline Parameters of Stereo Camera

The baseline parameters of a stereo camera describe the relative translation and rotation of the two
cameras in the stereo camera pair. The relative rotation and translation of camera 2 with respect to
camera 1 is required to create the stereoParameters object using
stereoParametersFromOpenCV. You can compute these from the rectification and projection
matrices read from the ROS INI file [2].

Extract the two camera parameters from the stereoParams structure.

cameraParams1 = stereoParamsINI.narrow_stereo_left;
cameraParams2 = stereoParamsINI.narrow_stereo_right;

Extract the translation of camera 2 relative to camera 1 from the last column of the projection matrix.

translationOfCamera2 = cameraParams2.projection(:,end);

The rotation of camera 2 relative to camera 1, R21, is derived from the rectification matrices of the
stereo pair R1 and R2. The rectification matrices are the rotation matrices that align the camera
coordinate system to the ideal stereo image plane such that epipolar lines in both stereo images are
parallel. Compute the rotation of camera 2 relative to camera 1 as R21= R2*R1

T.

rotationOfCamera2 = cameraParams2.rectification*cameraParams1.rectification';

Create stereoParameters Object using stereoParametersFromOpenCV

Extract the intrinsic matrices and distortion coefficients of the two cameras from the stereoParams
structure.

intrinsicMatrix1 = cameraParams1.camera_matrix;
intrinsicMatrix2 = cameraParams2.camera_matrix;

distortionCoefficients1 = cameraParams1.distortion;
distortionCoefficients2 = cameraParams2.distortion;

Obtain the image size from the image field of the stereoParams structure.

1 Camera Calibration and SfM Examples

1-40

http://wiki.ros.org/camera_calibration
http://wiki.ros.org/camera_calibration_parsers

imageSize = [stereoParamsINI.image.height stereoParamsINI.image.width];

Use stereoParametersFromOpenCV to create a stereoParameters object from the ROS stereo
camera parameters.

stereoParametersObj = stereoParametersFromOpenCV(intrinsicMatrix1, ...
 distortionCoefficients1,intrinsicMatrix2,distortionCoefficients2, ...
 rotationOfCamera2,translationOfCamera2,imageSize);

Rectify Pair of Stereo Images

Use the imported stereo parameters with rectifyStereoImages to rectify an image pair captured
using the calibrated stereo camera.

% Load the image pair.
imageDir = fullfile(toolboxdir("vision"),"visiondata","calibration","stereo");
leftImages = imageDatastore(fullfile(imageDir,"left"));
rightImages = imageDatastore(fullfile(imageDir,"right"));
I1 = readimage(leftImages,1);
I2 = readimage(rightImages,1);

% Rectify the image pair.
[J1,J2] = rectifyStereoImages(I1,I2,stereoParametersObj,OutputView="full");

% Display the results.
figure
J = stereoAnaglyph(J1,J2);
imshow(J)

 Import Stereo Camera Parameters from ROS

1-41

Supporting Functions

helperReadINI

The helperReadINI function reads the camera parameters from its input INI file that has been
exported from ROS.

function cameraParams = helperReadINI(filename)
% helperReadINI reads a ROS INI file, filename, and returns a structure with
% these fields: image, <camera_name1>, <camera_name2>. image is a
% structure describing the height and width of the image captured by the
% cameras of the stereo pair. The fields <camera_name1> and <camera_name2>
% are structures named after the camera names present in the INI file, and they contain
% these fields: camera_matrix, distortion, rectification_matrix,
% and projection_matrix. These fields are stored in the INI file with their
% values placed in a new line followed by their name.

 f = fopen(filename,"r");
 sectionName = '';

 while ~feof(f)
 % Read line from file.
 line = fgetl(f);

1 Camera Calibration and SfM Examples

1-42

 % Trim leading and trailing whitespaces.
 line = strtrim(line);

 if isempty(line) || line(1)=='#'
 % Skip empty line and comments.
 continue
 elseif line(1) == '[' && line(end) == ']'
 % Identify section names and continue reading.
 sectionName = line(2:end-1);
 sectionName = strrep(sectionName,'/','_');
 continue
 end

 % Replace blankspaces with underscores to create valid MATLAB variable
 % name.
 name = line;
 name(name == ' ') = '_';

 % Read the value data in upcoming lines.
 value = [];
 while ~feof(f)
 line = fgetl(f);
 line = strtrim(line);

 if isempty(line)
 % A empty line indicates end of value data.
 break
 elseif line(1)=='#'
 % Skip comment lines.
 continue
 end
 line = str2num(line); %#ok
 value = [value; line]; %#ok
 end

 % Store post-processed value.
 if isempty(sectionName)
 cameraParams.(name) = value;
 else
 cameraParams.(sectionName).(name) = value;
 end
 end

 fclose(f);
end

References

[1] http://wiki.ros.org/camera_calibration

[2] http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/CameraInfo.html

 Import Stereo Camera Parameters from ROS

1-43

http://wiki.ros.org/camera_calibration
http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/CameraInfo.html

Import Camera Intrinsic Parameters from ROS

The ROS camera calibration package estimates camera intrinsic parameters using the OpenCV
camera calibration tools [1]. After calibrating a camera in ROS, you can import its intrinsic
parameters to a YAML file using the camera calibration parser in ROS. To use the calibrated camera
with Computer Vision Toolbox™ functions, such as undistortImage, you must read the camera
parameters from the YAML file and then convert them into a cameraIntrinsics object using
cameraIntrinsicsFromOpenCV.

Note: The cameraIntrinsicsFromOpenCV function supports importing camera intrinsic
parameters for only those pinhole camera models that use the ROS plumb-bob distortion model.

Read Camera Intrinsic Parameters from a ROS YAML File

Read the camera parameters stored in cameraParams.yaml using the helper function
helperReadYAML.

intrinsicsParams = helperReadYAML('cameraParams.yaml');

Create cameraIntrinsics Object Using cameraIntrinsicsFromOpenCV

Use the cameraIntrinsicsFromOpenCV function to create a cameraIntrinsics object from the
camera matrix and the distortion coefficients.

imageSize = [intrinsicsParams.image_height intrinsicsParams.image_width];
intrinsicMatrix = intrinsicsParams.camera_matrix;
distortionCoefficients = intrinsicsParams.distortion_coefficients;

intrinsicsObj = cameraIntrinsicsFromOpenCV(intrinsicMatrix,distortionCoefficients,imageSize);

Undistort Image

Use the imported camera intrinsics with undistortImage to undistort an image captured using the
calibrated camera.

% Load the captured image.
imageName = fullfile(toolboxdir('vision'),'visiondata','calibration','stereo','left','left01.png');
I = imread(imageName);

% Undistort the image.
J = undistortImage(I,intrinsicsObj,'OutputView','full');

% Display the result.
figure
montage({I,J})

1 Camera Calibration and SfM Examples

1-44

http://wiki.ros.org/camera_calibration
http://wiki.ros.org/camera_calibration_parsers

Supporting Functions

helperReadYAML

The helperReadYAML function reads the monocular camera parameters from the input YAML file
that was exported from ROS.

function cameraParams = helperReadYAML(filename)
% helperReadYAML reads a ROS YAML file, filename, and returns a structure
% with these fields: image_width, image_height, camera_name,
% camera_matrix, distortion_model, distortion_coefficients,
% rectification_matrix, and projection_matrix. These fields are stored
% in the YAML file colon separated from their values in different lines.

 f = fopen(filename,'r');
 stringFields = {'camera_name','distortion_model'};

 while ~feof(f)

 [name,value,isEmptyLine] = helperReadYAMLLine(f);
 if isEmptyLine
 continue
 end

 if ~isempty(value)
 % Convert all values to numbers except for known string
 % fields.
 if ~any(contains(name, stringFields))
 value = str2num(value); %#ok
 end
 else
 % An empty value in ROS YAML files indicates a matrix in
 % upcoming lines. Read the matrix from the upcoming lines.
 value = helperReadYAMLMatrix(f);
 end

 % Store post-processed value.
 cameraParams.(name) = value;

 Import Camera Intrinsic Parameters from ROS

1-45

 end

 fclose(f);
end

helperReadYAMLMatrix

The helperReadYAMLMatrix function reads the rows, columns and data fields of a matrix in the
ROS YAML file.

function matrix = helperReadYAMLMatrix(f)
% helperReadYAMLMatrix reads a matrix from the ROS YAML file. A matrix in
% a ROS YAML file has three fields: rows, columns and data. rows and col
% describe the matrix size. data is a continguous array of the matrix
% elements in row-major order. This helper function assumes the presence
% of all three fields of a matrix to return the correct matrix.

 numRows = 0;
 numCols = 0;
 data = [];

 % Read numRows, numCols and matrix data.
 while ~feof(f)
 [name,value,isEmptyLine] = helperReadYAMLLine(f);

 if isEmptyLine
 continue
 end

 switch name
 case 'rows'
 numRows = str2num(value); %#ok
 case 'cols'
 numCols = str2num(value); %#ok
 case 'data'
 data = str2num(value); %#ok

 % Terminate the while loop as data is the last
 % field of a matrix in the ROS YAML file.
 break
 otherwise
 % Terminate the while loop if any other field is
 % encountered.
 break
 end
 end

 if numel(data) == numRows*numCols
 % Reshape the matrix using row-major order.
 matrix = reshape(data,[numCols numRows])';
 end
end

helperReadYAMLLine

The helperReadYAMLLine function reads a line of a ROS YAML file.

function [name,value,isEmptyLine] = helperReadYAMLLine(f)

1 Camera Calibration and SfM Examples

1-46

 % Read line from file.
 line = fgetl(f);

 % Trim leading and trailing whitespaces.
 line = strtrim(line);

 if isempty(line) || line(1)=='#'
 % Empty line or comment.
 name = '';
 value = '';
 isEmptyLine = true;
 else
 % Split the line to get name and value.
 c = strsplit(line,':');
 assert(length(c)==2,'Unexpected file format')

 name = c{1};
 value = strtrim(c{2}); % Trim leading whitespace.
 isEmptyLine = false;
 end
end

References

[1] http://wiki.ros.org/camera_calibration

 Import Camera Intrinsic Parameters from ROS

1-47

http://wiki.ros.org/camera_calibration

Develop Visual SLAM Algorithm Using Unreal Engine
Simulation

This example shows how to develop a visual Simultaneous Localization and Mapping (SLAM)
algorithm using image data obtained from the Unreal Engine® simulation environment.

Visual SLAM is the process of calculating the position and orientation of a camera with respect to its
surroundings while simultaneously mapping the environment. Developing a visual SLAM algorithm
and evaluating its performance in varying conditions is a challenging task. One of the biggest
challenges is generating the ground truth of the camera sensor, especially in outdoor environments.
The use of simulation enables testing under a variety of scenarios and camera configurations while
providing precise ground truth.

This example demonstrates the use of Unreal Engine simulation to develop a visual SLAM algorithm
for either a monocular or a stereo camera in a parking scenario. For more information about the
implementation of the visual SLAM pipelines, see the “Monocular Visual Simultaneous Localization
and Mapping” on page 1-95 example and the “Stereo Visual Simultaneous Localization and
Mapping” on page 1-122 example.

Set Up Scenario in Simulation Environment

Use the Simulation 3D Scene Configuration block to set up the simulation environment. Select the
built-in Large Parking Lot scene, which contains several parked vehicles. The visual SLAM algorithm
matches features across consecutive images. To increase the number of potential feature matches,
you can use the Parked Vehicles subsystem to add more parked vehicles to the scene. To specify the
parking poses of the vehicles, use the helperAddParkedVehicle function. If you select a more
natural scene, the presence of additional vehicles is not necessary. Natural scenes usually have
enough texture and feature variety suitable for feature matching.

You can follow the “Select Waypoints for Unreal Engine Simulation” (Automated Driving Toolbox)
example to interactively select a sequence of parking locations. You can use the same approach to
select a sequence of waypoints and generate a reference trajectory for the ego vehicle. This example
uses a recorded reference trajectory and parked vehicle locations.

% Load reference path
data = load("parkingLotReferenceData.mat");

% Set reference trajectory of the ego vehicle
refPosesX = data.refPosesX;
refPosesY = data.refPosesY;
refPosesT = data.refPosesT;

% Set poses of the parked vehicles
parkedPoses = data.parkedPoses;

% Display the reference path and the parked vehicle locations
sceneName = "LargeParkingLot";
hScene = figure;
helperShowSceneImage(sceneName);
hold on
plot(refPosesX(:,2), refPosesY(:,2), LineWidth=2, DisplayName='Reference Path');
scatter(parkedPoses(:,1), parkedPoses(:,2), [], 'filled', DisplayName='Parked Vehicles');
xlim([-60 40])

1 Camera Calibration and SfM Examples

1-48

ylim([10 60])
hScene.Position = [100, 100, 1000, 500]; % Resize figure
legend
hold off

Open the model and add parked vehicles

modelName = 'GenerateImageDataOfParkingLot';
open_system(modelName);

 Develop Visual SLAM Algorithm Using Unreal Engine Simulation

1-49

helperAddParkedVehicles(modelName, parkedPoses);

1 Camera Calibration and SfM Examples

1-50

Set Up Ego Vehicle and Camera Sensor

Set up the ego vehicle moving along the specified reference path by using the Simulation 3D Vehicle
with Ground Following block. The Camera Variant Subsystem contains two configurations of camera
sensors: monocular and stereo. In both configurations, the camera is mounted on the vehicle roof
center. You can use the Camera Calibrator or Stereo Camera Calibrator app to estimate intrinsics of
the actual camera that you want to simulate. This example shows the monocular camera workflow
first followed by the stereo camera workflow.

% Select monocular camera
useMonoCamera = 1;

% Inspect the monocular camera
open_system([modelName, '/Camera/Monocular']);

% Camera intrinsics
focalLength = [700, 700]; % specified in units of pixels
principalPoint = [600, 180]; % in pixels [x, y]

 Develop Visual SLAM Algorithm Using Unreal Engine Simulation

1-51

imageSize = [370, 1230]; % in pixels [mrows, ncols]
intrinsics = cameraIntrinsics(focalLength, principalPoint, imageSize);

Visualize and Record Sensor Data

Run the simulation to visualize and record sensor data. Use the Video Viewer block to visualize the
image output from the camera sensor. Use the To Workspace block to record the ground truth
location and orientation of the camera sensor.

close(hScene)

if ~ispc
 error("Unreal Engine Simulation is supported only on Microsoft" + char(174) + " Windows" + char(174) + ".");
end

% Run simulation
simOut = sim(modelName);

% Extract camera images as an imageDatastore
imds = helperGetCameraImages(simOut);

1 Camera Calibration and SfM Examples

1-52

% Extract ground truth as an array of rigidtform3d objects
gTruth = helperGetSensorGroundTruth(simOut);

Develop Monocular Visual SLAM Algorithm Using Recorded Data

Use the images to evaluate the monocular visual SLAM algorithm. The function helperVisualSLAM
implements the monocular ORB-SLAM pipeline:

• Map Initialization: ORB-SLAM starts by initializing the map of 3-D points from two images. Use
estrelpose to compute the relative pose based on 2-D ORB feature correspondences and
triangulate to compute the 3-D map points. The two frames are stored in an imageviewset
object as key frames. The 3-D map points and their correspondences to the key frames are stored
in a worldpointset object.

• Tracking: Once a map is initialized, for each new image, the function
helperTrackLastKeyFrame estimates the camera pose by matching features in the current
frame to features in the last key frame. The function helperTrackLocalMap refines the
estimated camera pose by tracking the local map.

• Local Mapping: The current frame is used to create new 3-D map points if it is identified as a key
frame. At this stage, bundleAdjustment is used to minimize reprojection errors by adjusting the
camera pose and 3-D points.

• Loop Closure: Loops are detected for each key frame by comparing it against all previous key
frames using the bag-of-features approach. Once a loop closure is detected, the pose graph is
optimized to refine the camera poses of all the key frames using the optimizePoseGraph
(Navigation Toolbox) function.

For the implementation details of the algorithm, see the “Monocular Visual Simultaneous Localization
and Mapping” on page 1-95 example.

[mapPlot, optimizedPoses, addedFramesIdx] = helperVisualSLAM(imds, intrinsics);

Map initialized with frame 1 and frame 4

 Develop Visual SLAM Algorithm Using Unreal Engine Simulation

1-53

Loop edge added between keyframe: 4 and 97

Evaluate Against Ground Truth

You can evaluate the optimized camera trajectory against the ground truth obtained from the
simulation. Since the images are generated from a monocular camera, the trajectory of the camera
can only be recovered up to an unknown scale factor. You can approximately compute the scale factor
from the ground truth, thus simulating what you would normally obtain from an external sensor.

% Plot the camera ground truth trajectory
scaledTrajectory = plotActualTrajectory(mapPlot, gTruth(addedFramesIdx), optimizedPoses);

% Show legend
showLegend(mapPlot);

1 Camera Calibration and SfM Examples

1-54

You can also calculate the root mean square error (RMSE) of trajectory estimates.

helperEstimateTrajectoryError(gTruth(addedFramesIdx), scaledTrajectory);

Absolute RMSE for key frame trajectory (m): 1.9101

Stereo Visual SLAM Algorithm

In a monocular visual SLAM algorithm, depth cannot be accurately determined using a single
camera. The scale of the map and of the estimated trajectory is unknown and drifts over time.
Additionally, because map points often cannot be triangulated from the first frame, bootstrapping the
system requires multiple views to produce an initial map. Using a stereo camera solves these
problems and provides a more reliable visual SLAM solution. The function
helperVisualSLAMStereo implements the stereo visual SLAM pipeline. The key difference from
the monocular pipeline is that at the map initialization stage, the stereo pipeline creates 3-D map
points from a pair of stereo images of the same frame, instead of creating them from two images of
different frames. For the implementation details of the algorithm, see the “Stereo Visual
Simultaneous Localization and Mapping” on page 1-122 example.

% Select stereo camera
useMonoCamera = 0;

% Inspect the stereo camera
open_system([modelName, '/Camera/Stereo']);
snapnow;

% Set stereo camera baseline
baseline = 0.5; % In meters

% Construct the reprojection matrix for 3-D reconstruction

 Develop Visual SLAM Algorithm Using Unreal Engine Simulation

1-55

reprojectionMatrix = [1, 0, 0, -principalPoint(1);
 0, 1, 0, -principalPoint(2);
 0, 0, 0, focalLength(1);
 0, 0, 1/baseline, 0];

% Maximum disparity in stereo images
maxDisparity = 48;

% Run simulation
simOut = sim(modelName);

snapnow;

1 Camera Calibration and SfM Examples

1-56

Extract Stereo Images

[imdsLeft, imdsRight] = helperGetCameraImagesStereo(simOut);

% Extract ground truth as an array of rigidtform3d objects
gTruth = helperGetSensorGroundTruth(simOut);

Run the stereo visual SLAM algorithm

[mapPlot, optimizedPoses, addedFramesIdx] = helperVisualSLAMStereo(imdsLeft, imdsRight, intrinsics, maxDisparity, reprojectionMatrix);

Loop edge added between keyframe: 2 and 92

% Plot the camera ground truth trajectory
optimizedTrajectory = plotActualTrajectory(mapPlot, gTruth(addedFramesIdx));

% Show legend
showLegend(mapPlot);

 Develop Visual SLAM Algorithm Using Unreal Engine Simulation

1-57

% Calculate the root mean square error (RMSE) of trajectory estimates
helperEstimateTrajectoryError(gTruth(addedFramesIdx), optimizedTrajectory);

Absolute RMSE for key frame trajectory (m): 0.27679

Compared with the monocular visual SLAM algorithm, the stereo visual SLAM algorithm produces a
more accurate estimation of the camera trajectory.

Dense Reconstruction from Stereo Images

Given the refined camera poses, you can perform dense reconstruction from the stereo images
corresponding to the key frames.

pointCloudsAll = helperDenseReconstructFromStereo(imdsLeft, imdsRight, ...
 imageSize, addedFramesIdx, optimizedPoses, maxDisparity, reprojectionMatrix);

% Visualize the scene
figure(Position=[1100 600 1000 500]);
ax = pcshow(pointCloudsAll,VerticalAxis="y", VerticalAxisDir="down");
xlabel('X')
ylabel('Y')
zlabel('Z')

% Display bird's eye view of the parking lot
view(ax, [0 -1 0]);
camroll(ax, 90);

Close model and figures.

close_system(modelName, 0);
close all

1 Camera Calibration and SfM Examples

1-58

Supporting Functions

helperGetCameraImages Get camera output

function imds = helperGetCameraImages(simOut)
% Save image data to a temporary folder
dataFolder = fullfile(tempdir, 'parkingLotImages', filesep);
folderExists = exist(dataFolder, 'dir');
if ~folderExists
 mkdir(dataFolder);
end

files = dir(dataFolder);
if numel(files) < 3
 numFrames = numel(simOut.images.Time);
 for i = 3:numFrames % Ignore the first two frames
 img = squeeze(simOut.images.Data(:,:,:,i));
 imwrite(img, [dataFolder, sprintf('%04d', i-2), '.png'])
 end
end

% Create an imageDatastore object to store all the images
imds = imageDatastore(dataFolder);
end

helperGetCameraImagesStereo Get camera output

function [imdsLeft, imdsRight] = helperGetCameraImagesStereo(simOut)
% Save image data to a temporary folder
dataFolderLeft = fullfile(tempdir, 'parkingLotStereoImages', filesep, 'left', filesep);
dataFolderRight = fullfile(tempdir, 'parkingLotStereoImages', filesep, 'right', filesep);
folderExists = exist(dataFolderLeft, 'dir');
if ~folderExists
 mkdir(dataFolderLeft);
 mkdir(dataFolderRight);
end

files = dir(dataFolderLeft);
if numel(files) < 3
 numFrames = numel(simOut.imagesLeft.Time);
 for i = 3:numFrames % Ignore the first two frames
 imgLeft = squeeze(simOut.imagesLeft.Data(:,:,:,i));
 imwrite(imgLeft, [dataFolderLeft, sprintf('%04d', i-2), '.png'])

 imgRight = squeeze(simOut.imagesRight.Data(:,:,:,i));
 imwrite(imgRight, [dataFolderRight, sprintf('%04d', i-2), '.png'])
 end
end

% Use imageDatastore objects to store the stereo images
imdsLeft = imageDatastore(dataFolderLeft);
imdsRight = imageDatastore(dataFolderRight);
end

helperGetSensorGroundTruth Save the sensor ground truth

function gTruth = helperGetSensorGroundTruth(simOut)
numFrames = numel(simOut.location.Time);

 Develop Visual SLAM Algorithm Using Unreal Engine Simulation

1-59

gTruth = repmat(rigidtform3d, numFrames-2, 1);
for i = 1:numFrames-2 % Ignore the first two frames
 gTruth(i).Translation = squeeze(simOut.location.Data(:, :, i+2));
 % Ignore the roll and the pitch rotations since the ground is flat
 yaw = double(simOut.orientation.Data(:, 3, i+2));
 gTruth(i).R = [cos(yaw), -sin(yaw), 0; ...
 sin(yaw), cos(yaw), 0; ...
 0, 0, 1];
end
end

helperEstimateTrajectoryError Calculate the tracking error

function rmse = helperEstimateTrajectoryError(gTruth, scaledLocations)
gLocations = vertcat(gTruth.Translation);

rmse = sqrt(mean(sum((scaledLocations - gLocations).^2, 2)));
disp(['Absolute RMSE for key frame trajectory (m): ', num2str(rmse)]);
end

helperDenseReconstructFromStereo Perform dense reconstruction from stereo images with
known camera poses

function pointCloudsAll = helperDenseReconstructFromStereo(imdsLeft, imdsRight, ...
 imageSize, addedFramesIdx, optimizedPoses, maxDisparity, reprojectionMatrix)

ptClouds = repmat(pointCloud(zeros(1, 3)), numel(addedFramesIdx), 1);

for i = 1: numel(addedFramesIdx)
 I1 = readimage(imdsLeft, addedFramesIdx(i));
 I2 = readimage(imdsRight, addedFramesIdx(i));
 disparityMap = disparitySGM(im2gray(I1), im2gray(I2), DisparityRange=[0, maxDisparity],UniquenessThreshold=20);
 xyzPoints = reconstructScene(disparityMap, reprojectionMatrix);

 % Ignore the upper half of the images which mainly show the sky
 xyzPoints(1:100, :, :) = NaN;

 xyzPoints = reshape(xyzPoints, [imageSize(1)*imageSize(2), 3]);

 validIndex = xyzPoints(:, 3) > 0 & xyzPoints(:, 3) < 40/reprojectionMatrix(4, 3);

 xyzPoints = xyzPoints(validIndex, :);
 colors = reshape(I1, [imageSize(1)*imageSize(2), 3]);
 colors = colors(validIndex, :);

 currPose = optimizedPoses.AbsolutePose(i);
 xyzPoints = transformPointsForward(currPose, xyzPoints);
 ptCloud = pointCloud(xyzPoints, Color=colors);
 ptClouds(i) = pcdownsample(ptCloud, random=0.2);
end

% Concatenate the point clouds
pointCloudsAll = pccat(ptClouds);
end

1 Camera Calibration and SfM Examples

1-60

Visual Localization in a Parking Lot

This example shows how to develop a visual localization system using synthetic image data from the
Unreal Engine® simulation environment.

It is a challenging task to obtain ground truth for evaluating the performance of a localization
algorithm in different conditions. Virtual simulation in different scenarios is a cost-effective method to
obtain the ground truth in comparison with more expensive approaches such as using high-precision
inertial navigation systems or differential GPS. The use of simulation enables testing under a variety
of scenarios and sensor configurations. It also enables a rapid algorithm development, and provides
precise ground truth.

This example uses the Unreal Engine simulation environment from Epic Games® to develop and
evaluate a visual localization algorithm in a parking lot scenario.

Overview

Visual localization is the process of estimating the camera pose for a captured image relative to a
visual representation of a known scene. It is a key technology for applications such as augmented
reality, robotics, and automated driving. Compared with a “Implement Visual SLAM in MATLAB” on
page 11-8, visual localization assumes that a map of the environment is known and does not
require 3-D reconstruction or loop closure detection. The pipeline of visual localization includes the
following:

• Map Loading: Load the pre-built map 3-D map containing world point positions and the 3-D to 2-
D correspondences between the map points and the key frames. Additionally. for each key frame,
load the feature descriptors corresponding to the 3-D map points.

• Global Initialization: Extract features from the first image frame and match them with the
features corresponding to all the 3-D map points. After getting the 3-D to 2-D correspondences,
estimate the camera pose of the first frame in the world coordinate by solving a Perspective-n-
Point (PnP) problem. Refine the pose using motion-only bundle adjustment. The key frame that
shares the most covisible 3-D map points with the first frame is identified as the reference key
frame.

• Tracking: Once the first frame is localized, for each new frame, match features in the new frame
with features in the reference key frame that have known 3-D world points. Estimate and refine
the camera pose using the same approach as in Global Initialization step. The camera pose can be
further refined by tracking the features associated with nearby key frames.

Create Scene

Guiding a vehicle into a parking spot is a challenging maneuver that relies on accurate localization.
The VisualLocalizationInAParkingLot model simulates a visual localization system in the
parking lot scenario used in the “Develop Visual SLAM Algorithm Using Unreal Engine Simulation”
(Automated Driving Toolbox) example.

• The Simulation 3D Scene Configuration (Automated Driving Toolbox) block sets up the Large
Parking Lot scene. The Parked Vehicles subsystem adds parked cars into the parking lot.

• The Simulation 3D Vehicle with Ground Following (Automated Driving Toolbox) block controls the
motion of the ego vehicle.

• The Simulation 3D Camera (Automated Driving Toolbox)block models a monocular camera fixed at
the center of the vehicle's roof. You can use the Camera Calibrator app to estimate intrinsics of
the actual camera that you want to simulate.

 Visual Localization in a Parking Lot

1-61

• The Helper Visual Localization MATLAB System block implements the visual localization
algorithm. The initial camera pose with respect to the map is estimated using the
helperGlobalInitialization function. The subsequent camera poses are estimated using the
helperTrackingRefKeyFrame function and refined using the helperTrackLocalKeyFrames
function. This block also provides a visualization of the estimated camera trajectory in the pre-
built map. You can specify the pre-built map data and the camera intrinsic parameters in the block
dialog.

% Open the model
modelName = 'VisualLocalizationInAParkingLot';
open_system(modelName);

1 Camera Calibration and SfM Examples

1-62

Load Map Data

The pre-built map data is generated using the stereo camera in the “Develop Visual SLAM Algorithm
Using Unreal Engine Simulation” (Automated Driving Toolbox) example. The data consists of three
objects that are commonly used to manage image and map data for visual SLAM:

• vSetKeyFrame: an imageviewset object storing the camera poses of key frames and the
associated feature points for each 3-D map point in mapPointSet.

• mapPointSet: a worldpointset object storing the 3-D map point locations and the
correspondences between the 3-D points and 2-D feature points across key frames. The 3-D map
points provide a sparse representation of the environment.

% Load pre-built map data
mapData = load("prebuiltMapData.mat")

mapData = struct with fields:
 vSetKeyFrames: [1×1 imageviewset]
 mapPointSet: [1×1 worldpointset]

 Visual Localization in a Parking Lot

1-63

Set Up Ego Vehicle and Camera Sensor

You can follow the “Select Waypoints for Unreal Engine Simulation” (Automated Driving Toolbox)
example to select a sequence of waypoints and generate a reference trajectory for the ego vehicle.
This example uses a recorded reference trajectory.

% Load reference path
refPosesData = load('parkingLotLocalizationData.mat');

% Set reference trajectory of the ego vehicle
refPosesX = refPosesData.refPosesX;
refPosesY = refPosesData.refPosesY;
refPosesT = refPosesData.refPosesT;

% Set camera intrinsics
focalLength = [700, 700]; % specified in units of pixels
principalPoint = [600, 180]; % in pixels [x, y]
imageSize = [370, 1230]; % in pixels [mrows, ncols]

Run Simulation

Run the simulation and visualize the estimated camera trajectory in the pre-built map. The white
points represent the tracked 3-D map points in the current frame. You can compare the estimated
trajectory with the ground truth provided by the Simulation 3D Camera block to evaluate the
localization accuracy.

if ~ispc
 error("Unreal Engine Simulation is supported only on Microsoft" + char(174) + " Windows" + char(174) + ".");
end

% Open video viewer to examine camera images
open_system([modelName, '/Video Viewer']);

% Run simulation
sim(modelName);

1 Camera Calibration and SfM Examples

1-64

 Visual Localization in a Parking Lot

1-65

Close the model.

close_system([modelName, '/Video Viewer']);
close_system(modelName, 0);

Conclusion

With this setup, you can rapidly iterate over different scenarios, sensor configurations, or reference
trajectories and refine the visual localization algorithm before moving to real-world testing.

• To select a different scenario, use the Simulation 3D Scene Configuration (Automated Driving
Toolbox) block. Choose from the existing prebuilt scenes or create a custom scene in the Unreal®
Editor.

• To create a different reference trajectory, use the helperSelectSceneWaypoints tool, as shown
in the “Select Waypoints for Unreal Engine Simulation” (Automated Driving Toolbox) example.

• To alter the sensor configuration use the Simulation 3D Camera (Automated Driving
Toolbox)block. The Mounting tab provides options for specifying different sensor mounting
placements. The Parameters tab provides options for modifying sensor parameters such as
detection range, field of view, and resolution. You can also use the Simulation 3D Fisheye Camera
(Automated Driving Toolbox) block which provides a larger field of view.

1 Camera Calibration and SfM Examples

1-66

Stereo Visual SLAM for UAV Navigation in 3D Simulation

Visual SLAM is the process of calculating the position and orientation of a camera with respect to its
surroundings while simultaneously mapping the environment. Developing a visual SLAM algorithm
and evaluating its performance in varying conditions is a challenging task. One of the biggest
challenges is generating the ground truth of the camera sensor, especially in outdoor environments.
The use of simulation enables testing under a variety of scenarios and camera configurations while
providing precise ground truth.

This example demonstrates the use of Unreal Engine® simulation to develop a visual SLAM
algorithm for a UAV equipped with a stereo camera in a city block scenario. For more information
about the implementation of the visual SLAM pipeline for a stereo camera [1] on page 1-72, see the
“Stereo Visual Simultaneous Localization and Mapping” on page 1-122 example.

Set Up Simulation Environment

First, set up a scenario in the simulation environment that can be used to test the visual SLAM
algorithm. Use a scene depicting a typical city block with a UAV as the vehicle under test.

Next, select a trajectory for the UAV to follow in the scene. You can follow the “Select Waypoints for
Unreal Engine Simulation” (Automated Driving Toolbox) example to interactively select a sequence of
waypoints and then use the helperSelectSceneWaypoints function to generate a reference
trajectory for the UAV. This example uses a recorded reference trajectory as shown below:

% Load reference path
data = load("uavStereoSLAMData.mat");

pos = data.pos; % Position
orientEuler = data.orientEuler; % Orientation

 Stereo Visual SLAM for UAV Navigation in 3D Simulation

1-67

The UAVVisualSLAMIn3DSimulation Simulink® model is configured with the US City Block scene
using the Simulation 3D Scene Configuration (UAV Toolbox) block. The model places a UAV on the
scene using the Simulation 3D UAV Vehicle (UAV Toolbox) block. A stereo camera consisting of two
Simulation 3D Camera (UAV Toolbox) blocks is attached to the UAV. In the dialog box of the
Simulation 3D Camera (UAV Toolbox) block, use the Mounting tab to adjust the placement of the
camera. Use the Parameters tab to configure properties of the camera to simulate different cameras.
To estimate the intrinsics of the stereo camera that you want to simulate, use the “Using the Stereo
Camera Calibrator App” on page 16-38 app.

% Stereo camera parameters
focalLength = [1109, 1109]; % In pixels

1 Camera Calibration and SfM Examples

1-68

principalPoint = [640, 360]; % In pixels [x, y]
imageSize = [720, 1280]; % In pixels [mrows, ncols]
baseline = 0.5; % In meters

% Open the model
modelName = 'UAVVisualSLAMIn3DSimulation';
open_system(modelName);

Implement the Stereo Visual SLAM Algorithm

The Helper Stereo Visual SLAM System block implements the stereo visual SLAM pipeline, consisting
of the following steps:

• Map Initialization: The pipeline starts by initializing the map of 3-D points from a pair of images
generated from the stereo camera using the disparity map. The left image is stored as the first key
frame.

 Stereo Visual SLAM for UAV Navigation in 3D Simulation

1-69

• Tracking: Once a map is initialized, for each new stereo pair, the pose of the camera is estimated
by matching features in the left image to features in the last key frame. The estimated camera
pose is refined by tracking the local map.

• Local Mapping: If the current left image is identified as a key frame, new 3-D map points are
computed from the disparity of the stereo pair. At this stage, bundle adjustment is used to
minimize reprojection errors by adjusting the camera pose and 3-D points.

• Loop Closure: Loops are detected for each key frame by comparing it against all previous key
frames using the bag-of-features approach. Once a loop closure is detected, the pose graph is
optimized to refine the camera poses of all the key frames.

For the implementation details of the algorithm, see the “Stereo Visual Simultaneous Localization and
Mapping” on page 1-122 example.

Run Stereo Visual SLAM Simulation

Simulate the model and visualize the results. The Video Viewer block displays the stereo image
output. The Point Cloud Player displays the reconstructed 3-D map with the estimated camera
trajectory.

if ~ispc
 error("Unreal Engine Simulation is supported only on Microsoft" + char(174) + " Windows" + char(174) + ".");
end

% Set the random seed to get consistent results
rng(0);

% Run simulation
sim(modelName);

1 Camera Calibration and SfM Examples

1-70

Loop edge added between keyframe: 2 and 91

Close the model.

close_system(modelName);

 Stereo Visual SLAM for UAV Navigation in 3D Simulation

1-71

References

[1] Mur-Artal, Raul, and Juan D. Tardós. "ORB-SLAM2: An open-source SLAM system for monocular,
stereo, and RGB-D cameras." IEEE Transactions on Robotics 33, no. 5 (2017): 1255-1262.

1 Camera Calibration and SfM Examples

1-72

Camera Calibration Using AprilTag Markers

AprilTags are widely used as visual markers for applications in object detection, localization, and as a
target for camera calibration [1]. AprilTags are like QR codes, but are designed to encode less data,
and can therefore be decoded faster which is useful, for example, for real-time robotics applications.

The advantages of using AprilTags as a calibration pattern include greater feature point detection,
and consistent, repeatable detections. This example uses the readAprilTag function to detect and
localize AprilTags in a calibration pattern. The readAprilTag function supports all official tag
families. The example also uses additional Computer Vision Toolbox™ functions to perform end-to-end
camera calibration. The default checkerboard pattern is replaced by a grid of evenly spaced
AprilTags. For an example of using a checkerboard pattern for calibration, refer to “Using the Single
Camera Calibrator App” on page 16-24.

This example shows how to calibrate a camera using AprilTags programmatically, and by using the
Camera Calibrator app:

• Functional Interface on page 1-73
• Camera Calibration App on page 1-80

Camera Calibration Using Functional Interface

Step 1: Generate the calibration pattern

Download and prepare tag images

Pre-generated tags for all the supported families can be downloaded from here using a web browser
or by running the following code:

downloadURL = "https://github.com/AprilRobotics/apriltag-imgs/archive/master.zip";
dataFolder = fullfile(tempdir,"apriltag-imgs",filesep);
options = weboptions('Timeout', Inf);
zipFileName = fullfile(dataFolder,"apriltag-imgs-master.zip");
folderExists = exist(dataFolder,"dir");

% Create a folder in a temporary directory to save the downloaded file.
if ~folderExists
 mkdir(dataFolder);
 disp("Downloading apriltag-imgs-master.zip (60.1 MB)...")
 websave(zipFileName,downloadURL,options);

 % Extract contents of the downloaded file.
 disp("Extracting apriltag-imgs-master.zip...")
 unzip(zipFileName,dataFolder);
end

Downloading apriltag-imgs-master.zip (60.1 MB)...

Extracting apriltag-imgs-master.zip...

The helperGenerateAprilTagPattern on page 1-85 function at the end of the example can be used to
generate a calibration target using the tag images for a specific arrangement of tags. The pattern
image is contained in calibPattern, which can be used to print the pattern (from MATLAB). The
example uses the tag36h11 family, which provides a reasonable trade-off between detection
performance and robustness to false-positive detections.

 Camera Calibration Using AprilTag Markers

1-73

https://github.com/AprilRobotics/apriltag-imgs

% Set the properties of the calibration pattern.
tagArrangement = [5,8];
tagFamily = "tag36h11";

% Generate the calibration pattern using AprilTags.
tagImageFolder = fullfile(dataFolder,"apriltag-imgs-master",tagFamily);
imdsTags = imageDatastore(tagImageFolder);
calibPattern = helperGenerateAprilTagPattern(imdsTags,tagArrangement,tagFamily);

Using the readAprilTag function on this pattern results in detections with the corner locations of
the individual tags grouped together. The helperAprilTagToCheckerLocations on page 1-87 function
can be used to convert this arrangement to a column-major arrangement, such as a checkerboard.

% Read and localize the tags in the calibration pattern.
[tagIds, tagLocs] = readAprilTag(calibPattern,tagFamily);

% Sort the tags based on their ID values.
[~, sortIdx] = sort(tagIds);
tagLocs = tagLocs(:,:,sortIdx);

% Reshape the tag corner locations into an M-by-2 array.
tagLocs = reshape(permute(tagLocs,[1,3,2]),[],2);

% Convert the AprilTag corner locations to checkerboard corner locations.
checkerIdx = helperAprilTagToCheckerLocations(tagArrangement);
imagePoints = tagLocs(checkerIdx(:),:);

1 Camera Calibration and SfM Examples

1-74

% Display corner locations.
figure; imshow(calibPattern); hold on
plot(imagePoints(:,1),imagePoints(:,2),"ro-",MarkerSize=15)

Prepare images for calibration

A few points to note while preparing images for calibration:

• While the pattern is printed on a paper in this example, consider printing it on a surface that
remains flat, and is not subject to deformations due to moisture, etc.

• Since the calibration procedure assumes that the pattern is planar, any imperfections in the
pattern (e.g. an uneven surface) can reduce the accuracy of the calibration.

• The calibration procedure requires at least 2 images of the pattern but using between 10 and 20
images produces more accurate results.

• Capture a variety of images of the pattern such that the pattern fills most of the image, thus
covering the entire field of view. For example, to best capture the lens distortion, have images of
the pattern at all edges of the image frame.

• Make sure the pattern is completely visible in the captured images since images with partially
visible patterns will be rejected.

• For more information on preparing images of the calibration pattern, see “Prepare Camera and
Capture Images” on page 16-4.

 Camera Calibration Using AprilTag Markers

1-75

Step 2: Detect and localize the AprilTags

The helperDetectAprilTagCorners on page 1-86 function, included at the end of the example, is used
to detect, and localize the tags from the captured images and arrange them in a checkerboard fashion
to be used as key points in the calibration procedure.

% Create an imageDatastore object to store the captured images.
imdsCalib = imageDatastore("aprilTagCalibImages/");

% Detect the calibration pattern from the images.
[imagePoints,boardSize] = helperDetectAprilTagCorners(imdsCalib,tagArrangement,tagFamily);

Step 3: Generate world points for the calibration pattern

The generated AprilTag pattern is such that the tags are in a checkerboard fashion, and so the world
coordinates for the corresponding image coordinates determined above (in imagePoints) can be
obtained using the generateCheckerboardPoints function.

Here, the size of the square is replaced by the size of the tag, and the size of the board is obtained
from the previous step. Measure the tag size between the outer black edges of one side of the tag.

1 Camera Calibration and SfM Examples

1-76

% Generate world point coordinates for the pattern.
tagSize = 16; % in millimeters
worldPoints = generateCheckerboardPoints(boardSize, tagSize);

Step 4: Estimate camera parameters

With the image and world point correspondences, estimate the camera parameters using the
estimateCameraParameters function.

% Determine the size of the images.
I = readimage(imdsCalib,1);
imageSize = size(I,1:2);

% Estimate the camera parameters.
params = estimateCameraParameters(imagePoints,worldPoints,ImageSize=imageSize);

Visualize the accuracy of the calibration and the extrinsic camera parameters. Show the planes of the
calibration pattern in the captured images.

% Display the reprojection errors.
figure
showReprojectionErrors(params)

 Camera Calibration Using AprilTag Markers

1-77

% Display the extrinsics.
figure
showExtrinsics(params)

1 Camera Calibration and SfM Examples

1-78

Inspect the locations of the detected image points and the reprojected points, which were obtained
using the estimated camera parameters.

% Read a calibration image.
I = readimage(imdsCalib,10);

% Insert markers for the detected and reprojected points.
I = insertMarker(I,imagePoints(:,:,10),"o",Color="g",Size=5);
I = insertMarker(I,params.ReprojectedPoints(:,:,10),"x",Color="r",Size=5);

% Display the image.
figure
imshow(I)

 Camera Calibration Using AprilTag Markers

1-79

Using other Calibration Patterns

While this example uses AprilTags markers in the calibration pattern, the same workflow can be
extended to other planar patterns as well. The estimateCameraParameters used to obtain the
camera parameters requires:

• imagePoints: Key points in the calibration pattern in image coordinates obtained from the
captured images.

• worldPoints: Corresponding world point coordinates of the key points in the calibration pattern.

Provided there is a way to obtain these key points, the rest of the calibration workflow remains the
same.

Integrating AprilTag Calibration Pattern Support into Camera Calibrator App

For convenience of use, the above workflow can also be integrated into the Camera Calibrator app.
The overall workflow remains the same and the steps are:

1. Add images with AprilTags.

2. Import a custom pattern detector class for AprilTags. The detector must do the following:

1 Camera Calibration and SfM Examples

1-80

• Detect and localize the AprilTags
• Generate world points for the calibration pattern

3. Estimate camera parameters.

Add Images with AprilTags

Open Camera Calibrator App:

• MATLAB Toolstrip: On the Apps tab, in the Image Processing and Computer Vision section,
click the Camera Calibrator icon.

• MATLAB command prompt: Enter “Using the Single Camera Calibrator App” on page 16-24.

On the Calibration tab, in the File section, click Add images, and then select From file. You can
add images from multiple folders by clicking Add images for each folder. We will reuse the same
images as above on page 1-75. You will need at least 2 images for camera calibration. Once you add
images, the following UI will appear:

Expand the Custom Pattern panel, to see more options.

 Camera Calibration Using AprilTag Markers

1-81

Import Custom Pattern Detector Class

The above UI shows a drop-down list for pattern selection. By default, the app does not include a
pattern detector for AprilTags. You can create a custom pattern detector class and then add it to the
list to use in the app. For more information on how to create a custom pattern, click on the
information icon (). A custom pattern detector class for AprilTags has been provided in
MyCustomAprilTagPatternDetector.m file. This class contains UI code for parameters needed by the
detector and functions for detecting and processing the custom AprilTags calibration pattern.

The example uses the configureUIComponents() function to configure the UI component and the
initializePropertyValues() to initialize it. The helperDrawImageAxesLabels on page 1-87
function, included at the end of the example, is used to render the origin, X-axis and Y-axis labels in
the calibration images displayed in the Camera Calibrator app dialog.

The main calibrations functions are:

• detectPatternPoints() - Detects and localizes the AprilTags from the captured images and sorts
them for use as key points in the calibration procedure. This function is implemented using
helperDetectAprilTagCorners on page 1-86 function, given at the end of the example.

• generateWorldPoints() - Computes world coordinates for the corresponding image coordinates
in the AprilTag pattern. This function is implemented using helperGenerateAprilTagPattern on
page 1-85 function, given at the end of the example.

1 Camera Calibration and SfM Examples

1-82

Import the custom pattern detector class by clicking on the Import Pattern Detector button under
Custom Pattern panel. Choose the class file MyCustomAprilTagPatternDetector.m. If there are
no errors in the class, then you will see the following view:

For this example, all the fields in the Properties panel have correct values. But you can customize
these values to fit your needs. Note that Square Size represents the width of the tag in world units
and is also assumed to be equal to the spacing between each tag in the image.

Click OK and the Data Browser pane displays a list of images with IDs, as shown below:

These images will contain the detected pattern. To view an image, select it from the Data Browser
pane.

 Camera Calibration Using AprilTag Markers

1-83

Estimate Camera Parameters

At this point, camera calibration process is the same as given in “Using the Single Camera Calibrator
App” on page 16-24.

With the default calibration settings, click the Calibrate button on the Calibration tab. Visualize the
accuracy of the calibration by inspecting the Reprojection Errors pane and then visualize estimates
of the extrinsic camera parameters in the Camera-centric pane which shows the patterns positioned
with respect to the camera.

1 Camera Calibration and SfM Examples

1-84

Supporting Functions and Classes

helperGenerateAprilTagPattern generates an AprilTag based calibration pattern.

function calibPattern = helperGenerateAprilTagPattern(imdsTags,tagArragement,tagFamily)

numTags = tagArragement(1)*tagArragement(2);
tagIds = zeros(1,numTags);

% Read the first image.
I = readimage(imdsTags,3);
Igray = im2gray(I);

% Scale up the thumbnail tag image.
Ires = imresize(Igray,15,"nearest");

% Detect the tag ID and location (in image coordinates).
[tagIds(1), tagLoc] = readAprilTag(Ires,tagFamily);

% Pad image with white boundaries (ensures the tags replace the black
% portions of the checkerboard).
tagSize = round(max(tagLoc(:,2)) - min(tagLoc(:,2)));
padSize = round(tagSize/2 - (size(Ires,2) - tagSize)/2);
Ires = padarray(Ires,[padSize,padSize],255);

% Initialize tagImages array to hold the scaled tags.
tagImages = zeros(size(Ires,1),size(Ires,2),numTags);
tagImages(:,:,1) = Ires;

 Camera Calibration Using AprilTag Markers

1-85

for idx = 2:numTags

 I = readimage(imdsTags,idx + 2);
 Igray = im2gray(I);
 Ires = imresize(Igray,15,"nearest");
 Ires = padarray(Ires,[padSize,padSize],255);

 tagIds(idx) = readAprilTag(Ires,tagFamily);

 % Store the tag images.
 tagImages(:,:,idx) = Ires;

end

% Sort the tag images based on their IDs.
[~, sortIdx] = sort(tagIds);
tagImages = tagImages(:,:,sortIdx);

% Reshape the tag images to ensure that they appear in column-major order
% (montage function places image in row-major order).
columnMajIdx = reshape(1:numTags,tagArragement)';
tagImages = tagImages(:,:,columnMajIdx(:));

% Create the pattern using 'montage'.
imgData = montage(tagImages,Size=tagArragement);
calibPattern = imgData.CData;

end

helperDetectAprilTagCorners detects AprilTag calibration pattern in images.

function [imagePoints,boardSize,imagesUsed] = helperDetectAprilTagCorners(imdsCalib,tagArrangement,tagFamily)

% Get the pattern size from tagArrangement.
boardSize = tagArrangement*2 + 1;

% Initialize number of images and tags.
numImages = length(imdsCalib.Files);
numTags = tagArrangement(1)*tagArrangement(2);

% Initialize number of corners in AprilTag pattern.
imagePoints = zeros(numTags*4,2,numImages);
imagesUsed = zeros(1,numImages);

% Get checkerboard corner indices from AprilTag corners.
checkerIdx = helperAprilTagToCheckerLocations(tagArrangement);

for idx = 1:numImages

 % Read and detect AprilTags in image.
 I = readimage(imdsCalib,idx);
 [tagIds,tagLocs] = readAprilTag(I,tagFamily);

 % Accept images if all tags are detected.
 if numel(tagIds) == numTags
 % Sort detected tags using ID values.

1 Camera Calibration and SfM Examples

1-86

 [~,sortIdx] = sort(tagIds);
 tagLocs = tagLocs(:,:,sortIdx);

 % Reshape tag corner locations into a M-by-2 array.
 tagLocs = reshape(permute(tagLocs,[1,3,2]),[],2);

 % Populate imagePoints using checkerboard corner indices.
 imagePoints(:,:,idx) = tagLocs(checkerIdx(:),:);
 imagesUsed(idx) = true;
 else
 imagePoints(:,:,idx) = [];
 end

end

end

helperAprilTagToCheckerLocations converts AprilTag corners to checkerboard corners.

function checkerIdx = helperAprilTagToCheckerLocations(tagArrangement)

numTagRows = tagArrangement(1);
numTagCols = tagArrangement(2);
numTags = numTagRows * numTagCols;

% Row index offsets.
rowIdxOffset = [0:numTagRows - 1; 0:numTagRows - 1];

% Row indices for first and second columns in board.
col1Idx = repmat([4 1]',numTagRows,1);
col2Idx = repmat([3 2]',numTagRows,1);
col1Idx = col1Idx + rowIdxOffset(:)*4;
col2Idx = col2Idx + rowIdxOffset(:)*4;

% Column index offsets
colIdxOffset = 0:4*numTagRows:numTags*4 - 1;

% Implicit expansion to get all indices in order.
checkerIdx = [col1Idx;col2Idx] + colIdxOffset;

end

helperDrawImageAxesLabels renders the origin, X-axis and Y-axis labels in the calibration images
displayed in the calibrator app.

function [originLabel,xLabel,yLabel] = helperDrawImageAxesLabels(boardSize,imagePoints)

 numBoardRows = boardSize(1)-1;
 numBoardCols = boardSize(2)-1;

 % Reshape checkerboard corners to boardSize shaped array
 boardCoordsX = reshape(imagePoints(:,1), [numBoardRows,numBoardCols]);
 boardCoordsY = reshape(imagePoints(:,2), [numBoardRows,numBoardCols]);
 boardCoords = cat(3, boardCoordsX,boardCoordsY);

 Camera Calibration Using AprilTag Markers

1-87

 % Origin label (check if origin location is inside the image)
 if ~isnan(boardCoordsX(1,1))
 p1 = boardCoords(1,1,:);

 refPointIdx = find(~isnan(boardCoordsX(:,1)),2);
 p2 = boardCoords(refPointIdx(2),1,:);

 refPointIdx = find(~isnan(boardCoordsX(1,:)),2);
 p3 = boardCoords(1,refPointIdx(2),:);

 [loc, theta] = getAxesLabelPosition(p1,p2,p3);

 originLabel.Location = loc;
 originLabel.Orientation = theta;
 else
 originLabel = struct;
 end

 % X-axis label
 firstRowIdx = numBoardCols:-1:1;
 refPointIdx13 = find(~isnan(boardCoordsX(1,firstRowIdx)),2);
 refPointIdx13 = firstRowIdx(refPointIdx13);

 p1 = boardCoords(1,refPointIdx13(1),:);
 p3 = boardCoords(1,refPointIdx13(2),:);

 refPointIdx2 = find(~isnan(boardCoordsX(:,refPointIdx13(1))),2);
 p2 = boardCoords(refPointIdx2(2),refPointIdx13(1),:);

 [loc, theta] = getAxesLabelPosition(p1,p2,p3);
 theta = 180 + theta;

 xLabel.Location = loc;
 xLabel.Orientation = theta;

 % Y-axis label
 firstColIdx = numBoardRows:-1:1;
 refPointIdx12 = find(~isnan(boardCoordsX(firstColIdx,1)),2);
 refPointIdx12 = firstColIdx(refPointIdx12);

 p1 = boardCoords(refPointIdx12(1),1,:);
 p2 = boardCoords(refPointIdx12(2),1,:);

 refPointIdx3 = find(~isnan(boardCoordsX(refPointIdx12(1),:)), 2);
 p3 = boardCoords(refPointIdx12(1),refPointIdx3(2),:);

 [loc,theta] = getAxesLabelPosition(p1,p2,p3);

 yLabel.Location = loc;
 yLabel.Orientation = theta;

 %--
 % p1+v
 % \
 % \ v1
 % p1 ------ p2
 % |

1 Camera Calibration and SfM Examples

1-88

 % v2 |
 % |
 % p3
 function [loc,theta] = getAxesLabelPosition(p1,p2,p3)
 v1 = p3 - p1;
 theta = -atan2d(v1(2),v1(1));

 v2 = p2 - p1;
 v = -v1 - v2;
 d = hypot(v(1),v(2));
 minDist = 40;
 if d < minDist
 v = (v / d) * minDist;
 end
 loc = p1 + v;
 end
 %--

end

Reference

[1] E. Olson, "AprilTag: A robust and flexible visual fiducial system," 2011 IEEE International
Conference on Robotics and Automation, Shanghai, 2011, pp. 3400-3407, doi: 10.1109/
ICRA.2011.5979561.

 Camera Calibration Using AprilTag Markers

1-89

Configure Monocular Fisheye Camera

This example shows how to convert a fisheye camera model to a pinhole model and construct a
corresponding monocular camera sensor simulation. In this example, you learn how to calibrate a
fisheye camera and configure a monoCamera (Automated Driving Toolbox) object.

Overview

To simulate a monocular camera sensor mounted in a vehicle, follow these steps:

1 Estimate the intrinsic camera parameters by calibrating the camera using a checkerboard. The
intrinsic parameters describe the properties of the fisheye camera itself.

2 Estimate the extrinsic camera parameters by calibrating the camera again, using the same
checkerboard from the previous step. The extrinsic parameters describe the mounting position of
the fisheye camera in the vehicle coordinate system.

3 Remove image distortion by converting the fisheye camera intrinsics to pinhole camera intrinsics.
These intrinsics describe a synthetic pinhole camera that can hypothetically generate undistorted
images.

4 Use the intrinsic pinhole camera parameters and the extrinsic parameters to configure the
monocular camera sensor for simulation. You can then use this sensor to detect objects and lane
boundaries.

Estimate Fisheye Camera Intrinsics

To estimate the intrinsic parameters, use a checkerboard for camera calibration. Alternatively, to
better visualize the results, use the Camera Calibrator app. For fisheye camera, it is useful to place
the checkerboard close to the camera, in order to capture large noticeable distortion in the image.

 % Gather a set of calibration images.
images = imageDatastore(fullfile(toolboxdir('vision'), 'visiondata', ...
 'calibration', 'gopro'));
imageFileNames = images.Files;

% Detect calibration pattern.
[imagePoints, boardSize] = detectCheckerboardPoints(imageFileNames);

% Generate world coordinates of the corners of the squares.
squareSize = 0.029; % Square size in meters
worldPoints = generateCheckerboardPoints(boardSize, squareSize);

% Calibrate the camera.
I = readimage(images, 1);
imageSize = [size(I, 1), size(I, 2)];
params = estimateFisheyeParameters(imagePoints, worldPoints, imageSize);

Estimate Fisheye Camera Extrinsics

To estimate the extrinsic parameters, use the same checkerboard to estimate the mounting position
of the camera in the vehicle coordinate system. The following step estimates the parameters from one
image. You can also take multiple checkerboard images to obtain multiple estimations, and average
the results.

% Load a different image of the same checkerboard, where the checkerboard
% is placed on the flat ground. Its X-axis is pointing to the right of the

1 Camera Calibration and SfM Examples

1-90

% vehicle, and its Y-axis is pointing to the camera. The image includes
% noticeable distortion, such as along the wall next to the checkerboard.

imageFileName = fullfile(toolboxdir('driving'), 'drivingdata', 'checkerboard.png');
I = imread(imageFileName);
imshow(I)
title('Distorted Checkerboard Image');

[imagePoints, boardSize] = detectCheckerboardPoints(I);

% Generate coordinates of the corners of the squares.
squareSize = 0.029; % Square size in meters
worldPoints = generateCheckerboardPoints(boardSize, squareSize);

% Estimate the parameters for configuring the monoCamera object.
% Height of the checkerboard is zero here, since the pattern is
% directly on the ground.
originHeight = 0;
[pitch, yaw, roll, height] = estimateMonoCameraParameters(params.Intrinsics, ...
 imagePoints, worldPoints, originHeight);

 Configure Monocular Fisheye Camera

1-91

Construct a Synthetic Pinhole Camera for the Undistorted Image

% Undistort the image and extract the synthetic pinhole camera intrinsics.
[J1, camIntrinsics] = undistortFisheyeImage(I, params.Intrinsics, 'Output', 'full');
imshow(J1)
title('Undistorted Image');

% Set up monoCamera with the synthetic pinhole camera intrinsics.
% Note that the synthetic camera has removed the distortion.
sensor = monoCamera(camIntrinsics, height, 'pitch', pitch, 'yaw', yaw, 'roll', roll);

Plot Bird's Eye View

Now you can validate the monoCamera (Automated Driving Toolbox) by plotting a bird's-eye view.

% Define bird's-eye-view transformation parameters
distAheadOfSensor = 6; % in meters
spaceToOneSide = 2.5; % look 2.5 meters to the right and 2.5 meters to the left
bottomOffset = 0.2; % look 0.2 meters ahead of the sensor
outView = [bottomOffset, distAheadOfSensor, -spaceToOneSide, spaceToOneSide];
outImageSize = [NaN,1000]; % output image width in pixels

1 Camera Calibration and SfM Examples

1-92

birdsEyeConfig = birdsEyeView(sensor, outView, outImageSize);

% Transform input image to bird's-eye-view image and display it
B = transformImage(birdsEyeConfig, J1);

% Place a 2-meter marker ahead of the sensor in bird's-eye view
imagePoint0 = vehicleToImage(birdsEyeConfig, [2, 0]);
offset = 5; % offset marker from text label by 5 pixels
annotatedB = insertMarker(B, imagePoint0 - offset);
annotatedB = insertText(annotatedB, imagePoint0, '2 meters');

figure
imshow(annotatedB)
title('Bird''s-Eye View')

 Configure Monocular Fisheye Camera

1-93

The plot above shows that the camera measures distances accurately. Now you can use the
monocular camera for object and lane boundary detection. See the “Visual Perception Using
Monocular Camera” (Automated Driving Toolbox) example.

1 Camera Calibration and SfM Examples

1-94

Monocular Visual Simultaneous Localization and Mapping

Visual simultaneous localization and mapping (vSLAM), refers to the process of calculating the
position and orientation of a camera with respect to its surroundings, while simultaneously mapping
the environment. The process uses only visual inputs from the camera. Applications for vSLAM
include augmented reality, robotics, and autonomous driving.

This example shows how to process image data from a monocular camera to build a map of an indoor
environment and estimate the trajectory of the camera. The example uses ORB-SLAM [1] on page 1-
112, which is a feature-based vSLAM algorithm.

To speed up computations, you can enable parallel computing from the “Computer Vision Toolbox
Preferences” dialog box. To open Computer Vision Toolbox™ preferences, on the Home tab, in the
Environment section, click Preferences. Then select Computer Vision Toolbox.

Glossary

The following terms are frequently used in this example:

• Key Frames: A subset of video frames that contain cues for localization and tracking. Two
consecutive key frames usually involve sufficient visual change.

• Map Points: A list of 3-D points that represent the map of the environment reconstructed from
the key frames.

• Covisibility Graph: A graph consisting of key frame as nodes. Two key frames are connected by
an edge if they share common map points. The weight of an edge is the number of shared map
points.

• Essential Graph: A subgraph of covisibility graph containing only edges with high weight, i.e.
more shared map points.

• Place Recognition Database: A database used to recognize whether a place has been visited in
the past. The database stores the visual word-to-image mapping based on the input bag of
features. It is used to search for an image that is visually similar to a query image.

Overview of ORB-SLAM

The ORB-SLAM pipeline includes:

 Monocular Visual Simultaneous Localization and Mapping

1-95

• Map Initialization: ORB-SLAM starts by initializing the map of 3-D points from two video frames.
The 3-D points and relative camera pose are computed using triangulation based on 2-D ORB
feature correspondences.

• Tracking: Once a map is initialized, for each new frame, the camera pose is estimated by
matching features in the current frame to features in the last key frame. The estimated camera
pose is refined by tracking the local map.

• Local Mapping: The current frame is used to create new 3-D map points if it is identified as a key
frame. At this stage, bundle adjustment is used to minimize reprojection errors by adjusting the
camera pose and 3-D points.

• Loop Closure: Loops are detected for each key frame by comparing it against all previous key
frames using the bag-of-features approach. Once a loop closure is detected, the pose graph is
optimized to refine the camera poses of all the key frames.

Download and Explore the Input Image Sequence

The data used in this example are from the TUM RGB-D benchmark [2] on page 1-112. You can
download the data to a temporary directory using a web browser or by running the following code:

baseDownloadURL = "https://vision.in.tum.de/rgbd/dataset/freiburg3/rgbd_dataset_freiburg3_long_office_household.tgz";
dataFolder = fullfile(tempdir, 'tum_rgbd_dataset', filesep);
options = weboptions(Timeout=Inf);
tgzFileName = [dataFolder, 'fr3_office.tgz'];
folderExists = exist(dataFolder, "dir");

% Create a folder in a temporary directory to save the downloaded file
if ~folderExists
 mkdir(dataFolder);
 disp('Downloading fr3_office.tgz (1.38 GB). This download can take a few minutes.')
 websave(tgzFileName, baseDownloadURL, options);

 % Extract contents of the downloaded file
 disp('Extracting fr3_office.tgz (1.38 GB) ...')
 untar(tgzFileName, dataFolder);
end

Create an imageDatastore object to inspect the RGB images.

imageFolder = [dataFolder,'rgbd_dataset_freiburg3_long_office_household/rgb/'];
imds = imageDatastore(imageFolder);

% Inspect the first image
currFrameIdx = 1;
currI = readimage(imds, currFrameIdx);
himage = imshow(currI);

Map Initialization

The ORB-SLAM pipeline starts by initializing the map that holds 3-D world points. This step is crucial
and has a significant impact on the accuracy of final SLAM result. Initial ORB feature point
correspondences are found using matchFeatures between a pair of images. After the
correspondences are found, two geometric transformation models are used to establish map
initialization:

• Homography: If the scene is planar, a homography projective transformation is a better choice to
describe feature point correspondences.

1 Camera Calibration and SfM Examples

1-96

https://vision.in.tum.de/data/datasets/rgbd-dataset

• Fundamental Matrix: If the scene is non-planar, a fundamental matrix must be used instead.

The homography and the fundamental matrix can be computed using estgeotform2d and
estimateFundamentalMatrix, respectively. The model that results in a smaller reprojection error
is selected to estimate the relative rotation and translation between the two frames using
estrelpose. Since the RGB images are taken by a monocular camera which does not provide the
depth information, the relative translation can only be recovered up to a specific scale factor.

Given the relative camera pose and the matched feature points in the two images, the 3-D locations of
the matched points are determined using triangulate function. A triangulated map point is valid
when it is located in the front of both cameras, when its reprojection error is low, and when the
parallax of the two views of the point is sufficiently large.

% Set random seed for reproducibility
rng(0);

% Create a cameraIntrinsics object to store the camera intrinsic parameters.
% The intrinsics for the dataset can be found at the following page:
% https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats
% Note that the images in the dataset are already undistorted, hence there
% is no need to specify the distortion coefficients.
focalLength = [535.4, 539.2]; % in units of pixels
principalPoint = [320.1, 247.6]; % in units of pixels
imageSize = size(currI,[1 2]); % in units of pixels
intrinsics = cameraIntrinsics(focalLength, principalPoint, imageSize);

% Detect and extract ORB features
scaleFactor = 1.2;
numLevels = 8;
numPoints = 1000;
[preFeatures, prePoints] = helperDetectAndExtractFeatures(currI, scaleFactor, numLevels, numPoints);

currFrameIdx = currFrameIdx + 1;
firstI = currI; % Preserve the first frame

isMapInitialized = false;

% Map initialization loop
while ~isMapInitialized && currFrameIdx < numel(imds.Files)
 currI = readimage(imds, currFrameIdx);

 [currFeatures, currPoints] = helperDetectAndExtractFeatures(currI, scaleFactor, numLevels, numPoints);

 currFrameIdx = currFrameIdx + 1;

 % Find putative feature matches
 indexPairs = matchFeatures(preFeatures, currFeatures, Unique=true, ...
 MaxRatio=0.9, MatchThreshold=40);

 preMatchedPoints = prePoints(indexPairs(:,1),:);
 currMatchedPoints = currPoints(indexPairs(:,2),:);

 % If not enough matches are found, check the next frame
 minMatches = 100;
 if size(indexPairs, 1) < minMatches
 continue
 end

 Monocular Visual Simultaneous Localization and Mapping

1-97

 preMatchedPoints = prePoints(indexPairs(:,1),:);
 currMatchedPoints = currPoints(indexPairs(:,2),:);

 % Compute homography and evaluate reconstruction
 [tformH, scoreH, inliersIdxH] = helperComputeHomography(preMatchedPoints, currMatchedPoints);

 % Compute fundamental matrix and evaluate reconstruction
 [tformF, scoreF, inliersIdxF] = helperComputeFundamentalMatrix(preMatchedPoints, currMatchedPoints);

 % Select the model based on a heuristic
 ratio = scoreH/(scoreH + scoreF);
 ratioThreshold = 0.45;
 if ratio > ratioThreshold
 inlierTformIdx = inliersIdxH;
 tform = tformH;
 else
 inlierTformIdx = inliersIdxF;
 tform = tformF;
 end

 % Computes the camera location up to scale. Use half of the
 % points to reduce computation
 inlierPrePoints = preMatchedPoints(inlierTformIdx);
 inlierCurrPoints = currMatchedPoints(inlierTformIdx);
 [relPose, validFraction] = estrelpose(tform, intrinsics, ...
 inlierPrePoints(1:2:end), inlierCurrPoints(1:2:end));

 % If not enough inliers are found, move to the next frame
 if validFraction < 0.9 || numel(relPose)==3
 continue
 end

 % Triangulate two views to obtain 3-D map points
 minParallax = 1; % In degrees
 [isValid, xyzWorldPoints, inlierTriangulationIdx] = helperTriangulateTwoFrames(...
 rigidtform3d, relPose, inlierPrePoints, inlierCurrPoints, intrinsics, minParallax);

 if ~isValid
 continue
 end

 % Get the original index of features in the two key frames
 indexPairs = indexPairs(inlierTformIdx(inlierTriangulationIdx),:);

 isMapInitialized = true;

 disp(['Map initialized with frame 1 and frame ', num2str(currFrameIdx-1)])
end % End of map initialization loop

Map initialized with frame 1 and frame 26

if isMapInitialized
 close(himage.Parent.Parent); % Close the previous figure
 % Show matched features
 hfeature = showMatchedFeatures(firstI, currI, prePoints(indexPairs(:,1)), ...
 currPoints(indexPairs(:, 2)), "Montage");

1 Camera Calibration and SfM Examples

1-98

else
 error('Unable to initialize the map.')
end

Store Initial Key Frames and Map Points

After the map is initialized using two frames, you can use imageviewset and worldpointset to
store the two key frames and the corresponding map points:

• imageviewset stores the key frames and their attributes, such as ORB descriptors, feature
points and camera poses, and connections between the key frames, such as feature points
matches and relative camera poses. It also builds and updates a pose graph. The absolute camera
poses and relative camera poses of odometry edges are stored as rigidtform3d objects. The
relative camera poses of loop-closure edges are stored as affinetform3d objects.

• worldpointset stores 3-D positions of the map points and the 3-D into 2-D projection
correspondences: which map points are observed in a key frame and which key frames observe a
map point. It also stores other attributes of map points, such as the mean view direction, the
representative ORB descriptors, and the range of distance at which the map point can be
observed.

% Create an empty imageviewset object to store key frames
vSetKeyFrames = imageviewset;

% Create an empty worldpointset object to store 3-D map points
mapPointSet = worldpointset;

% Add the first key frame. Place the camera associated with the first
% key frame at the origin, oriented along the Z-axis
preViewId = 1;
vSetKeyFrames = addView(vSetKeyFrames, preViewId, rigidtform3d, Points=prePoints,...
 Features=preFeatures.Features);

% Add the second key frame
currViewId = 2;
vSetKeyFrames = addView(vSetKeyFrames, currViewId, relPose, Points=currPoints,...
 Features=currFeatures.Features);

% Add connection between the first and the second key frame
vSetKeyFrames = addConnection(vSetKeyFrames, preViewId, currViewId, relPose, Matches=indexPairs);

% Add 3-D map points
[mapPointSet, newPointIdx] = addWorldPoints(mapPointSet, xyzWorldPoints);

% Add observations of the map points
preLocations = prePoints.Location;
currLocations = currPoints.Location;
preScales = prePoints.Scale;
currScales = currPoints.Scale;

% Add image points corresponding to the map points in the first key frame

 Monocular Visual Simultaneous Localization and Mapping

1-99

mapPointSet = addCorrespondences(mapPointSet, preViewId, newPointIdx, indexPairs(:,1));

% Add image points corresponding to the map points in the second key frame
mapPointSet = addCorrespondences(mapPointSet, currViewId, newPointIdx, indexPairs(:,2));

Initialize Place Recognition Database

Loop detection is performed using the bags-of-words approach. A visual vocabulary represented as a
bagOfFeatures object is created offline with the ORB descriptors extracted from a large set of
images in the dataset by calling:

bag =
bagOfFeatures(imds,CustomExtractor=@helperORBFeatureExtractorFunction,TreePro
perties=[3, 10],StrongestFeatures=1);

where imds is an imageDatastore object storing the training images and
helperORBFeatureExtractorFunction is the ORB feature extractor function. See “Image
Retrieval with Bag of Visual Words” on page 17-123 for more information.

The loop closure process incrementally builds a database, represented as an invertedImageIndex
object, that stores the visual word-to-image mapping based on the bag of ORB features.

% Load the bag of features data created offline
bofData = load("bagOfFeaturesDataSLAM.mat");

% Initialize the place recognition database
loopDatabase = invertedImageIndex(bofData.bof,SaveFeatureLocations=false);

% Add features of the first two key frames to the database
addImageFeatures(loopDatabase, preFeatures, preViewId);
addImageFeatures(loopDatabase, currFeatures, currViewId);

Refine and Visualize the Initial Reconstruction

Refine the initial reconstruction using bundleAdjustment, that optimizes both camera poses and
world points to minimize the overall reprojection errors. After the refinement, the attributes of the
map points including 3-D locations, view direction, and depth range are updated. You can use
helperVisualizeMotionAndStructure to visualize the map points and the camera locations.

% Run full bundle adjustment on the first two key frames
tracks = findTracks(vSetKeyFrames);
cameraPoses = poses(vSetKeyFrames);

[refinedPoints, refinedAbsPoses] = bundleAdjustment(xyzWorldPoints, tracks, ...
 cameraPoses, intrinsics, FixedViewIDs=1, ...
 PointsUndistorted=true, AbsoluteTolerance=1e-7,...
 RelativeTolerance=1e-15, MaxIteration=20, ...
 Solver="preconditioned-conjugate-gradient");

% Scale the map and the camera pose using the median depth of map points
medianDepth = median(vecnorm(refinedPoints.'));
refinedPoints = refinedPoints / medianDepth;

refinedAbsPoses.AbsolutePose(currViewId).Translation = ...
 refinedAbsPoses.AbsolutePose(currViewId).Translation / medianDepth;
relPose.Translation = relPose.Translation/medianDepth;

1 Camera Calibration and SfM Examples

1-100

% Update key frames with the refined poses
vSetKeyFrames = updateView(vSetKeyFrames, refinedAbsPoses);
vSetKeyFrames = updateConnection(vSetKeyFrames, preViewId, currViewId, relPose);

% Update map points with the refined positions
mapPointSet = updateWorldPoints(mapPointSet, newPointIdx, refinedPoints);

% Update view direction and depth
mapPointSet = updateLimitsAndDirection(mapPointSet, newPointIdx, vSetKeyFrames.Views);

% Update representative view
mapPointSet = updateRepresentativeView(mapPointSet, newPointIdx, vSetKeyFrames.Views);

% Visualize matched features in the current frame
close(hfeature.Parent.Parent);
featurePlot = helperVisualizeMatchedFeatures(currI, currPoints(indexPairs(:,2)));

% Visualize initial map points and camera trajectory
mapPlot = helperVisualizeMotionAndStructure(vSetKeyFrames, mapPointSet);

 Monocular Visual Simultaneous Localization and Mapping

1-101

% Show legend
showLegend(mapPlot);

Tracking

The tracking process is performed using every frame and determines when to insert a new key frame.
To simplify this example, we will terminate the tracking process once a loop closure is found.

% ViewId of the current key frame
currKeyFrameId = currViewId;

% ViewId of the last key frame
lastKeyFrameId = currViewId;

% Index of the last key frame in the input image sequence
lastKeyFrameIdx = currFrameIdx - 1;

% Indices of all the key frames in the input image sequence
addedFramesIdx = [1; lastKeyFrameIdx];

isLoopClosed = false;

1 Camera Calibration and SfM Examples

1-102

Each frame is processed as follows:

1 ORB features are extracted for each new frame and then matched (using matchFeatures), with
features in the last key frame that have known corresponding 3-D map points.

2 Estimate the camera pose with the Perspective-n-Point algorithm using estworldpose.
3 Given the camera pose, project the map points observed by the last key frame into the current

frame and search for feature correspondences using matchFeaturesInRadius.
4 With 3-D to 2-D correspondence in the current frame, refine the camera pose by performing a

motion-only bundle adjustment using bundleAdjustmentMotion.
5 Project the local map points into the current frame to search for more feature correspondences

using matchFeaturesInRadius and refine the camera pose again using
bundleAdjustmentMotion.

6 The last step of tracking is to decide if the current frame is a new key frame. If the current frame
is a key frame, continue to the Local Mapping process. Otherwise, start Tracking for the next
frame.

If tracking is lost because not enough number of feature points could be matched, try inserting new
key frames more frequently.

% Main loop
isLastFrameKeyFrame = true;
while ~isLoopClosed && currFrameIdx < numel(imds.Files)
 currI = readimage(imds, currFrameIdx);

 [currFeatures, currPoints] = helperDetectAndExtractFeatures(currI, scaleFactor, numLevels, numPoints);

 % Track the last key frame
 % mapPointsIdx: Indices of the map points observed in the current frame
 % featureIdx: Indices of the corresponding feature points in the
 % current frame
 [currPose, mapPointsIdx, featureIdx] = helperTrackLastKeyFrame(mapPointSet, ...
 vSetKeyFrames.Views, currFeatures, currPoints, lastKeyFrameId, intrinsics, scaleFactor);

 % Track the local map and check if the current frame is a key frame.
 % A frame is a key frame if both of the following conditions are satisfied:
 %
 % 1. At least 20 frames have passed since the last key frame or the
 % current frame tracks fewer than 100 map points.
 % 2. The map points tracked by the current frame are fewer than 90% of
 % points tracked by the reference key frame.
 %
 % Tracking performance is sensitive to the value of numPointsKeyFrame.
 % If tracking is lost, try a larger value.
 %
 % localKeyFrameIds: ViewId of the connected key frames of the current frame
 numSkipFrames = 20;
 numPointsKeyFrame = 80;
 [localKeyFrameIds, currPose, mapPointsIdx, featureIdx, isKeyFrame] = ...
 helperTrackLocalMap(mapPointSet, vSetKeyFrames, mapPointsIdx, ...
 featureIdx, currPose, currFeatures, currPoints, intrinsics, scaleFactor, numLevels, ...
 isLastFrameKeyFrame, lastKeyFrameIdx, currFrameIdx, numSkipFrames, numPointsKeyFrame);

 % Visualize matched features
 updatePlot(featurePlot, currI, currPoints(featureIdx));

 Monocular Visual Simultaneous Localization and Mapping

1-103

 if ~isKeyFrame
 currFrameIdx = currFrameIdx + 1;
 isLastFrameKeyFrame = false;
 continue
 else
 isLastFrameKeyFrame = true;
 end

 % Update current key frame ID
 currKeyFrameId = currKeyFrameId + 1;

Local Mapping

Local mapping is performed for every key frame. When a new key frame is determined, add it to the
key frames and update the attributes of the map points observed by the new key frame. To ensure
that mapPointSet contains as few outliers as possible, a valid map point must be observed in at least
3 key frames.

New map points are created by triangulating ORB feature points in the current key frame and its
connected key frames. For each unmatched feature point in the current key frame, search for a match
with other unmatched points in the connected key frames using matchFeatures. The local bundle
adjustment refines the pose of the current key frame, the poses of connected key frames, and all the
map points observed in these key frames.

 % Add the new key frame
 [mapPointSet, vSetKeyFrames] = helperAddNewKeyFrame(mapPointSet, vSetKeyFrames, ...
 currPose, currFeatures, currPoints, mapPointsIdx, featureIdx, localKeyFrameIds);

 % Remove outlier map points that are observed in fewer than 3 key frames
 mapPointSet = helperCullRecentMapPoints(mapPointSet, mapPointsIdx, newPointIdx);

 % Create new map points by triangulation
 minNumMatches = 10;
 minParallax = 3;
 [mapPointSet, vSetKeyFrames, newPointIdx] = helperCreateNewMapPoints(mapPointSet, vSetKeyFrames, ...
 currKeyFrameId, intrinsics, scaleFactor, minNumMatches, minParallax);

 % Local bundle adjustment
 [refinedViews, dist] = connectedViews(vSetKeyFrames, currKeyFrameId, MaxDistance=2);
 refinedKeyFrameIds = refinedViews.ViewId;
 fixedViewIds = refinedKeyFrameIds(dist==2);
 fixedViewIds = fixedViewIds(1:min(10, numel(fixedViewIds)));

 % Refine local key frames and map points
 [mapPointSet, vSetKeyFrames, mapPointIdx] = bundleAdjustment(...
 mapPointSet, vSetKeyFrames, [refinedKeyFrameIds; currKeyFrameId], intrinsics, ...
 FixedViewIDs=fixedViewIds, PointsUndistorted=true, AbsoluteTolerance=1e-7,...
 RelativeTolerance=1e-16, Solver="preconditioned-conjugate-gradient", ...
 MaxIteration=10);

 % Update view direction and depth
 mapPointSet = updateLimitsAndDirection(mapPointSet, mapPointIdx, vSetKeyFrames.Views);

 % Update representative view
 mapPointSet = updateRepresentativeView(mapPointSet, mapPointIdx, vSetKeyFrames.Views);

 % Visualize 3D world points and camera trajectory
 updatePlot(mapPlot, vSetKeyFrames, mapPointSet);

1 Camera Calibration and SfM Examples

1-104

Loop Closure

The loop closure detection step takes the current key frame processed by the local mapping process
and tries to detect and close the loop. Loop candidates are identified by querying images in the
database that are visually similar to the current key frame using evaluateImageRetrieval. A
candidate key frame is valid if it is not connected to the last key frame and three of its neighbor key
frames are loop candidates.

When a valid loop candidate is found, use estgeotform3d to compute the relative pose between the
loop candidate frame and the current key frame. The relative pose represents a 3-D similarity
transformation stored in an affinetform3d object. Then add the loop connection with the relative
pose and update mapPointSet and vSetKeyFrames.

 % Check loop closure after some key frames have been created
 if currKeyFrameId > 20

 % Minimum number of feature matches of loop edges
 loopEdgeNumMatches = 50;

 % Detect possible loop closure key frame candidates
 [isDetected, validLoopCandidates] = helperCheckLoopClosure(vSetKeyFrames, currKeyFrameId, ...
 loopDatabase, currI, loopEdgeNumMatches);

 if isDetected
 % Add loop closure connections
 [isLoopClosed, mapPointSet, vSetKeyFrames] = helperAddLoopConnections(...
 mapPointSet, vSetKeyFrames, validLoopCandidates, currKeyFrameId, ...
 currFeatures, loopEdgeNumMatches);
 end
 end

 % If no loop closure is detected, add current features into the database
 if ~isLoopClosed
 addImageFeatures(loopDatabase, currFeatures, currKeyFrameId);
 end

 % Update IDs and indices
 lastKeyFrameId = currKeyFrameId;
 lastKeyFrameIdx = currFrameIdx;
 addedFramesIdx = [addedFramesIdx; currFrameIdx]; %#ok<AGROW>
 currFrameIdx = currFrameIdx + 1;
end % End of main loop

 Monocular Visual Simultaneous Localization and Mapping

1-105

1 Camera Calibration and SfM Examples

1-106

Loop edge added between keyframe: 2 and 150

Finally, a similarity pose graph optimization is performed over the essential graph in vSetKeyFrames
to correct the drift of camera poses. The essential graph is created internally by removing
connections with fewer than minNumMatches matches in the covisibility graph. After similarity pose
graph optimization, update the 3-D locations of the map points using the optimized poses and the
associated scales.

% Optimize the poses
minNumMatches = 20;
[vSetKeyFramesOptim, poseScales] = optimizePoses(vSetKeyFrames, minNumMatches, Tolerance=1e-16);

% Update map points after optimizing the poses
mapPointSet = helperUpdateGlobalMap(mapPointSet, vSetKeyFrames, vSetKeyFramesOptim, poseScales);

updatePlot(mapPlot, vSetKeyFrames, mapPointSet);

% Plot the optimized camera trajectory
optimizedPoses = poses(vSetKeyFramesOptim);

 Monocular Visual Simultaneous Localization and Mapping

1-107

plotOptimizedTrajectory(mapPlot, optimizedPoses)

% Update legend
showLegend(mapPlot);

Compare with the Ground Truth

You can compare the optimized camera trajectory with the ground truth to evaluate the accuracy of
ORB-SLAM. The downloaded data contains a groundtruth.txt file that stores the ground truth of
camera pose of each frame. The data has been saved in the form of a MAT-file. You can also calculate
the root-mean-square-error (RMSE) of trajectory estimates.

% Load ground truth
gTruthData = load("orbslamGroundTruth.mat");
gTruth = gTruthData.gTruth;

% Plot the actual camera trajectory
plotActualTrajectory(mapPlot, gTruth(addedFramesIdx), optimizedPoses);

% Show legend
showLegend(mapPlot);

1 Camera Calibration and SfM Examples

1-108

% Evaluate tracking accuracy
helperEstimateTrajectoryError(gTruth(addedFramesIdx), optimizedPoses);

Absolute RMSE for key frame trajectory (m): 0.22443

This concludes an overview of how to build a map of an indoor environment and estimate the
trajectory of the camera using ORB-SLAM. You can test the visual SLAM pipeline with a different
dataset by tuning the following parameters:

• numPoints: For image resolution of 480x640 pixels set numPoints to be 1000. For higher
resolutions, such as 720 × 1280, set it to 2000. Larger values require more time in feature
extraction.

• numSkipFrames: For frame rate of 30fps, set numSkipFrames to be 20. For a slower frame rate,
set it to be a smaller value. Increasing numSkipFrames improves the tracking speed, but may
result in tracking lost when the camera motion is fast.

Supporting Functions

Short helper functions are included below. Larger function are included in separate files.

helperAddLoopConnections add connections between the current keyframe and the valid loop
candidate.

helperAddNewKeyFrame add key frames to the key frame set.

helperCheckLoopClosure detect loop candidates key frames by retrieving visually similar images
from the database.

helperCreateNewMapPoints create new map points by triangulation.

helperLocalBundleAdjustment refine the pose of the current key frame and the map of the
surrrounding scene.

helperORBFeatureExtractorFunction implements the ORB feature extraction used in
bagOfFeatures.

helperTrackLastKeyFrame estimate the current camera pose by tracking the last key frame.

helperTrackLocalMap refine the current camera pose by tracking the local map.

helperVisualizeMatchedFeatures show the matched features in a frame.

helperVisualizeMotionAndStructure show map points and camera trajectory.

helperDetectAndExtractFeatures detect and extract and ORB features from the image.

function [features, validPoints] = helperDetectAndExtractFeatures(Irgb, ...
 scaleFactor, numLevels, numPoints, varargin)

% In this example, the images are already undistorted. In a general
% workflow, uncomment the following code to undistort the images.
%
% if nargin > 4
% intrinsics = varargin{1};
% end

 Monocular Visual Simultaneous Localization and Mapping

1-109

% Irgb = undistortImage(Irgb, intrinsics);

% Detect ORB features
Igray = im2gray(Irgb);

points = detectORBFeatures(Igray, ScaleFactor=scaleFactor, NumLevels=numLevels);

% Select a subset of features, uniformly distributed throughout the image
points = selectUniform(points, numPoints, size(Igray, 1:2));

% Extract features
[features, validPoints] = extractFeatures(Igray, points);
end

helperHomographyScore compute homography and evaluate reconstruction.

function [H, score, inliersIndex] = helperComputeHomography(matchedPoints1, matchedPoints2)

[H, inliersLogicalIndex] = estgeotform2d(...
 matchedPoints1, matchedPoints2, "projective", ...
 MaxNumTrials=1e3, MaxDistance=4, Confidence=90);

inlierPoints1 = matchedPoints1(inliersLogicalIndex);
inlierPoints2 = matchedPoints2(inliersLogicalIndex);

inliersIndex = find(inliersLogicalIndex);

locations1 = inlierPoints1.Location;
locations2 = inlierPoints2.Location;
xy1In2 = transformPointsForward(H, locations1);
xy2In1 = transformPointsInverse(H, locations2);
error1in2 = sum((locations2 - xy1In2).^2, 2);
error2in1 = sum((locations1 - xy2In1).^2, 2);

outlierThreshold = 6;

score = sum(max(outlierThreshold-error1in2, 0)) + ...
 sum(max(outlierThreshold-error2in1, 0));
end

helperFundamentalMatrixScore compute fundamental matrix and evaluate reconstruction.

function [F, score, inliersIndex] = helperComputeFundamentalMatrix(matchedPoints1, matchedPoints2)

[F, inliersLogicalIndex] = estimateFundamentalMatrix(...
 matchedPoints1, matchedPoints2, Method="RANSAC",...
 NumTrials=1e3, DistanceThreshold=0.01);

inlierPoints1 = matchedPoints1(inliersLogicalIndex);
inlierPoints2 = matchedPoints2(inliersLogicalIndex);

inliersIndex = find(inliersLogicalIndex);

locations1 = inlierPoints1.Location;
locations2 = inlierPoints2.Location;

% Distance from points to epipolar line
lineIn1 = epipolarLine(F', locations2);

1 Camera Calibration and SfM Examples

1-110

error2in1 = (sum([locations1, ones(size(locations1, 1),1)].* lineIn1, 2)).^2 ...
 ./ sum(lineIn1(:,1:2).^2, 2);
lineIn2 = epipolarLine(F, locations1);
error1in2 = (sum([locations2, ones(size(locations2, 1),1)].* lineIn2, 2)).^2 ...
 ./ sum(lineIn2(:,1:2).^2, 2);

outlierThreshold = 4;

score = sum(max(outlierThreshold-error1in2, 0)) + ...
 sum(max(outlierThreshold-error2in1, 0));

end

helperTriangulateTwoFrames triangulate two frames to initialize the map.

function [isValid, xyzPoints, inlierIdx] = helperTriangulateTwoFrames(...
 pose1, pose2, matchedPoints1, matchedPoints2, intrinsics, minParallax)

camMatrix1 = cameraProjection(intrinsics, pose2extr(pose1));
camMatrix2 = cameraProjection(intrinsics, pose2extr(pose2));

[xyzPoints, reprojectionErrors, isInFront] = triangulate(matchedPoints1, ...
 matchedPoints2, camMatrix1, camMatrix2);

% Filter points by view direction and reprojection error
minReprojError = 1;
inlierIdx = isInFront & reprojectionErrors < minReprojError;
xyzPoints = xyzPoints(inlierIdx ,:);

% A good two-view with significant parallax
ray1 = xyzPoints - pose1.Translation;
ray2 = xyzPoints - pose2.Translation;
cosAngle = sum(ray1 .* ray2, 2) ./ (vecnorm(ray1, 2, 2) .* vecnorm(ray2, 2, 2));

% Check parallax
isValid = all(cosAngle < cosd(minParallax) & cosAngle>0);
end

helperCullRecentMapPoints cull recently added map points.

function mapPointSet = helperCullRecentMapPoints(mapPointSet, mapPointsIdx, newPointIdx)
outlierIdx = setdiff(newPointIdx, mapPointsIdx);
if ~isempty(outlierIdx)
 mapPointSet = removeWorldPoints(mapPointSet, outlierIdx);
end
end

helperEstimateTrajectoryError calculate the tracking error.

function rmse = helperEstimateTrajectoryError(gTruth, cameraPoses)
locations = vertcat(cameraPoses.AbsolutePose.Translation);
gLocations = vertcat(gTruth.Translation);
scale = median(vecnorm(gLocations, 2, 2))/ median(vecnorm(locations, 2, 2));
scaledLocations = locations * scale;

rmse = sqrt(mean(sum((scaledLocations - gLocations).^2, 2)));
disp(['Absolute RMSE for key frame trajectory (m): ', num2str(rmse)]);
end

 Monocular Visual Simultaneous Localization and Mapping

1-111

helperUpdateGlobalMap update 3-D locations of map points after pose graph optimization

function mapPointSet = helperUpdateGlobalMap(...
 mapPointSet, vSetKeyFrames, vSetKeyFramesOptim, poseScales)
%helperUpdateGlobalMap update map points after pose graph optimization
posesOld = vSetKeyFrames.Views.AbsolutePose;
posesNew = vSetKeyFramesOptim.Views.AbsolutePose;
positionsOld = mapPointSet.WorldPoints;
positionsNew = positionsOld;
indices = 1:mapPointSet.Count;

% Update world location of each map point based on the new absolute pose of
% the corresponding major view
for i = indices
 majorViewIds = mapPointSet.RepresentativeViewId(i);
 poseNew = posesNew(majorViewIds).A;
 poseNew(1:3, 1:3) = poseNew(1:3, 1:3) * poseScales(majorViewIds);
 tform = affinetform3d(poseNew/posesOld(majorViewIds).A);
 positionsNew(i, :) = transformPointsForward(tform, positionsOld(i, :));
end
mapPointSet = updateWorldPoints(mapPointSet, indices, positionsNew);
end

Reference

[1] Mur-Artal, Raul, Jose Maria Martinez Montiel, and Juan D. Tardos. "ORB-SLAM: a versatile and
accurate monocular SLAM system." IEEE Transactions on Robotics 31, no. 5, pp 1147-116, 2015.

[2] Sturm, Jürgen, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers. "A
benchmark for the evaluation of RGB-D SLAM systems". In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 573-580, 2012.

See Also

Related Examples
• “Stereo Visual Simultaneous Localization and Mapping” on page 1-122

1 Camera Calibration and SfM Examples

1-112

Structure From Motion From Two Views

Structure from motion (SfM) is the process of estimating the 3-D structure of a scene from a set of 2-
D images. This example shows you how to estimate the poses of a calibrated camera from two
images, reconstruct the 3-D structure of the scene up to an unknown scale factor, and then recover
the actual scale factor by detecting an object of a known size.

Overview

This example shows how to reconstruct a 3-D scene from a pair of 2-D images taken with a camera
calibrated using the Camera Calibrator app. The algorithm consists of the following steps:

1 Match a sparse set of points between the two images. There are multiple ways of finding point
correspondences between two images. This example detects corners in the first image using the
detectMinEigenFeatures function, and tracks them into the second image using
vision.PointTracker. Alternatively you can use extractFeatures followed by
matchFeatures.

2 Estimate the fundamental matrix using estimateEssentialMatrix.
3 Compute the motion of the camera using the estrelpose function.
4 Match a dense set of points between the two images. Re-detect the point using

detectMinEigenFeatures with a reduced 'MinQuality' to get more points. Then track the
dense points into the second image using vision.PointTracker.

5 Determine the 3-D locations of the matched points using triangulate.
6 Detect an object of a known size. In this scene there is a globe, whose radius is known to be

10cm. Use pcfitsphere to find the globe in the point cloud.
7 Recover the actual scale, resulting in a metric reconstruction.

Read a Pair of Images

Load a pair of images into the workspace.

imageDir = fullfile(toolboxdir('vision'),'visiondata','upToScaleReconstructionImages');
images = imageDatastore(imageDir);
I1 = readimage(images, 1);
I2 = readimage(images, 2);
figure
imshowpair(I1, I2, 'montage');
title('Original Images');

 Structure From Motion From Two Views

1-113

Load Camera Parameters

This example uses the camera parameters calculated by the Camera Calibrator app. The parameters
are stored in the cameraIntrinsics object, and include the camera intrinsics and lens distortion
coefficients.

% Load precomputed camera intrinsics
data = load('sfmCameraIntrinsics.mat');
intrinsics = data.intrinsics;

Remove Lens Distortion

Lens distortion can affect the accuracy of the final reconstruction. You can remove the distortion from
each of the images using the undistortImage function. This process straightens the lines that are
bent by the radial distortion of the lens.

I1 = undistortImage(I1, intrinsics);
I2 = undistortImage(I2, intrinsics);
figure
imshowpair(I1, I2, 'montage');
title('Undistorted Images');

1 Camera Calibration and SfM Examples

1-114

Find Point Correspondences Between The Images

Detect good features to track. Reduce 'MinQuality' to detect fewer points, which would be more
uniformly distributed throughout the image. If the motion of the camera is not very large, then
tracking using the KLT algorithm is a good way to establish point correspondences.

% Detect feature points
imagePoints1 = detectMinEigenFeatures(im2gray(I1), MinQuality = 0.1);

% Visualize detected points
figure
imshow(I1, InitialMagnification = 50);
title('150 Strongest Corners from the First Image');
hold on
plot(selectStrongest(imagePoints1, 150));

 Structure From Motion From Two Views

1-115

% Create the point tracker
tracker = vision.PointTracker(MaxBidirectionalError=1, NumPyramidLevels=5);

% Initialize the point tracker
imagePoints1 = imagePoints1.Location;
initialize(tracker, imagePoints1, I1);

% Track the points
[imagePoints2, validIdx] = step(tracker, I2);
matchedPoints1 = imagePoints1(validIdx, :);
matchedPoints2 = imagePoints2(validIdx, :);

% Visualize correspondences
figure
showMatchedFeatures(I1, I2, matchedPoints1, matchedPoints2);
title('Tracked Features');

Estimate the Essential Matrix

Use the estimateEssentialMatrix function to compute the essential matrix and find the inlier
points that meet the epipolar constraint.

1 Camera Calibration and SfM Examples

1-116

% Estimate the fundamental matrix
[E, epipolarInliers] = estimateEssentialMatrix(...
 matchedPoints1, matchedPoints2, intrinsics, Confidence = 99.99);

% Find epipolar inliers
inlierPoints1 = matchedPoints1(epipolarInliers, :);
inlierPoints2 = matchedPoints2(epipolarInliers, :);

% Display inlier matches
figure
showMatchedFeatures(I1, I2, inlierPoints1, inlierPoints2);
title('Epipolar Inliers');

Compute the Camera Pose

Compute the location and orientation of the second camera relative to the first one. Note that loc is
a translation unit vector, because translation can only be computed up to scale.

relPose = estrelpose(E, intrinsics, inlierPoints1, inlierPoints2);

Reconstruct the 3-D Locations of Matched Points

Re-detect points in the first image using lower 'MinQuality' to get more points. Track the new
points into the second image. Estimate the 3-D locations corresponding to the matched points using
the triangulate function, which implements the Direct Linear Transformation (DLT) algorithm [1].
Place the origin at the optical center of the camera corresponding to the first image.

% Detect dense feature points. Use an ROI to exclude points close to the
% image edges.
border = 30;
roi = [border, border, size(I1, 2)- 2*border, size(I1, 1)- 2*border];
imagePoints1 = detectMinEigenFeatures(im2gray(I1), ROI = roi, ...
 MinQuality = 0.001);

% Create the point tracker
tracker = vision.PointTracker(MaxBidirectionalError=1, NumPyramidLevels=5);

% Initialize the point tracker
imagePoints1 = imagePoints1.Location;
initialize(tracker, imagePoints1, I1);

% Track the points
[imagePoints2, validIdx] = step(tracker, I2);
matchedPoints1 = imagePoints1(validIdx, :);
matchedPoints2 = imagePoints2(validIdx, :);

% Compute the camera matrices for each position of the camera
% The first camera is at the origin looking along the Z-axis. Thus, its
% transformation is identity.
camMatrix1 = cameraProjection(intrinsics, rigidtform3d);
camMatrix2 = cameraProjection(intrinsics, pose2extr(relPose));

% Compute the 3-D points
points3D = triangulate(matchedPoints1, matchedPoints2, camMatrix1, camMatrix2);

% Get the color of each reconstructed point
numPixels = size(I1, 1) * size(I1, 2);
allColors = reshape(I1, [numPixels, 3]);

 Structure From Motion From Two Views

1-117

colorIdx = sub2ind([size(I1, 1), size(I1, 2)], round(matchedPoints1(:,2)), ...
 round(matchedPoints1(:, 1)));
color = allColors(colorIdx, :);

% Create the point cloud
ptCloud = pointCloud(points3D, 'Color', color);

Display the 3-D Point Cloud

Use the plotCamera function to visualize the locations and orientations of the camera, and the
pcshow function to visualize the point cloud.

% Visualize the camera locations and orientations
cameraSize = 0.3;
figure
plotCamera(Size=cameraSize, Color='r', Label='1', Opacity=0);
hold on
grid on
plotCamera(AbsolutePose=relPose, Size=cameraSize, ...
 Color='b', Label='2', Opacity=0);

% Visualize the point cloud
pcshow(ptCloud, VerticalAxis='y', VerticalAxisDir='down', MarkerSize=45);

% Rotate and zoom the plot
camorbit(0, -30);
camzoom(1.5);

% Label the axes
xlabel('x-axis');
ylabel('y-axis');
zlabel('z-axis')

title('Up to Scale Reconstruction of the Scene');

1 Camera Calibration and SfM Examples

1-118

Fit a Sphere to the Point Cloud to Find the Globe

Find the globe in the point cloud by fitting a sphere to the 3-D points using the pcfitsphere
function.

% Detect the globe
globe = pcfitsphere(ptCloud, 0.1);

% Display the surface of the globe
plot(globe);
title('Estimated Location and Size of the Globe');
hold off

 Structure From Motion From Two Views

1-119

Metric Reconstruction of the Scene

The actual radius of the globe is 10cm. You can now determine the coordinates of the 3-D points in
centimeters.

% Determine the scale factor
scaleFactor = 10 / globe.Radius;

% Scale the point cloud
ptCloud = pointCloud(points3D * scaleFactor, Color=color);
relPose.Translation = relPose.Translation * scaleFactor;

% Visualize the point cloud in centimeters
cameraSize = 2;
figure
plotCamera(Size=cameraSize, Color='r', Label='1', Opacity=0);
hold on
grid on
plotCamera(AbsolutePose=relPose, Size=cameraSize, ...
 Color='b', Label='2', Opacity=0);

% Visualize the point cloud
pcshow(ptCloud, VerticalAxis='y', VerticalAxisDir='down', MarkerSize=45);
camorbit(0, -30);
camzoom(1.5);

% Label the axes

1 Camera Calibration and SfM Examples

1-120

xlabel('x-axis (cm)');
ylabel('y-axis (cm)');
zlabel('z-axis (cm)')
title('Metric Reconstruction of the Scene');

Summary

This example showed how to recover camera motion and reconstruct the 3-D structure of a scene
from two images taken with a calibrated camera.

References

[1] Hartley, Richard, and Andrew Zisserman. Multiple View Geometry in Computer Vision. Second
Edition. Cambridge, 2000.

 Structure From Motion From Two Views

1-121

Stereo Visual Simultaneous Localization and Mapping

Visual simultaneous localization and mapping (vSLAM), refers to the process of calculating the
position and orientation of a camera with respect to its surroundings, while simultaneously mapping
the environment. The process uses only visual inputs from the camera. Applications for vSLAM
include augmented reality, robotics, and autonomous driving.

vSLAM can be performed by using just a monocular camera. However, since depth cannot be
accurately calculated using a single camera, the scale of the map and the estimated trajectory is
unknown and drifts over time. In addition, to bootstrap the system, multiple views are required to
produce an initial map as it cannot be triangulated from the first frame. Using a stereo camera solves
these problems and provides a more reliable vSLAM solution.

This example shows how to process image data from a stereo camera to build a map of an outdoor
environment and estimate the trajectory of the camera. The example uses a version of ORB-SLAM2
[1] on page 1-135 algorithm, which is feature-based and supports stereo cameras.

Overview of Processing Pipeline

The pipeline for stereo vSLAM is very similar to the monocular vSLAM pipeline in the “Monocular
Visual Simultaneous Localization and Mapping” on page 1-95 example. The major difference is that in
the Map Initialization stage 3-D map points are created from a pair of stereo images of the same
stereo pair instead of two images of different frames.

• Map Initialization: The pipeline starts by initializing the map of 3-D points from a pair of stereo
images using the disparity map. The left image is stored as the first key frame.

• Tracking: Once a map is initialized, for each new stereo pair, the pose of the camera is estimated
by matching features in the left image to features in the last key frame. The estimated camera
pose is refined by tracking the local map.

• Local Mapping: If the current left image is identified as a key frame, new 3-D map points are
computed from the disparity of the stereo pair. At this stage, bundle adjustment is used to
minimize reprojection errors by adjusting the camera pose and 3-D points.

• Loop Closure: Loops are detected for each key frame by comparing it against all previous key
frames using the bag-of-features approach. Once a loop closure is detected, the pose graph is
optimized to refine the camera poses of all the key frames.

1 Camera Calibration and SfM Examples

1-122

Download and Explore the Input Stereo Image Sequence

The data used in this example are from the UTIAS Long-Term Localization and Mapping Dataset
provided by University of Toronto Institute for Aerospace Studies. You can download the data to a
directory using a web browser or by running the following code:

dataFolder = [fullfile(pwd), filesep, 'stereoImageData'];
zipFileName = [dataFolder, filesep, 'run_000005.zip'];
folderExists = exist(dataFolder, 'dir');

% Create a folder in the current directory to save the downloaded file
if ~folderExists
 mkdir(dataFolder);
 disp('Downloading run_000005.zip (818 MB). This download can take a few minutes.')
 !wget ftp://asrl3.utias.utoronto.ca/2020-vtr-dataset/UTIAS-In-The-Dark/run_000005.zip -P ./stereoImageData -nv

 % Extract contents of the downloaded file
 disp('Extracting run_000005.zip (818 MB) ...')
 unzip(zipFileName, dataFolder);
end

Use two imageDatastore objects to store the stereo images.

imgFolderLeft = [dataFolder,'/images/left/'];
imgFolderRight = [dataFolder,'/images/right/'];
imdsLeft = imageDatastore(imgFolderLeft);
imdsRight = imageDatastore(imgFolderRight);

% Inspect the first pair of images
currFrameIdx = 1;
currILeft = readimage(imdsLeft, currFrameIdx);
currIRight = readimage(imdsRight, currFrameIdx);
imshowpair(currILeft, currIRight, 'montage');

Map Initialization

The ORB-SLAM pipeline starts by initializing the map that holds 3-D world points. This step is crucial
and has a significant impact on the accuracy of final SLAM result. Initial ORB feature point
correspondences are found using matchFeatures between two images of a stereo pair. The matched
pairs should satisfy the following constraints:

• The horizontal shift between the two corresponding feature points in the rectified stereo pair
image is less than the maximum disparity. You can determine the approximate maximum disparity

 Stereo Visual Simultaneous Localization and Mapping

1-123

http://asrl.utias.utoronto.ca/datasets/2020-vtr-dataset/

value from the stereo anaglyph of the stereo pair image. For more information, see “Choosing
Range of Disparity”

• The vertical shift between the two corresponding feature points in the rectified stereo pair image
is less than a threshold.

• The scales of the matched features are nearly identical.

The 3-D world locations corresponding to the matched feature points are determined as follows:

• Use “Choosing Range of Disparity” to compute the disparity map for each pair of stereo images by
using semi-global matching (SGM) method.

• Use reconstructScene to compute the 3-D world point coordinates from the disparity map.
• Find the locations in the disparity map that correspond to the feature points and their 3-D world

locations.

% Set random seed for reproducibility
rng(0);

% Load the initial camera pose. The initial camera pose is derived based
% on the transformation between the camera and the vehicle:
% http://asrl.utias.utoronto.ca/datasets/2020-vtr-dataset/text_files/transform_camera_vehicle.tx
initialPoseData = load("initialPose.mat");
initialPose = initialPoseData.initialPose;

% Construct the reprojection matrix for 3-D reconstruction.
% The intrinsics for the dataset can be found at the following page:
% http://asrl.utias.utoronto.ca/datasets/2020-vtr-dataset/text_files/camera_parameters.txt
focalLength = [387.777 387.777]; % specified in pixels
principalPoint = [257.446 197.718]; % specified in pixels [x, y]
baseline = 0.239965; % specified in meters
imageSize = size(currILeft,[1,2]); % in pixels [mrows, ncols]
intrinsics = cameraIntrinsics(focalLength, principalPoint, imageSize);

reprojectionMatrix = [1, 0, 0, -principalPoint(1);
 0, 1, 0, -principalPoint(2);
 0, 0, 0, focalLength(1);
 0, 0, 1/baseline, 0];

% In this example, the images are already undistorted and rectified. In a general workflow,
% uncomment the following code to undistort and rectify the images.
% currILeft = undistortImage(currILeft, intrinsics);
% currIRight = undistortImage(currIRight, intrinsics);
% stereoParams = stereoParameters(intrinsics, intrinsics, eye(3), [-baseline, 0 0]);
% [currILeft, currIRight] = rectifyStereoImages(currILeft, currIRight, stereoParams, OutputView="full");

% Detect and extract ORB features from the rectified stereo images
scaleFactor = 1.2;
numLevels = 8;
[currFeaturesLeft, currPointsLeft] = helperDetectAndExtractFeatures(im2gray(currILeft), scaleFactor, numLevels);
[currFeaturesRight, currPointsRight] = helperDetectAndExtractFeatures(im2gray(currIRight), scaleFactor, numLevels);

% Match feature points between the stereo images and get the 3-D world positions
disparityRange = [0 48]; % specified in pixels
[xyzPoints, matchedPairs] = helperReconstructFromStereo(im2gray(currILeft), im2gray(currIRight), ...
 currFeaturesLeft, currFeaturesRight, currPointsLeft, currPointsRight, reprojectionMatrix, initialPose, disparityRange);

1 Camera Calibration and SfM Examples

1-124

Data Management and Visualization

After the map is initialized using the first stereo pair, you can use imageviewset and
worldpointset to store the first key frames and the corresponding map points:

% Create an empty imageviewset object to store key frames
vSetKeyFrames = imageviewset;

% Create an empty worldpointset object to store 3-D map points
mapPointSet = worldpointset;

% Add the first key frame
currKeyFrameId = 1;
vSetKeyFrames = addView(vSetKeyFrames, currKeyFrameId, initialPose, Points=currPointsLeft,...
 Features=currFeaturesLeft.Features);

% Add 3-D map points
[mapPointSet, stereoMapPointsIdx] = addWorldPoints(mapPointSet, xyzPoints);

% Add observations of the map points
mapPointSet = addCorrespondences(mapPointSet, currKeyFrameId, stereoMapPointsIdx, matchedPairs(:, 1));

% Update view direction and depth
mapPointSet = updateLimitsAndDirection(mapPointSet, stereoMapPointsIdx, vSetKeyFrames.Views);

% Update representative view
mapPointSet = updateRepresentativeView(mapPointSet, stereoMapPointsIdx, vSetKeyFrames.Views);

% Visualize matched features in the first key frame
featurePlot = helperVisualizeMatchedFeaturesStereo(currILeft, currIRight, currPointsLeft, ...
 currPointsRight, matchedPairs);

% Visualize initial map points and camera trajectory
mapPlot = helperVisualizeMotionAndStructureStereo(vSetKeyFrames, mapPointSet);

% Show legend
showLegend(mapPlot);

Initialize Place Recognition Database

Loop detection is performed using the bags-of-words approach. A visual vocabulary represented as a
bagOfFeatures object is created offline with the ORB descriptors extracted from a large set of
images in the dataset by calling:

bag =
bagOfFeatures(imds,CustomExtractor=@helperORBFeatureExtractorFunction,TreePro
perties=[3, 10], StrongestFeatures=1);

where imds is an imageDatastore object storing the training images and
helperORBFeatureExtractorFunction is the ORB feature extractor function. See “Image
Retrieval with Bag of Visual Words” on page 17-123 for more information.

The loop closure process incrementally builds a database, represented as an invertedImageIndex
object, that stores the visual word-to-image mapping based on the bag of ORB features.

% Load the bag of features data created offline
bofData = load("bagOfFeaturesDataSLAM.mat");

 Stereo Visual Simultaneous Localization and Mapping

1-125

% Initialize the place recognition database
loopDatabase = invertedImageIndex(bofData.bof,SaveFeatureLocations=false);

% Add features of the first key frame to the database
addImageFeatures(loopDatabase, currFeaturesLeft, currKeyFrameId);

Tracking

The tracking process is performed using every pair and determines when to insert a new key frame.

% ViewId of the last key frame
lastKeyFrameId = currKeyFrameId;

% Index of the last key frame in the input image sequence
lastKeyFrameIdx = currFrameIdx;

% Indices of all the key frames in the input image sequence
addedFramesIdx = lastKeyFrameIdx;

currFrameIdx = 2;
isLoopClosed = false;

Each frame is processed as follows:

1 ORB features are extracted for each new stereo pair of images and then matched (using
matchFeatures), with features in the last key frame that have known corresponding 3-D map
points.

2 Estimate the camera pose with the Perspective-n-Point algorithm using estworldpose.

Given the camera pose, project the map points observed by the last key frame into the current frame
and search for feature correspondences using matchFeaturesInRadius.

1 With 3-D to 2-D correspondences in the current frame, refine the camera pose by performing a
motion-only bundle adjustment using bundleAdjustmentMotion.

2 Project the local map points into the current frame to search for more feature correspondences
using matchFeaturesInRadius and refine the camera pose again using
bundleAdjustmentMotion.

3 The last step of tracking is to decide if the current frame should be a new key frame. A frame is a
key frame if both of the following conditions are satisfied:

• At least 5 frames have passed since the last key frame or the current frame tracks fewer than 80
map points.

• The map points tracked by the current frame are fewer than 90% of points tracked by the
reference key frame.

If the current frame is to become a key frame, continue to the Local Mapping process. Otherwise,
start Tracking for the next frame.

% Main loop
isLastFrameKeyFrame = true;
while ~isLoopClosed && currFrameIdx <= numel(imdsLeft.Files)

 currILeft = readimage(imdsLeft, currFrameIdx);
 currIRight = readimage(imdsRight, currFrameIdx);

1 Camera Calibration and SfM Examples

1-126

 currILeftGray = im2gray(currILeft);
 currIRightGray = im2gray(currIRight);

 [currFeaturesLeft, currPointsLeft] = helperDetectAndExtractFeatures(currILeftGray, scaleFactor, numLevels);
 [currFeaturesRight, currPointsRight] = helperDetectAndExtractFeatures(currIRightGray, scaleFactor, numLevels);

 % Track the last key frame
 % trackedMapPointsIdx: Indices of the map points observed in the current left frame
 % trackedFeatureIdx: Indices of the corresponding feature points in the current left frame
 [currPose, trackedMapPointsIdx, trackedFeatureIdx] = helperTrackLastKeyFrame(mapPointSet, ...
 vSetKeyFrames.Views, currFeaturesLeft, currPointsLeft, lastKeyFrameId, intrinsics, scaleFactor);

 if isempty(currPose) || numel(trackedMapPointsIdx) < 30
 currFrameIdx = currFrameIdx + 1;
 continue
 end

 % Track the local map and check if the current frame is a key frame.
 % localKeyFrameIds: ViewId of the connected key frames of the current frame
 numSkipFrames = 5;
 numPointsKeyFrame = 80;
 [localKeyFrameIds, currPose, trackedMapPointsIdx, trackedFeatureIdx, isKeyFrame] = ...
 helperTrackLocalMap(mapPointSet, vSetKeyFrames, trackedMapPointsIdx, ...
 trackedFeatureIdx, currPose, currFeaturesLeft, currPointsLeft, intrinsics, scaleFactor, numLevels, ...
 isLastFrameKeyFrame, lastKeyFrameIdx, currFrameIdx, numSkipFrames, numPointsKeyFrame);

 % Match feature points between the stereo images and get the 3-D world positions
 [xyzPoints, matchedPairs] = helperReconstructFromStereo(currILeftGray, currIRightGray, currFeaturesLeft, ...
 currFeaturesRight, currPointsLeft, currPointsRight, reprojectionMatrix, currPose, disparityRange);

 % Visualize matched features in the stereo image
 updatePlot(featurePlot, currILeft, currIRight, currPointsLeft, currPointsRight, trackedFeatureIdx, matchedPairs);

 if ~isKeyFrame && currFrameIdx < numel(imdsLeft.Files)
 currFrameIdx = currFrameIdx + 1;
 isLastFrameKeyFrame = false;
 continue
 else
 [untrackedFeatureIdx, ia] = setdiff(matchedPairs(:, 1), trackedFeatureIdx);
 xyzPoints = xyzPoints(ia, :);
 isLastFrameKeyFrame = true;
 end

 % Update current key frame ID
 currKeyFrameId = currKeyFrameId + 1;

Local Mapping

Local mapping is performed for every key frame. When a new key frame is determined, add it to the
key frames and update the attributes of the map points observed by the new key frame. To ensure
that mapPointSet contains as few outliers as possible, a valid map point must be observed in at least
3 key frames.

New map points are created by triangulating ORB feature points in the current key frame and its
connected key frames. For each unmatched feature point in the current key frame, search for a match
with other unmatched points in the connected key frames using matchFeatures. The local bundle

 Stereo Visual Simultaneous Localization and Mapping

1-127

adjustment refines the pose of the current key frame, the poses of connected key frames, and all the
map points observed in these key frames.

 % Add the new key frame
 [mapPointSet, vSetKeyFrames] = helperAddNewKeyFrame(mapPointSet, vSetKeyFrames, ...
 currPose, currFeaturesLeft, currPointsLeft, trackedMapPointsIdx, trackedFeatureIdx, localKeyFrameIds);

 % Remove outlier map points that are observed in fewer than 3 key frames
 if currKeyFrameId == 2
 triangulatedMapPointsIdx = [];
 end

 mapPointSet = helperCullRecentMapPoints(mapPointSet, ...
 trackedMapPointsIdx, triangulatedMapPointsIdx, stereoMapPointsIdx);

 % Add new map points computed from disparity
 [mapPointSet, stereoMapPointsIdx] = addWorldPoints(mapPointSet, xyzPoints);
 mapPointSet = addCorrespondences(mapPointSet, currKeyFrameId, stereoMapPointsIdx, ...
 untrackedFeatureIdx);

 % Create new map points by triangulation
 minNumMatches = 20;
 minParallax = 0.35;
 [mapPointSet, vSetKeyFrames, triangulatedMapPointsIdx, stereoMapPointsIdx] = helperCreateNewMapPointsStereo(...
 mapPointSet, vSetKeyFrames, currKeyFrameId, intrinsics, scaleFactor, minNumMatches, minParallax, ...
 untrackedFeatureIdx, stereoMapPointsIdx);

 % Local bundle adjustment
 [refinedViews, dist] = connectedViews(vSetKeyFrames, currKeyFrameId, MaxDistance=2);
 refinedKeyFrameIds = refinedViews.ViewId;

 % Always fix the first two key frames
 fixedViewIds = refinedKeyFrameIds(dist==2);
 fixedViewIds = fixedViewIds(1:min(10, numel(fixedViewIds)));

 % Refine local key frames and map points
 [mapPointSet, vSetKeyFrames, mapPointIdx] = bundleAdjustment(...
 mapPointSet, vSetKeyFrames, [refinedKeyFrameIds; currKeyFrameId], intrinsics, ...
 FixedViewIDs=fixedViewIds, PointsUndistorted=true, AbsoluteTolerance=1e-7,...
 RelativeTolerance=1e-16, Solver='preconditioned-conjugate-gradient', MaxIteration=10);

 % Update view direction and depth
 mapPointSet = updateLimitsAndDirection(mapPointSet, mapPointIdx, ...
 vSetKeyFrames.Views);

 % Update representative view
 mapPointSet = updateRepresentativeView(mapPointSet, mapPointIdx, ...
 vSetKeyFrames.Views);

 % Visualize 3-D world points and camera trajectory
 updatePlot(mapPlot, vSetKeyFrames, mapPointSet);

Loop Closure

The loop closure step takes the current key frame processed by the local mapping process and tries
to detect and close the loop. Loop candidates are identified by querying images in the database that
are visually similar to the current key frame using evaluateImageRetrieval. A candidate key

1 Camera Calibration and SfM Examples

1-128

frame is valid if it is not connected to the last key frame and three of its neighbor key frames are loop
candidates.

When a valid loop closure candidate is found, compute the relative pose between the loop closure
candidate frame and the current key frame using estgeotform3d. Then add the loop connection
with the relative pose and update mapPointSet and vSetKeyFrames.

 % Check loop closure after some key frames have been created
 if currKeyFrameId > 50

 % Minimum number of feature matches of loop edges
 loopEdgeNumMatches = 50;

 % Detect possible loop closure key frame candidates
 [isDetected, validLoopCandidates] = helperCheckLoopClosure(vSetKeyFrames, currKeyFrameId, ...
 loopDatabase, currILeft, loopEdgeNumMatches);

 isTooCloseView = currKeyFrameId - max(validLoopCandidates) < 100;
 if isDetected && ~isTooCloseView
 % Add loop closure connections
 [isLoopClosed, mapPointSet, vSetKeyFrames] = helperAddLoopConnectionsStereo(...
 mapPointSet, vSetKeyFrames, validLoopCandidates, currKeyFrameId, ...
 currFeaturesLeft, currPointsLeft, loopEdgeNumMatches);
 end
 end

 % If no loop closure is detected, add current features into the database
 if ~isLoopClosed
 addImageFeatures(loopDatabase, currFeaturesLeft, currKeyFrameId);
 end

 % Update IDs and indices
 lastKeyFrameId = currKeyFrameId;
 lastKeyFrameIdx = currFrameIdx;
 addedFramesIdx = [addedFramesIdx; currFrameIdx];
 currFrameIdx = currFrameIdx + 1;
end % End of main loop

 Stereo Visual Simultaneous Localization and Mapping

1-129

Loop edge added between keyframe: 2 and 285

Finally, apply pose graph optimization over the essential graph in vSetKeyFrames to correct the
drift. The essential graph is created internally by removing connections with fewer than
minNumMatches matches in the covisibility graph. After pose graph optimization, update the 3-D
locations of the map points using the optimized poses.

% Optimize the poses
vSetKeyFramesOptim = optimizePoses(vSetKeyFrames, minNumMatches, Tolerance=1e-16);

% Update map points after optimizing the poses
mapPointSet = helperUpdateGlobalMap(mapPointSet, vSetKeyFrames, vSetKeyFramesOptim);

updatePlot(mapPlot, vSetKeyFrames, mapPointSet);

% Plot the optimized camera trajectory
optimizedPoses = poses(vSetKeyFramesOptim);
plotOptimizedTrajectory(mapPlot, optimizedPoses)

% Update legend
showLegend(mapPlot);

1 Camera Calibration and SfM Examples

1-130

Compare with the Ground Truth

You can compare the optimized camera trajectory with the ground truth to evaluate the accuracy of
the solution. The downloaded data contains a gps.txt file that stores the GPS location for each
frame. You can convert the GPS location from geographic to local Cartesian coordinates using
latlon2local (Automated Driving Toolbox) from Automated Driving Toolbox or geodetic2enu
(Mapping Toolbox) from Mapping Toolbox. In this example, you can simply load the converted GPS
data from an M-file.

% Load GPS data
gpsData = load("gpsLocation.mat");
gpsLocation = gpsData.gpsLocation;

% Transform GPS locations to the reference coordinate system
gTruth = helperTransformGPSLocations(gpsLocation, optimizedPoses);

% Plot the GPS locations
plotActualTrajectory(mapPlot, gTruth(addedFramesIdx, :));

% Show legend
showLegend(mapPlot);

 Stereo Visual Simultaneous Localization and Mapping

1-131

Dense Reconstruction from Stereo Images

Given the refined camera poses, you can perform dense reconstruction from the stereo images
corresponding to the key frames.

% Create an array of pointCloud objects to store the 3-D world points
% associated with the key frames
ptClouds = repmat(pointCloud(zeros(1, 3)), numel(addedFramesIdx), 1);

for i = 1: numel(addedFramesIdx)
 ILeft = readimage(imdsLeft, addedFramesIdx(i));
 IRight = readimage(imdsRight, addedFramesIdx(i));

 % Reconstruct scene from disparity
 disparityMap = disparitySGM(im2gray(ILeft), im2gray(IRight), DisparityRange=disparityRange);
 xyzPoints = reconstructScene(disparityMap, reprojectionMatrix);

 % Ignore the upper half of the images which mainly show the sky
 xyzPoints(1:floor(imageSize(1)/2), :, :) = NaN;

 % Ignore the lower part of the images which show the vehicle
 xyzPoints(imageSize(1)-50:end, :, :) = NaN;

 xyzPoints = reshape(xyzPoints, [imageSize(1)*imageSize(2), 3]);

 % Get color from the color image
 colors = reshape(ILeft, [imageSize(1)*imageSize(2), 3]);

 % Remove world points that are too far away from the camera
 validIndex = xyzPoints(:, 3) > 0 & xyzPoints(:, 3) < 100/reprojectionMatrix(4, 3);
 xyzPoints = xyzPoints(validIndex, :);
 colors = colors(validIndex, :);

 % Transform world points to the world coordinates
 currPose = optimizedPoses.AbsolutePose(i);
 xyzPoints = transformPointsForward(currPose, xyzPoints);
 ptCloud = pointCloud(xyzPoints, Color=colors);

 % Downsample the point cloud
 ptClouds(i) = pcdownsample(ptCloud, random=0.5);
end

% Concatenate the point clouds
pointCloudsAll = pccat(ptClouds);

% Visualize the point cloud
figure
ax = pcshow(pointCloudsAll,VerticalAxis="y", VerticalAxisDir="down");
xlabel('X')
ylabel('Y')
zlabel('Z')
title('Dense Reconstruction')

% Display the bird's eye view of the scene
view(ax, [0 0 1]);
camroll(ax, 90);

1 Camera Calibration and SfM Examples

1-132

Supporting Functions

Short helper functions are listed below. Larger function are included in separate files.

helperDetectAndExtractFeatures detect and extract and ORB features from the image.

function [features, validPoints] = helperDetectAndExtractFeatures(Igray, scaleFactor, numLevels)

numPoints = 600;

% Detect ORB features
points = detectORBFeatures(Igray, ScaleFactor=scaleFactor, NumLevels=numLevels);

% Select a subset of features, uniformly distributed throughout the image
points = selectUniform(points, numPoints, size(Igray, 1:2));

% Extract features
[features, validPoints] = extractFeatures(Igray, points);
end

helperReconstructFromStereo reconstruct scene from stereo image using the disparity map

function [xyzPoints, indexPairs] = helperReconstructFromStereo(I1, I2, ...
 features1, features2, points1, points2, reprojectionMatrix, currPose, disparityRange)

indexPairs = helperFindValidFeaturePairs(features1, features2, points1, points2, disparityRange);

% Compute disparity for all pixels in the left image. In practice, it is more
% common to compute disparity just for the matched feature points.
disparityMap = disparitySGM(I1, I2, DisparityRange=disparityRange);
xyzPointsAll = reconstructScene(disparityMap, reprojectionMatrix);

% Find the corresponding world point of the matched feature points

 Stereo Visual Simultaneous Localization and Mapping

1-133

locations = floor(points1.Location(indexPairs(:, 1), [2 1]));
xyzPoints = [];
isPointFound = false(size(points1));

for i = 1:size(locations, 1)
 point3d = squeeze(xyzPointsAll(locations(i,1), locations(i, 2), :))';
 isPointValid = point3d(3) > 0 & point3d(3) < 200/reprojectionMatrix(4, 3);
 if isPointValid
 xyzPoints = [xyzPoints; point3d]; %#ok<*AGROW>
 isPointFound(i) = true;
 end
end
indexPairs = indexPairs(isPointFound, :);
xyzPoints = xyzPoints * currPose.Rotation + currPose.Translation;
end

helperFindValidFeaturePairs match features between a pair of stereo images

function indexPairs = helperFindValidFeaturePairs(features1, features2, points1, points2, disparityRange)
indexPairs = matchFeatures(features1, features2,...
 Unique=true, MaxRatio=1, MatchThreshold=40);

matchedPoints1 = points1.Location(indexPairs(:,1), :);
matchedPoints2 = points2.Location(indexPairs(:,2), :);
scales1 = points1.Scale(indexPairs(:,1), :);
scales2 = points2.Scale(indexPairs(:,2), :);

dist2EpipolarLine = abs(matchedPoints2(:, 2) - matchedPoints1(:, 2));
shiftDist = matchedPoints1(:, 1) - matchedPoints2(:, 1);

isCloseToEpipolarline = dist2EpipolarLine < 2*scales2;
isDisparityValid = shiftDist > 0 & shiftDist < disparityRange(2);
isScaleIdentical = scales1 == scales2;
indexPairs = indexPairs(isCloseToEpipolarline & isDisparityValid & isScaleIdentical, :);
end

helperCullRecentMapPoints cull recently added map points.

function mapPointSet = helperCullRecentMapPoints(mapPointSet, mapPointsIdx, newPointIdx, stereoMapPointsIndices)

outlierIdx = setdiff([newPointIdx; stereoMapPointsIndices], mapPointsIdx);

if ~isempty(outlierIdx)
 mapPointSet = removeWorldPoints(mapPointSet, outlierIdx);
end
end

helperUpdateGlobalMap update 3-D locations of map points after pose graph optimization

function mapPointSet = helperUpdateGlobalMap(mapPointSet, vSetKeyFrames, vSetKeyFramesOptim)

posesOld = vSetKeyFrames.Views.AbsolutePose;
posesNew = vSetKeyFramesOptim.Views.AbsolutePose;
positionsOld = mapPointSet.WorldPoints;
positionsNew = positionsOld;
indices = 1:mapPointSet.Count;

% Update world location of each map point based on the new absolute pose of

1 Camera Calibration and SfM Examples

1-134

% the corresponding major view
for i = 1: mapPointSet.Count
 majorViewIds = mapPointSet.RepresentativeViewId(i);
 tform = rigidtform3d(posesNew(majorViewIds).A/posesOld(majorViewIds).A);
 positionsNew(i, :) = transformPointsForward(tform, positionsOld(i, :));
end
mapPointSet = updateWorldPoints(mapPointSet, indices, positionsNew);
end

helperTransformGPSLocations transform the GPS locations to the reference coordinate system

function gTruth = helperTransformGPSLocations(gpsLocations, optimizedPoses)

initialYawGPS = atan((gpsLocations(100, 2) - gpsLocations(1, 2)) / ...
 (gpsLocations(100, 1) - gpsLocations(1, 1)));
initialYawSLAM = atan((optimizedPoses.AbsolutePose(50).Translation(2) - ...
 optimizedPoses.AbsolutePose(1).Translation(2)) / ...
 (optimizedPoses.AbsolutePose(59).Translation(1) - ...
 optimizedPoses.AbsolutePose(1).Translation(1)));

relYaw = initialYawGPS - initialYawSLAM;
relTranslation = optimizedPoses.AbsolutePose(1).Translation;

initialTform = rotationVectorToMatrix([0 0 relYaw]);
for i = 1:size(gpsLocations, 1)
 gTruth(i, :) = initialTform * gpsLocations(i, :)' + relTranslation';
end
end

References

[1] Mur-Artal, Raul, and Juan D. Tardós. "ORB-SLAM2: An open-source SLAM system for monocular,
stereo, and RGB-D cameras." IEEE Transactions on Robotics 33, no. 5 (2017): 1255-1262.

 Stereo Visual Simultaneous Localization and Mapping

1-135

Evaluating the Accuracy of Single Camera Calibration

This example shows how to evaluate the accuracy of camera parameters estimated using the “Using
the Single Camera Calibrator App” on page 16-24 app or the estimateCameraParameters
function.

Overview

Camera calibration is the process of estimating parameters of the camera using images of a special
calibration pattern. The parameters include camera intrinsics, distortion coefficients, and camera
extrinsics. Once you calibrate a camera, there are several ways to evaluate the accuracy of the
estimated parameters:

• Plot the relative locations of the camera and the calibration pattern
• Calculate the reprojection errors
• Calculate the parameter estimation errors

Calibrate the Camera

Estimate camera parameters using a set of images of a checkerboard calibration pattern.

% Create a set of calibration images.
images = imageDatastore(fullfile(toolboxdir("vision"), "visiondata", ...
 "calibration", "mono"));
imageFileNames = images.Files;

% Detect calibration pattern.
[imagePoints, boardSize] = detectCheckerboardPoints(imageFileNames);

% Generate world coordinates of the corners of the squares.
squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize, squareSize);

% Calibrate the camera.
I = readimage(images, 1);
imageSize = [size(I, 1), size(I, 2)];
[params, ~, estimationErrors] = estimateCameraParameters(imagePoints, worldPoints, ...
 ImageSize=imageSize);

Extrinsics

You can quickly discover obvious errors in your calibration by plotting relative locations of the
camera and the calibration pattern. Use the showExtrinsics function to either plot the locations of
the calibration pattern in the camera's coordinate system, or the locations of the camera in the
pattern's coordinate system. Look for obvious problems, such as the pattern being behind the
camera, or the camera being behind the pattern. Also check if a pattern is too far or too close to the
camera.

figure;
showExtrinsics(params, "CameraCentric");

1 Camera Calibration and SfM Examples

1-136

figure;
showExtrinsics(params, "PatternCentric");

 Evaluating the Accuracy of Single Camera Calibration

1-137

Reprojection Errors

Reprojection errors provide a qualitative measure of accuracy. A reprojection error is the distance
between a pattern keypoint detected in a calibration image, and a corresponding world point
projected into the same image. The showReprojectionErrors function provides a useful
visualization of the average reprojection error in each calibration image. If the overall mean
reprojection error is too high, consider excluding the images with the highest error and recalibrating.

figure;
showReprojectionErrors(params);

1 Camera Calibration and SfM Examples

1-138

Estimation Errors

Estimation errors represent the uncertainty of each estimated parameter. The
estimateCameraParameters function optionally returns estimationErrors output, containing
the standard error corresponding to each estimated camera parameter. The returned standard error
σ (in the same units as the corresponding parameter) can be used to calculate confidence intervals.
For example +/- 1 . 96σ corresponds to the 95% confidence interval. In other words, the probability
that the actual value of a given parameter is within 1 . 96σ of its estimate is 95%.

displayErrors(estimationErrors, params);

 Standard Errors of Estimated Camera Parameters
 --

Intrinsics

Focal length (pixels): [714.1886 +/- 3.3219 710.3785 +/- 4.0579]
Principal point (pixels):[563.6481 +/- 5.3967 355.7252 +/- 3.3036]
Radial distortion: [-0.3536 +/- 0.0091 0.1730 +/- 0.0488]

Extrinsics

Rotation vectors:
 [-0.6096 +/- 0.0054 -0.1789 +/- 0.0073 -0.3835 +/- 0.0024]
 [-0.7283 +/- 0.0050 -0.0996 +/- 0.0072 0.1964 +/- 0.0027]
 [-0.6722 +/- 0.0051 -0.1444 +/- 0.0074 -0.1329 +/- 0.0026]
 [-0.5836 +/- 0.0056 -0.2901 +/- 0.0074 -0.5622 +/- 0.0025]

 Evaluating the Accuracy of Single Camera Calibration

1-139

 [-0.3157 +/- 0.0065 -0.1441 +/- 0.0075 -0.1067 +/- 0.0011]
 [-0.7581 +/- 0.0052 0.1947 +/- 0.0072 0.4324 +/- 0.0030]
 [-0.7515 +/- 0.0051 0.0767 +/- 0.0072 0.2070 +/- 0.0029]
 [-0.6223 +/- 0.0053 0.0231 +/- 0.0073 0.3663 +/- 0.0024]
 [0.3443 +/- 0.0063 -0.2226 +/- 0.0073 -0.0437 +/- 0.0014]

Translation vectors (mm):
 [-146.0517 +/- 6.0391 -26.8685 +/- 3.7318 797.9026 +/- 3.9002]
 [-209.4358 +/- 6.9637 -59.4565 +/- 4.3578 921.8198 +/- 4.6295]
 [-129.3825 +/- 7.0907 -44.1030 +/- 4.3751 937.6831 +/- 4.4913]
 [-151.0049 +/- 6.6905 -27.3253 +/- 4.1339 884.2788 +/- 4.3925]
 [-174.9500 +/- 6.7056 -24.3499 +/- 4.1606 886.4961 +/- 4.6686]
 [-134.3097 +/- 7.8887 -103.4981 +/- 4.8925 1042.4553 +/- 4.8184]
 [-173.9846 +/- 7.6891 -73.1691 +/- 4.7812 1017.2385 +/- 4.8126]
 [-202.9448 +/- 7.4327 -87.9091 +/- 4.6482 983.6957 +/- 4.9072]
 [-319.8862 +/- 6.3213 -119.8898 +/- 4.0922 829.4581 +/- 4.9591]

How to Improve Calibration Accuracy

Whether or not a particular reprojection or estimation error is acceptable depends on the precision
requirements of your particular application. However, if you have determined that your calibration
accuracy is unacceptable, there are several ways to improve it:

• Modify calibration settings. Try using 3 radial distortion coefficients, estimating tangential
distortion, or the skew.

• Take more calibration images. The pattern in the images must be in different 3D orientations, and
it should be positioned such that you have keypoints in all parts of the field of view. In particular, it
is very important to have keypoints close to the edges and the corners of the image in order to get
a better estimate of the distortion coefficients.

• Exclude images that have high reprojection errors and re-calibrate.

Summary

This example showed how to obtain and interpret camera calibration errors.

References

[1] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(11):1330-1334, 2000.

1 Camera Calibration and SfM Examples

1-140

Measuring Planar Objects with a Calibrated Camera

This example shows how to measure the diameter of coins in world units using a single calibrated
camera.

Overview

This example shows how to calibrate a camera, and then use it to measure the size of planar objects,
such as coins. An example application of this approach is measuring parts on a conveyor belt for
quality control.

Calibrate the Camera

Camera calibration is the process of estimating the parameters of the lens and the image sensor.
These parameters are needed to measure objects captured by the camera. This example shows how
to calibrate a camera programmatically. Alternatively, you can calibrate a camera using the “Using
the Single Camera Calibrator App” on page 16-24 app.

To calibrate the camera, we first need to take multiple images of a calibration pattern from different
angles. A typical calibration pattern is an asymmetric checkerboard, where one side contains an even
number of squares, both black and white, and the other contains an odd number of squares.

The pattern must be affixed to a flat surface, and it should be at approximately the same distance
from the camera as the objects you want to measure. The size of a square must be measured in world
units, for example millimeters, as precisely as possible. In this example we use 9 images of the
pattern, but in practice it is recommended to use 10 to 20 images for accurate calibration.

Prepare Calibration Images

Create a cell array of file names of calibration images.

numImages = 9;
files = cell(1, numImages);
for i = 1:numImages
 files{i} = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata', ...
 'calibration', 'slr', sprintf('image%d.jpg', i));
end

% Display one of the calibration images
magnification = 25;
I = imread(files{1});
figure; imshow(I, InitialMagnification = magnification);
title("One of the Calibration Images");

 Measuring Planar Objects with a Calibrated Camera

1-141

Estimate Camera Parameters

% Detect the checkerboard corners in the images.
[imagePoints, boardSize] = detectCheckerboardPoints(files);

% Generate the world coordinates of the checkerboard corners in the
% pattern-centric coordinate system, with the upper-left corner at (0,0).
squareSize = 29; % in millimeters
worldPoints = generateCheckerboardPoints(boardSize, squareSize);

% Calibrate the camera.
imageSize = [size(I, 1), size(I, 2)];
cameraParams = estimateCameraParameters(imagePoints, worldPoints, ...
 ImageSize = imageSize);

% Evaluate calibration accuracy.
figure; showReprojectionErrors(cameraParams);
title("Reprojection Errors");

1 Camera Calibration and SfM Examples

1-142

The bar graph indicates the accuracy of the calibration. Each bar shows the mean reprojection error
for the corresponding calibration image. The reprojection errors are the distances between the
corner points detected in the image, and the corresponding ideal world points projected into the
image.

Read the Image of Objects to Be Measured

Load the image containing objects to be measured. This image includes the calibration pattern, and
the pattern is in the same plane as the objects you want to measure. In this example, both the pattern
and the coins are on the same table top.

Alternatively, you could use two separate images: one containing the pattern, and the other
containing the objects to be measured. Again, the objects and the pattern must be in the same plane.
Furthermore, images must be captured from exactly the same view point, meaning that the camera
must be fixed in place.

imOrig = imread(fullfile(matlabroot, "toolbox", "vision", "visiondata", ...
 "calibration", "slr", "image9.jpg"));
figure; imshow(imOrig, InitialMagnification = magnification);
title("Input Image");

 Measuring Planar Objects with a Calibrated Camera

1-143

Undistort the Image

Use the cameraParameters object to remove lens distortion from the image. This is necessary for
accurate measurement.

% Since the lens introduced little distortion, use 'full' output view to illustrate that
% the image was undistored. If we used the default 'same' option, it would be difficult
% to notice any difference when compared to the original image. Notice the small black borders.
[im, newOrigin] = undistortImage(imOrig, cameraParams, OutputView = "full");
figure; imshow(im, InitialMagnification = magnification);
title("Undistorted Image");

1 Camera Calibration and SfM Examples

1-144

Note that this image exhibits very little lens distortion. The undistortion step is far more important if
you use a wide-angle lens, or a low-end webcam.

Segment Coins

In this case, the coins are colorful on white background. Use the saturation component of the HSV
representation of the image to segment them out.

% Convert the image to the HSV color space.
imHSV = rgb2hsv(im);

% Get the saturation channel.
saturation = imHSV(:, :, 2);

% Threshold the image
t = graythresh(saturation);
imCoin = (saturation > t);

figure; imshow(imCoin, InitialMagnification = magnification);
title("Segmented Coins");

 Measuring Planar Objects with a Calibrated Camera

1-145

Detect Coins

We can assume that the two largest connected components in the segmented image correspond to the
coins.

% Find connected components.
blobAnalysis = vision.BlobAnalysis(AreaOutputPort = true,...
 CentroidOutputPort = false,...
 BoundingBoxOutputPort = true,...
 MinimumBlobArea = 200, ExcludeBorderBlobs = true);
[areas, boxes] = step(blobAnalysis, imCoin);

% Sort connected components in descending order by area
[~, idx] = sort(areas, "Descend");

% Get the two largest components.
boxes = double(boxes(idx(1:2), :));

% Reduce the size of the image for display.
scale = magnification / 100;
imDetectedCoins = imresize(im, scale);

% Insert labels for the coins.
imDetectedCoins = insertObjectAnnotation(imDetectedCoins, "rectangle", ...
 scale * boxes, "penny");

1 Camera Calibration and SfM Examples

1-146

figure; imshow(imDetectedCoins);
title("Detected Coins");

Compute Extrinsics

To map points in the image coordinates to points in the world coordinates we need to compute the
rotation and the translation of the camera relative to the calibration pattern. Note that the
estimateExtrinsics function assumes that there is no lens distortion. In this case imagePoints
have been detected in an image that has already been undistorted using undistortImage.

% Detect the checkerboard.
[imagePoints, boardSize] = detectCheckerboardPoints(im);

% Adjust the imagePoints so that they are expressed in the coordinate system
% used in the original image, before it was undistorted. This adjustment
% makes it compatible with the cameraParameters object computed for the original image.
imagePoints = imagePoints + newOrigin; % adds newOrigin to every row of imagePoints

% Extract camera intrinsics.
camIntrinsics = cameraParams.Intrinsics;

% Compute extrinsic parameters of the camera.
camExtrinsics = estimateExtrinsics(imagePoints, worldPoints, camIntrinsics);

 Measuring Planar Objects with a Calibrated Camera

1-147

Measure the First Coin

To measure the first coin we convert the top-left and the top-right corners of the bounding box into
world coordinates. Then we compute the Euclidean distance between them in millimeters. Note that
the actual diameter of a US penny is 19.05 mm.

% Adjust upper left corners of bounding boxes for coordinate system shift
% caused by undistortImage with output view of 'full'. This would not be
% needed if the output was 'same'. The adjustment makes the points compatible
% with the cameraParameters of the original image.
boxes = boxes + [newOrigin, 0, 0]; % zero padding is added for width and height

% Get the top-left and the top-right corners.
box1 = double(boxes(1, :));
imagePoints1 = [box1(1:2); ...
 box1(1) + box1(3), box1(2)];

% Get the world coordinates of the corners
worldPoints1 = img2world2d(imagePoints1, camExtrinsics, camIntrinsics);

% Compute the diameter of the coin in millimeters.
d = worldPoints1(2, :) - worldPoints1(1, :);
diameterInMillimeters = hypot(d(1), d(2));
fprintf("Measured diameter of one penny = %0.2f mm\n", diameterInMillimeters);

Measured diameter of one penny = 19.00 mm

Measure the Second Coin

Measure the second coin the same way as the first coin.

% Get the top-left and the top-right corners.
box2 = double(boxes(2, :));
imagePoints2 = [box2(1:2); ...
 box2(1) + box2(3), box2(2)];

% Apply the inverse transformation from image to world
worldPoints2 = img2world2d(imagePoints2, camExtrinsics, camIntrinsics);

% Compute the diameter of the coin in millimeters.
d = worldPoints2(2, :) - worldPoints2(1, :);
diameterInMillimeters = hypot(d(1), d(2));
fprintf("Measured diameter of the other penny = %0.2f mm\n", diameterInMillimeters);

Measured diameter of the other penny = 18.85 mm

Measure the Distance to The First Coin

In addition to measuring the size of the coin, we can also measure how far away it is from the
camera.

% Compute the center of the first coin in the image.
center1_image = box1(1:2) + box1(3:4)/2;

% Convert to world coordinates.
center1_world = img2world2d(center1_image, camExtrinsics, camIntrinsics);

% Remember to add the 0 z-coordinate.

1 Camera Calibration and SfM Examples

1-148

center1_world = [center1_world 0];

% Compute the distance to the camera.
cameraPose = extr2pose(camExtrinsics);
cameraLocation = cameraPose.Translation;
distanceToCamera = norm(center1_world - cameraLocation);
fprintf("Distance from the camera to the first penny = %0.2f mm\n", ...
 distanceToCamera);

Distance from the camera to the first penny = 719.52 mm

Summary

This example showed how to use a calibrated camera to measure planar objects. Note that the
measurements were accurate to within 0.2 mm.

References

[1] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(11):1330-1334, 2000.

 Measuring Planar Objects with a Calibrated Camera

1-149

Depth Estimation From Stereo Video

This example shows how to detect people in video taken with a calibrated stereo camera and
determine their distances from the camera.

Load the Parameters of the Stereo Camera

Load the stereoParameters object, which is the result of calibrating the camera using either the
stereoCameraCalibrator app or the estimateCameraParameters function.

% Load the stereoParameters object.
load('handshakeStereoParams.mat');

% Visualize camera extrinsics.
showExtrinsics(stereoParams);

Create Video File Readers and the Video Player

Create System Objects for reading and displaying the video.

videoFileLeft = 'handshake_left.avi';
videoFileRight = 'handshake_right.avi';

readerLeft = VideoReader(videoFileLeft);
readerRight = VideoReader(videoFileRight);
player = vision.VideoPlayer('Position', [20,200,740 560]);

1 Camera Calibration and SfM Examples

1-150

Read and Rectify Video Frames

The frames from the left and the right cameras must be rectified in order to compute disparity and
reconstruct the 3-D scene. Rectified images have horizontal epipolar lines, and are row-aligned. This
simplifies the computation of disparity by reducing the search space for matching points to one
dimension. Rectified images can also be combined into an anaglyph, which can be viewed using the
stereo red-cyan glasses to see the 3-D effect.

frameLeft = readFrame(readerLeft);
frameRight = readFrame(readerRight);

[frameLeftRect, frameRightRect, reprojectionMatrix] = ...
 rectifyStereoImages(frameLeft, frameRight, stereoParams);

figure;
imshow(stereoAnaglyph(frameLeftRect, frameRightRect));
title('Rectified Video Frames');

Compute Disparity

In rectified stereo images any pair of corresponding points are located on the same pixel row. For
each pixel in the left image compute the distance to the corresponding pixel in the right image. This
distance is called the disparity, and it is proportional to the distance of the corresponding world point
from the camera.

 Depth Estimation From Stereo Video

1-151

frameLeftGray = im2gray(frameLeftRect);
frameRightGray = im2gray(frameRightRect);

disparityMap = disparitySGM(frameLeftGray, frameRightGray);
figure;
imshow(disparityMap, [0, 64]);
title('Disparity Map');
colormap jet
colorbar

Reconstruct the 3-D Scene

Reconstruct the 3-D world coordinates of points corresponding to each pixel from the disparity map.

points3D = reconstructScene(disparityMap, reprojectionMatrix);

% Convert to meters and create a pointCloud object
points3D = points3D ./ 1000;
ptCloud = pointCloud(points3D, 'Color', frameLeftRect);

% Create a streaming point cloud viewer
player3D = pcplayer([-3, 3], [-3, 3], [0, 8], 'VerticalAxis', 'y', ...
 'VerticalAxisDir', 'down');

1 Camera Calibration and SfM Examples

1-152

% Visualize the point cloud
view(player3D, ptCloud);

Detect People in the Left Image

Use the vision.PeopleDetector system object to detect people.

% Create the people detector object. Limit the minimum object size for
% speed.
peopleDetector = vision.PeopleDetector('MinSize', [166 83]);

% Detect people.
bboxes = peopleDetector.step(frameLeftGray);

Determine The Distance of Each Person to the Camera

Find the 3-D world coordinates of the centroid of each detected person and compute the distance
from the centroid to the camera in meters.

% Find the centroids of detected people.
centroids = [round(bboxes(:, 1) + bboxes(:, 3) / 2), ...
 round(bboxes(:, 2) + bboxes(:, 4) / 2)];

% Find the 3-D world coordinates of the centroids.
centroidsIdx = sub2ind(size(disparityMap), centroids(:, 2), centroids(:, 1));

 Depth Estimation From Stereo Video

1-153

X = points3D(:, :, 1);
Y = points3D(:, :, 2);
Z = points3D(:, :, 3);
centroids3D = [X(centroidsIdx)'; Y(centroidsIdx)'; Z(centroidsIdx)'];

% Find the distances from the camera in meters.
dists = sqrt(sum(centroids3D .^ 2));

% Display the detected people and their distances.
labels = cell(1, numel(dists));
for i = 1:numel(dists)
 labels{i} = sprintf('%0.2f meters', dists(i));
end
figure;
imshow(insertObjectAnnotation(frameLeftRect, 'rectangle', bboxes, labels));
title('Detected People');

Process the Rest of the Video

Apply the steps described above to detect people and measure their distances to the camera in every
frame of the video.

while hasFrame(readerLeft) && hasFrame(readerRight)
 % Read the frames.
 frameLeft = readFrame(readerLeft);

1 Camera Calibration and SfM Examples

1-154

 frameRight = readFrame(readerRight);

 % Rectify the frames.
 [frameLeftRect, frameRightRect] = ...
 rectifyStereoImages(frameLeft, frameRight, stereoParams);

 % Convert to grayscale.
 frameLeftGray = im2gray(frameLeftRect);
 frameRightGray = im2gray(frameRightRect);

 % Compute disparity.
 disparityMap = disparitySGM(frameLeftGray, frameRightGray);

 % Reconstruct 3-D scene.
 points3D = reconstructScene(disparityMap, reprojectionMatrix);
 points3D = points3D ./ 1000;
 ptCloud = pointCloud(points3D, 'Color', frameLeftRect);
 view(player3D, ptCloud);

 % Detect people.
 bboxes = peopleDetector.step(frameLeftGray);

 if ~isempty(bboxes)
 % Find the centroids of detected people.
 centroids = [round(bboxes(:, 1) + bboxes(:, 3) / 2), ...
 round(bboxes(:, 2) + bboxes(:, 4) / 2)];

 % Find the 3-D world coordinates of the centroids.
 centroidsIdx = sub2ind(size(disparityMap), centroids(:, 2), centroids(:, 1));
 X = points3D(:, :, 1);
 Y = points3D(:, :, 2);
 Z = points3D(:, :, 3);
 centroids3D = [X(centroidsIdx), Y(centroidsIdx), Z(centroidsIdx)];

 % Find the distances from the camera in meters.
 dists = sqrt(sum(centroids3D .^ 2, 2));

 % Display the detect people and their distances.
 labels = cell(1, numel(dists));
 for i = 1:numel(dists)
 labels{i} = sprintf('%0.2f meters', dists(i));
 end
 dispFrame = insertObjectAnnotation(frameLeftRect, 'rectangle', bboxes,...
 labels);
 else
 dispFrame = frameLeftRect;
 end

 % Display the frame.
 step(player, dispFrame);
end

 Depth Estimation From Stereo Video

1-155

% Clean up
release(player);

1 Camera Calibration and SfM Examples

1-156

Summary

This example showed how to localize pedestrians in 3-D using a calibrated stereo camera.

References

[1] G. Bradski and A. Kaehler, "Learning OpenCV : Computer Vision with the OpenCV Library,"
O'Reilly, Sebastopol, CA, 2008.

[2] Dalal, N. and Triggs, B., Histograms of Oriented Gradients for Human Detection. CVPR 2005.

 Depth Estimation From Stereo Video

1-157

Structure From Motion From Multiple Views

Structure from motion (SfM) is the process of estimating the 3-D structure of a scene from a set of 2-
D views. It is used in many applications, such as robot navigation, autonomous driving, and
augmented reality. This example shows you how to estimate the poses of a calibrated camera from a
sequence of views, and reconstruct the 3-D structure of the scene up to an unknown scale factor.

Overview

This example shows how to reconstruct a 3-D scene from a sequence of 2-D views taken with a
camera calibrated using the Camera Calibrator. The example uses an imageviewset object to store
and manage the data associated with each view, such as the camera pose and the image points, as
well as matches between points from pairs of views.

The example uses the pairwise point matches to estimate the camera pose of the current view
relative to the previous view. It then links the pairwise matches into longer point tracks spanning
multiple views using the findTracks method of the imageviewset object. These tracks then serve
as inputs to multiview triangulation using the triangulateMultiview function and the refinement
of camera poses and the 3-D scene points using the bundleAdjustment function.

The example consists of two main parts: camera motion estimation and dense scene reconstruction.
In the first part, the example estimates the camera pose for each view using a sparse set of points
matched across the views. In the second part, the example iterates over the sequence of views again,
using vision.PointTrackerto track a dense set of points across the views, to compute a dense 3-D
reconstruction of the scene.

The camera motion estimation algorithm consists of the following steps:

1 For each pair of consecutive images, find a set of point correspondences. This example detects
the interest points using the detectSURFFeatures function, extracts the feature descriptors
using the extractFeatures functions, and finds the matches using the matchFeatures
function. Alternatively, you can track the points across the views using vision.PointTracker.

2 Estimate the relative pose of the current view, which is the camera orientation and location
relative to the previous view. The example uses a helper function
helperEstimateRelativePose, which calls estimateEssentialMatrix and estrelpose.

3 Transform the relative pose of the current view into the coordinate system of the first view of the
sequence.

4 Store the current view attributes: the camera pose and the image points.
5 Store the inlier matches between the previous and the current view.
6 Find point tracks across all the views processed so far.
7 Use the triangulateMultiview function to compute the initial 3-D locations corresponding to

the tracks.
8 Use the bundleAdjustment function to refine the camera poses and the 3-D points. Store the

refined camera poses in the imageviewset object.

Read the Input Image Sequence

Read and display the image sequence.

% Use |imageDatastore| to get a list of all image file names in a directory.
imageDir = fullfile(toolboxdir('vision'), 'visiondata', ...

1 Camera Calibration and SfM Examples

1-158

 'structureFromMotion');
imds = imageDatastore(imageDir);

% Display the images.
figure
montage(imds.Files, 'Size', [3, 2]);

% Convert the images to grayscale.
images = cell(1, numel(imds.Files));
for i = 1:numel(imds.Files)
 I = readimage(imds, i);
 images{i} = im2gray(I);
end

title('Input Image Sequence');

Load Camera Parameters

Load the cameraParameters object created using the Camera Calibrator.

 Structure From Motion From Multiple Views

1-159

data = load(fullfile(imageDir, 'cameraParams.mat'));
cameraParams = data.cameraParams;

Create a View Set Containing the First View

Use an imageviewset object to store and manage the image points and the camera pose associated
with each view, as well as point matches between pairs of views. Once you populate an
imageviewset object, you can use it to find point tracks across multiple views and retrieve the
camera poses to be used by triangulateMultiview and bundleAdjustment functions.

% Get intrinsic parameters of the camera
intrinsics = cameraParams.Intrinsics;

% Undistort the first image.
I = undistortImage(images{1}, intrinsics);

% Detect features. Increasing 'NumOctaves' helps detect large-scale
% features in high-resolution images. Use an ROI to eliminate spurious
% features around the edges of the image.
border = 50;
roi = [border, border, size(I, 2)- 2*border, size(I, 1)- 2*border];
prevPoints = detectSURFFeatures(I, NumOctaves=8, ROI=roi);

% Extract features. Using 'Upright' features improves matching, as long as
% the camera motion involves little or no in-plane rotation.
prevFeatures = extractFeatures(I, prevPoints, Upright=true);

% Create an empty imageviewset object to manage the data associated with each
% view.
vSet = imageviewset;

% Add the first view. Place the camera associated with the first view
% and the origin, oriented along the Z-axis.
viewId = 1;
vSet = addView(vSet, viewId, rigidtform3d, Points=prevPoints);

Add the Rest of the Views

Go through the rest of the images. For each image

1 Match points between the previous and the current image.
2 Estimate the camera pose of the current view relative to the previous view.
3 Compute the camera pose of the current view in the global coordinate system relative to the first

view.
4 Triangulate the initial 3-D world points.
5 Use bundle adjustment to refine all camera poses and the 3-D world points.

for i = 2:numel(images)
 % Undistort the current image.
 I = undistortImage(images{i}, intrinsics);

 % Detect, extract and match features.
 currPoints = detectSURFFeatures(I, NumOctaves=8, ROI=roi);
 currFeatures = extractFeatures(I, currPoints, Upright=true);
 indexPairs = matchFeatures(prevFeatures, currFeatures, ...
 MaxRatio=0.7, Unique=true);

1 Camera Calibration and SfM Examples

1-160

 % Select matched points.
 matchedPoints1 = prevPoints(indexPairs(:, 1));
 matchedPoints2 = currPoints(indexPairs(:, 2));

 % Estimate the camera pose of current view relative to the previous view.
 % The pose is computed up to scale, meaning that the distance between
 % the cameras in the previous view and the current view is set to 1.
 % This will be corrected by the bundle adjustment.
 [relPose, inlierIdx] = helperEstimateRelativePose(...
 matchedPoints1, matchedPoints2, intrinsics);

 % Get the table containing the previous camera pose.
 prevPose = poses(vSet, i-1).AbsolutePose;

 % Compute the current camera pose in the global coordinate system
 % relative to the first view.
 currPose = rigidtform3d(prevPose.A*relPose.A);

 % Add the current view to the view set.
 vSet = addView(vSet, i, currPose, Points=currPoints);

 % Store the point matches between the previous and the current views.
 vSet = addConnection(vSet, i-1, i, relPose, Matches=indexPairs(inlierIdx,:));

 % Find point tracks across all views.
 tracks = findTracks(vSet);

 % Get the table containing camera poses for all views.
 camPoses = poses(vSet);

 % Triangulate initial locations for the 3-D world points.
 xyzPoints = triangulateMultiview(tracks, camPoses, intrinsics);

 % Refine the 3-D world points and camera poses.
 [xyzPoints, camPoses, reprojectionErrors] = bundleAdjustment(xyzPoints, ...
 tracks, camPoses, intrinsics, FixedViewId=1, ...
 PointsUndistorted=true);

 % Store the refined camera poses.
 vSet = updateView(vSet, camPoses);

 prevFeatures = currFeatures;
 prevPoints = currPoints;
end

Display Camera Poses

Display the refined camera poses and 3-D world points.

% Display camera poses.
camPoses = poses(vSet);
figure;
plotCamera(camPoses, Size=0.2);
hold on

% Exclude noisy 3-D points.
goodIdx = (reprojectionErrors < 5);

 Structure From Motion From Multiple Views

1-161

xyzPoints = xyzPoints(goodIdx, :);

% Display the 3-D points.
pcshow(xyzPoints, VerticalAxis='y', VerticalAxisDir='down', MarkerSize= 45);
grid on
hold off

% Specify the viewing volume.
loc1 = camPoses.AbsolutePose(1).Translation;
xlim([loc1(1)-5, loc1(1)+4]);
ylim([loc1(2)-5, loc1(2)+4]);
zlim([loc1(3)-1, loc1(3)+20]);
camorbit(0, -30);

title('Refined Camera Poses');

Compute Dense Reconstruction

Go through the images again. This time detect a dense set of corners, and track them across all views
usingvision.PointTracker.

% Read and undistort the first image
I = undistortImage(images{1}, intrinsics);

% Detect corners in the first image.
prevPoints = detectMinEigenFeatures(I, MinQuality=0.001);

% Create the point tracker object to track the points across views.

1 Camera Calibration and SfM Examples

1-162

tracker = vision.PointTracker(MaxBidirectionalError=1, NumPyramidLevels=6);

% Initialize the point tracker.
prevPoints = prevPoints.Location;
initialize(tracker, prevPoints, I);

% Store the dense points in the view set.

vSet = updateConnection(vSet, 1, 2, Matches=zeros(0, 2));
vSet = updateView(vSet, 1, Points=prevPoints);

% Track the points across all views.
for i = 2:numel(images)
 % Read and undistort the current image.
 I = undistortImage(images{i}, intrinsics);

 % Track the points.
 [currPoints, validIdx] = step(tracker, I);

 % Clear the old matches between the points.
 if i < numel(images)
 vSet = updateConnection(vSet, i, i+1, Matches=zeros(0, 2));
 end
 vSet = updateView(vSet, i, Points=currPoints);

 % Store the point matches in the view set.
 matches = repmat((1:size(prevPoints, 1))', [1, 2]);
 matches = matches(validIdx, :);
 vSet = updateConnection(vSet, i-1, i, Matches=matches);
end

% Find point tracks across all views.
tracks = findTracks(vSet);

% Find point tracks across all views.
camPoses = poses(vSet);

% Triangulate initial locations for the 3-D world points.
xyzPoints = triangulateMultiview(tracks, camPoses,...
 intrinsics);

% Refine the 3-D world points and camera poses.
[xyzPoints, camPoses, reprojectionErrors] = bundleAdjustment(...
 xyzPoints, tracks, camPoses, intrinsics, FixedViewId=1, ...
 PointsUndistorted=true);

Display Dense Reconstruction

Display the camera poses and the dense point cloud.

% Display the refined camera poses.
figure;
plotCamera(camPoses, Size=0.2);
hold on

% Exclude noisy 3-D world points.
goodIdx = (reprojectionErrors < 5);

 Structure From Motion From Multiple Views

1-163

% Display the dense 3-D world points.
pcshow(xyzPoints(goodIdx, :), VerticalAxis='y', VerticalAxisDir='down', MarkerSize=45);
grid on
hold off

% Specify the viewing volume.
loc1 = camPoses.AbsolutePose(1).Translation;
xlim([loc1(1)-5, loc1(1)+4]);
ylim([loc1(2)-5, loc1(2)+4]);
zlim([loc1(3)-1, loc1(3)+20]);
camorbit(0, -30);

title('Dense Reconstruction');

References

[1] M.I.A. Lourakis and A.A. Argyros (2009). "SBA: A Software Package for Generic Sparse Bundle
Adjustment". ACM Transactions on Mathematical Software (ACM) 36 (1): 1-30.

[2] R. Hartley, A. Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University
Press, 2003.

[3] B. Triggs; P. McLauchlan; R. Hartley; A. Fitzgibbon (1999). "Bundle Adjustment: A Modern
Synthesis". Proceedings of the International Workshop on Vision Algorithms. Springer-Verlag. pp.
298-372.

1 Camera Calibration and SfM Examples

1-164

Uncalibrated Stereo Image Rectification

This example shows how to use the estimateFundamentalMatrix,
estimateStereoRectification, and detectSURFFeatures functions to compute the
rectification of two uncalibrated images, where the camera intrinsics are unknown.

Stereo image rectification projects images onto a common image plane in such a way that the
corresponding points have the same row coordinates. This process is useful for stereo vision, because
the 2-D stereo correspondence problem is reduced to a 1-D problem. As an example, stereo image
rectification is often used as a preprocessing step for computing or creating anaglyph images. For
more details, see the “Depth Estimation From Stereo Video” on page 1-150 example.

Step 1: Read Stereo Image Pair

Read in two color images of the same scene, which were taken from different positions. Then, convert
them to grayscale. Colors are not required for the matching process.

I1 = imread("yellowstone_left.png");
I2 = imread("yellowstone_right.png");

% Convert to grayscale.
I1gray = im2gray(I1);
I2gray = im2gray(I2);

Display both images side by side. Then, display a color composite demonstrating the pixel-wise
differences between the images.

figure
imshowpair(I1,I2,"montage")
title("I1 (left); I2 (right)")

figure
imshow(stereoAnaglyph(I1,I2))
title("Composite Image (Red - Left Image, Cyan - Right Image)")

 Uncalibrated Stereo Image Rectification

1-165

There is an obvious offset between the images in orientation and position. The goal of rectification is
to transform the images, aligning them such that corresponding points will appear on the same rows
in both images.

Step 2: Collect Interest Points from Each Image

The rectification process requires a set of point correspondences between the two images. To
generate these correspondences, you will collect points of interest from both images, and then choose
potential matches between them. Use detectSURFFeatures to find blob-like features in both
images.

blobs1 = detectSURFFeatures(I1gray,MetricThreshold=2000);
blobs2 = detectSURFFeatures(I2gray,MetricThreshold=2000);

Visualize the location and scale of the thirty strongest SURF features in I1 and I2. Notice that not all
of the detected features can be matched because they were either not detected in both images or
because some of them were not present in one of the images due to camera motion.

figure
imshow(I1)
hold on
plot(selectStrongest(blobs1,30))
title("Thirty Strongest SURF Features In I1")

1 Camera Calibration and SfM Examples

1-166

figure
imshow(I2)
hold on
plot(selectStrongest(blobs2,30))
title("Thirty Strongest SURF Features In I2")

 Uncalibrated Stereo Image Rectification

1-167

Step 3: Find Putative Point Correspondences

Use the extractFeatures and matchFeatures functions to find putative point correspondences.
For each blob, compute the SURF feature vectors (descriptors).

[features1,validBlobs1] = extractFeatures(I1gray,blobs1);
[features2,validBlobs2] = extractFeatures(I2gray,blobs2);

Use the sum of absolute differences (SAD) metric to determine indices of matching features.

indexPairs = matchFeatures(features1,features2,Metric="SAD", ...
 MatchThreshold=5);

Retrieve locations of matched points for each image.

matchedPoints1 = validBlobs1(indexPairs(:,1),:);
matchedPoints2 = validBlobs2(indexPairs(:,2),:);

Show matching points on top of the composite image, which combines stereo images. Notice that
most of the matches are correct, but there are still some outliers.

figure
showMatchedFeatures(I1, I2, matchedPoints1, matchedPoints2)
legend("Putatively Matched Points In I1","Putatively Matched Points In I2")

1 Camera Calibration and SfM Examples

1-168

Step 4: Remove Outliers Using Epipolar Constraint

The correctly matched points must satisfy epipolar constraints. This means that a point must lie on
the epipolar line determined by its corresponding point. You will use the
estimateFundamentalMatrix function to compute the fundamental matrix and find the inliers that
meet the epipolar constraint.

[fMatrix, epipolarInliers, status] = estimateFundamentalMatrix(...
 matchedPoints1,matchedPoints2,Method="RANSAC", ...
 NumTrials=10000,DistanceThreshold=0.1,Confidence=99.99);

if status ~= 0 || isEpipoleInImage(fMatrix,size(I1)) ...
 || isEpipoleInImage(fMatrix',size(I2))
 error(["Not enough matching points were found or "...
 "the epipoles are inside the images. Inspect "...
 "and improve the quality of detected features ",...
 "and images."]);
end

inlierPoints1 = matchedPoints1(epipolarInliers, :);
inlierPoints2 = matchedPoints2(epipolarInliers, :);

figure

 Uncalibrated Stereo Image Rectification

1-169

showMatchedFeatures(I1, I2, inlierPoints1, inlierPoints2)
legend("Inlier Points In I1","Inlier Points In I2")

Step 5: Rectify Images

Use the estimateStereoRectification function to compute the rectification transformations.
These can be used to transform the images, such that the corresponding points will appear on the
same rows.

[tform1, tform2] = estimateStereoRectification(fMatrix, ...
 inlierPoints1.Location,inlierPoints2.Location,size(I2));

Rectify the stereo images, and display them as a stereo anaglyph. You can use red-cyan stereo glasses
to see the 3D effect.

[I1Rect, I2Rect] = rectifyStereoImages(I1,I2,tform1,tform2);
figure
imshow(stereoAnaglyph(I1Rect,I2Rect))
title("Rectified Stereo Images (Red - Left Image, Cyan - Right Image)")

1 Camera Calibration and SfM Examples

1-170

Step 6: Generalize The Rectification Process

The parameters used in the above steps have been set to fit the two particular stereo images. To
process other images, you can use the cvexRectifyStereoImages function, which contains
additional logic to automatically adjust the rectification parameters. The image below shows the
result of processing a pair of images using this function.

cvexRectifyImages("parkinglot_left.png","parkinglot_right.png");

 Uncalibrated Stereo Image Rectification

1-171

References

[1] Trucco, E; Verri, A. "Introductory Techniques for 3-D Computer Vision." Prentice Hall, 1998.

[2] Hartley, R; Zisserman, A. "Multiple View Geometry in Computer Vision." Cambridge University
Press, 2003.

[3] Hartley, R. "In Defense of the Eight-Point Algorithm." IEEE® Transactions on Pattern Analysis and
Machine Intelligence, v.19 n.6, June 1997.

[4] Fischler, MA; Bolles, RC. "Random Sample Consensus: A Paradigm for Model Fitting with
Applications to Image Analysis and Automated Cartography." Comm. Of the ACM 24, June 1981.

1 Camera Calibration and SfM Examples

1-172

Code Generation and Third-Party
Examples

• “Code Generation for Object Detection by Using Single Shot Multibox Detector” on page 2-2
• “Code Generation for Object Detection by Using YOLO v2” on page 2-5
• “Introduction to Code Generation with Feature Matching and Registration” on page 2-9
• “Code Generation for Face Tracking with PackNGo” on page 2-16
• “Code Generation for Depth Estimation From Stereo Video” on page 2-24
• “Detect Face (Raspberry Pi2)” on page 2-29
• “Track Face (Raspberry Pi2)” on page 2-35
• “Video Display in a Custom User Interface” on page 2-41
• “Generate Code for Detecting Objects in Images by Using ACF Object Detector” on page 2-46

2

Code Generation for Object Detection by Using Single Shot
Multibox Detector

This example shows how to generate CUDA® code for an SSD network (ssdObjectDetector object)
and take advantage of the NVIDIA® cuDNN and TensorRT libraries. An SSD network is based on a
feed-forward convolutional neural network that detect multiple objects within the image in a single
shot. SSD network can be thought of as having two sub-networks. A feature extraction network,
followed by a detection network.

This example generates code for the network trained in the Object Detection Using SSD Deep
Learning example from Computer Vision Toolbox™. For more information, see “Object Detection
Using SSD Deep Learning” on page 3-258. The Object Detection Using SSD Deep Learning example
uses ResNet-50 for feature extraction. The detection sub-network is a small CNN compared to the
feature extraction network and is composed of a few convolutional layers and layers specific to SSD.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

Use the coder.checkGpuInstall (GPU Coder) function to verify that the compilers and libraries
necessary for running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Get Pretrained DAG Network

This example uses the ssdResNet50VehicleExample_20a MAT-file containing the pretrained SSD
network. This file is approximately 44 MB size. Download the file from the MathWorks website.

ssdNetFile = matlab.internal.examples.downloadSupportFile('vision/data','ssdResNet50VehicleExample_20a.mat');

The DAG network contains 180 layers including convolution, ReLU, and batch normalization layers,
anchor box, SSD merge, focal loss, and other layers. To display an interactive visualization of the
deep learning network architecture, use the analyzeNetwork (Deep Learning Toolbox) function.

2 Code Generation and Third-Party Examples

2-2

load(ssdNetFile);
analyzeNetwork(detector.Network);

The ssdObj_detect Entry-Point Function

The ssdObj_detect.m entry-point function takes an image input and runs the detector on the image
using the deep learning network saved in the ssdResNet50VehicleExample_20a.mat file. The
function loads the network object from the ssdResNet50VehicleExample_20a.mat file into a
persistent variable ssdObj and reuses the persistent object on subsequent detection calls.

type('ssdObj_detect.m')

function outImg = ssdObj_detect(in,matFile)

% Copyright 2019-2022 The MathWorks, Inc.

persistent ssdObj;

if isempty(ssdObj)
 ssdObj = coder.loadDeepLearningNetwork(matFile);
end

% Pass in input
[bboxes,~,labels] = detect(ssdObj,in,'Threshold',0.5);

% Convert categorical labels to cell array of charactor vectors for
% execution
labels = cellstr(labels);

% Annotate detections in the image.
if ~isempty(labels)
 outImg = insertObjectAnnotation(in,'rectangle',bboxes,labels);
else
 outImg = in;
end

Run MEX Code Generation

To generate CUDA code for the ssdObj_detect.m entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration object.
Run the codegen command specifying an input size of 300-by-300-by-3. This value corresponds to the
input layer size of SSD Network.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
inputArgs = {ones(300,300,3,'uint8'),coder.Constant(ssdNetFile)};
codegen -config cfg ssdObj_detect -args inputArgs -report

Code generation successful: View report

Run Generated MEX

To test the generated MEX, the example uses a small vehicle data set that contains 295 images. Many
of these images come from the Caltech Cars 1999 and 2001 data sets, available at the Caltech
Research Data Respository website, created by Pietro Perona and used with permission.

 Code Generation for Object Detection by Using Single Shot Multibox Detector

2-3

https://data.caltech.edu/

Load the vehicle data set and randomly select 10 images to test the generated code.

unzip vehicleDatasetImages.zip
imageNames = dir(fullfile(pwd,'vehicleImages','*.jpg'));
imageNames = {imageNames.name}';
rng(0);
imageIndices = randi(length(imageNames),1,10);

Read the video input frame-by-frame and detect the vehicles in the video using the detector.

for idx = 1:10
 testImage = imread(fullfile(pwd,'vehicleImages',imageNames{imageIndices(idx)}));
 resizedImage = imresize(testImage,[300,300]);
 detectorOutput = ssdObj_detect_mex(resizedImage,ssdNetFile);
 imshow(detectorOutput);
 pause(0.5)
end

References

[1] Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng Yang Fu, and
Alexander C. Berg. "SSD: Single shot multibox detector." In 14th European Conference on Computer
Vision, ECCV 2016. Springer Verlag, 2016.

2 Code Generation and Third-Party Examples

2-4

Code Generation for Object Detection by Using YOLO v2

This example shows how to generate CUDA® MEX for a you only look once (YOLO) v2 object
detector. A YOLO v2 object detection network is composed of two subnetworks. A feature extraction
network followed by a detection network. This example generates code for the network trained in the
Object Detection Using YOLO v2 Deep Learning example from Computer Vision Toolbox™. For more
information, see “Object Detection Using YOLO v2 Deep Learning” on page 3-396. You can modify
this example to generate CUDA® MEX for the network imported in the Import Pretrained ONNX
YOLO v2 Object Detector example from Computer Vision Toolbox™. For more information, see
“Import Pretrained ONNX YOLO v2 Object Detector” on page 3-364.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA® enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

Use the coder.checkGpuInstall (GPU Coder) function to verify that the compilers and libraries
necessary for running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Get Pretrained DAGNetwork

This example uses the yolov2ResNet50VehicleExample MAT-file containing the pretrained
network. The file is approximately 98MB in size. Download the file from the MathWorks website.

matFile = matlab.internal.examples.downloadSupportFile('vision/data','yolov2ResNet50VehicleExample.mat');
vehicleDetector = load(matFile);
net = vehicleDetector.detector.Network

net =
 DAGNetwork with properties:

 Layers: [150×1 nnet.cnn.layer.Layer]
 Connections: [162×2 table]

 Code Generation for Object Detection by Using YOLO v2

2-5

 InputNames: {'input_1'}
 OutputNames: {'yolov2OutputLayer'}

The DAG network contains 150 layers including convolution, ReLU, and batch normalization layers
and the YOLO v2 transform and YOLO v2 output layers. To display an interactive visualization of the
deep learning network architecture, use the analyzeNetwork (Deep Learning Toolbox) function.

analyzeNetwork(net);

The yolov2_detect Entry-Point Function

The yolov2_detect.m entry-point function takes an image input and runs the detector on the image
using the deep learning network saved in the yolov2ResNet50VehicleExample.mat file. The
function loads the network object from the yolov2ResNet50VehicleExample.mat file into a
persistent variable yolov2Obj and reuses the persistent object on subsequent detection calls.

type('yolov2_detect.m')

function outImg = yolov2_detect(in,matFile)

% Copyright 2018-2021 The MathWorks, Inc.

persistent yolov2Obj;

if isempty(yolov2Obj)
 yolov2Obj = coder.loadDeepLearningNetwork(matFile);
end

% Call to detect method
[bboxes,~,labels] = yolov2Obj.detect(in,'Threshold',0.5);

% Convert categorical labels to cell array of charactor vectors
labels = cellstr(labels);

% Annotate detections in the image.
outImg = insertObjectAnnotation(in,'rectangle',bboxes,labels);

Run MEX Code Generation

To generate CUDA code for the entry-point function, create a GPU code configuration object for a
MEX target and set the target language to C++. Use the coder.DeepLearningConfig (GPU
Coder) function to create a CuDNN deep learning configuration object and assign it to the
DeepLearningConfig property of the GPU code configuration object. Run the codegen command
specifying an input size of 224-by-224-by-3. This value corresponds to the input layer size of YOLOv2.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
cfg.GenerateReport = true;
inputArgs = {ones(224,224,3,'uint8'),coder.Constant(matFile)};

codegen -config cfg yolov2_detect -args inputArgs

Code generation successful: View report

2 Code Generation and Third-Party Examples

2-6

Run Generated MEX

Set up the video file reader and read the input video. Create a video player to display the video and
the output detections.

videoFile = 'highway_lanechange.mp4';
videoFreader = vision.VideoFileReader(videoFile,'VideoOutputDataType','uint8');
depVideoPlayer = vision.DeployableVideoPlayer('Size','Custom','CustomSize',[640 480]);

Read the video input frame-by-frame and detect the vehicles in the video using the detector.

cont = ~isDone(videoFreader);
while cont
 I = step(videoFreader);
 in = imresize(I,[224,224]);
 out = yolov2_detect_mex(in,matFile);
 step(depVideoPlayer, out);
 % Exit the loop if the video player figure window is closed
 cont = ~isDone(videoFreader) && isOpen(depVideoPlayer);
end

 Code Generation for Object Detection by Using YOLO v2

2-7

References

[1] Redmon, Joseph, and Ali Farhadi. "YOLO9000: Better, Faster, Stronger." 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.

Copyright 2017-2021The MathWorks, Inc.

2 Code Generation and Third-Party Examples

2-8

Introduction to Code Generation with Feature Matching and
Registration

This example shows how to use the MATLAB® Coder™ to generate C code for a MATLAB file. The
example explains how to modify the MATLAB code used by the “Find Image Rotation and Scale Using
Automated Feature Matching” on page 4-25 example so that it is supported for code generation. The
example highlights some of the general requirements for code generation, as well as some of the
specific actions you must take to prepare MATLAB code. Once the MATLAB code is ready for code
generation, you use the codegen (MATLAB Coder) command to generate a C-MEX function. Finally,
to verify results, the example shows you how to run the generated C-MEX function in MATLAB and
compare its output with the output of the MATLAB code.

This example requires a MATLAB Coder license.

Set Up Your C Compiler

To run this example, you must have access to a C compiler and you must configure it using 'mex -
setup' command. For more information, see “Get Started with MATLAB Coder” (MATLAB Coder).

Decide Whether to Run Under MATLAB or as a Standalone Application

Generated code can run inside the MATLAB environment as a C-MEX file, or outside the MATLAB
environment as a standalone executable or shared utility to be linked with another standalone
executable. For more details about setting code generation options, see the -config option of the
codegen (MATLAB Coder) command.

MEX Executables

This example generates a MEX executable to be run inside the MATLAB environment.

Generating a C-MEX executable to run inside of MATLAB can also be a great first step in a workflow
that ultimately leads to standalone code. The inputs and the outputs of the MEX-file are available for
inspection in the MATLAB environment, where visualization and other kinds of tools for verification
and analysis are readily available. You also have the choice of running individual commands either as
generated C code, or via the MATLAB engine. To run via MATLAB, declare relevant commands as
coder.extrinsic (MATLAB Coder), which means that the generated code will re-enter the
MATLAB environment when it needs to run that particular command. This is useful in cases where
either an isolated command does not yet have code generation support, or if you wish to embed
certain commands that do not generate code (such as plot command).

Standalone Executables

If deployment of code to another application is the goal, then a standalone executable will be
required. The first step is to configure MATLAB Coder appropriately. For example, one way to tell it
you want a standalone executable is to create a MATLAB Coder project using the MATLAB Coder IDE
and configure that project to generate a module or an executable. You can do so using the C/C++
static library or C/C++ executable options from the Build type widget on the Generate page. This IDE
is available by navigating as follows:

- Click APPS tab - Scroll down to MATLAB Coder - In MATLAB Coder Project dialog box, click OK

You can also define a config object using

 Introduction to Code Generation with Feature Matching and Registration

2-9

a=coder.config('exe')

and pass that object to the coder command on the MATLAB command line. When you create a
standalone executable, you have to write your own main.c (or main.cpp). Note that when you create a
standalone executable, there are no ready-made utilities for importing or exporting data between the
executable and the MATLAB environment. One of the options is to use printf/fprintf to a file (in your
handwritten main.c) and then import data into MATLAB using 'load -ascii' with your file.

Break Out the Computational Part of the Algorithm into a Separate MATLAB Function

MATLAB Coder requires MATLAB code to be in the form of a function in order to generate C code.
Note that it is generally not necessary to generate C code for all of the MATLAB code in question. It is
often desirable to separate the code into the primary computational portion, from which C code
generation is desired, and a harness or driver, which does not need to generate C code - that code
will run in MATLAB. The harness may contain visualization and other verification aids that are not
actually part of the system under test. The code for the main algorithm of this example resides in a
function called visionRecovertformCodeGeneration_kernel

Once the code has been re-architected as described above, you must check that the rest of the code
uses capabilities that are supported by MATLAB coder. For a list of supported commands, see
MATLAB Coder “Functions and Objects Supported for C/C++ Code Generation” (MATLAB Coder).
For a list of supported language constructs, see “MATLAB Language Features Supported for C/C++
Code Generation” (MATLAB Coder).

It may be convenient to have limited visualization or some other capability that is not supported by
the MATLAB Coder present in the function containing the main algorithm, which we hope to compile.
In these cases, you can declare these items 'extrinsic' (using coder.extrinsic). Such capability is only
possible when you generate the C code into a MATLAB MEX-file, and those functions will actually run
in interpreted MATLAB mode. If generating code for standalone use, extrinsic functions are either
ignored or they generate an error, depending on whether the code generation engine determines that
they affect the results. Thus the code must be properly architected so that the extrinsic functions do
not materially affect the code in question if a standalone executable is ultimately desired.

The original example uses showMatchedFeatures and imshowpair routines for visualization of the
results. These routines are extracted to a new function
featureMatchingVisualization_extrinsic. This function is declared extrinsic.

Run the Simulation

The kernel file visionRecovertformCodeGeneration_kernel.m has two input parameters. The
first input is the original image and the second input is the image distorted by rotation and scale.

% define original image
original = imread('cameraman.tif');

% define distorted image by resizing and then rotating original image
scale = 0.7;
J = imresize(original,scale);
theta = 30;
% Note that imrotate rotates images in a counterclockwise direction when
% you specify a positive angle of rotation. To rotate the image clockwise,
% specify a negative theta.
distorted = imrotate(J,-theta);

% call the generated mex file

2 Code Generation and Third-Party Examples

2-10

[matchedOriginalLoc,matchedDistortedLoc,thetaRecovered,scaleRecovered, ...
 recovered] = visionRecovertformCodeGeneration_kernel(original,distorted);

scaleRecovered = 0.702550

thetaRecovered = 29.761566

 Introduction to Code Generation with Feature Matching and Registration

2-11

Compile the MATLAB Function Into a MEX File

Now use the codegen (MATLAB Coder) function to compile the
visionRecovertformCodeGeneration_kernel function into a MEX-file. You can specify the '-report'
option to generate a compilation report that shows the original MATLAB code and the associated files
that were created during C code generation. You may want to create a temporary directory where
MATLAB Coder can create new files. Note that the generated MEX-file has the same name as the
original MATLAB file with _mex appended, unless you use the -o option to specify the name of the
executable.

MATLAB Coder requires that you specify the properties of all the input parameters. One easy way to
do this is to define the input properties by example at the command-line using the -args option. For
more information see “Define Input Properties by Example at the Command Line” (MATLAB Coder).
Since the inputs to % visionRecovertformCodeGeneration_kernel are a pair of images, we
define both the inputs with the following properties:

• variable-sized at run-time with upper-bound [1000 1000]
• data type uint8

% Define the properties of input images
imageTypeAndSize = coder.typeof(uint8(0),[1000 1000],[true true]);
compileTimeInputs = {imageTypeAndSize,imageTypeAndSize};

codegen visionRecovertformCodeGeneration_kernel.m -report -args compileTimeInputs;

Code generation successful: To view the report, open('codegen\mex\visionRecovertformCodeGeneration_kernel\html\report.mldatx')

2 Code Generation and Third-Party Examples

2-12

Run the Generated Code

[matchedOriginalLocCG,matchedDistortedLocCG, ...
 thetaRecoveredCG,scaleRecoveredCG,recoveredCG] = ...
 visionRecovertformCodeGeneration_kernel_mex(original,distorted);

scaleRecovered = 0.702448

thetaRecovered = 29.908159

 Introduction to Code Generation with Feature Matching and Registration

2-13

Clean Up

clear visionRecovertformCodeGeneration_kernel_mex;

2 Code Generation and Third-Party Examples

2-14

Compare Codegen with MATLAB Code

Recovered scale and theta for both MATLAB and CODEGEN, as shown above, are within reasonable
tolerance. Furthermore, the matched points are identical, as shown below:

isequal(matchedOriginalLocCG,matchedOriginalLoc)
isequal(matchedDistortedLocCG,matchedDistortedLoc)

ans =

 logical

 1

ans =

 logical

 1

Appendix

The following helper functions are used in this example.

• featureMatchingVisualization_extrinsic

 Introduction to Code Generation with Feature Matching and Registration

2-15

Code Generation for Face Tracking with PackNGo

This example shows how to generate code from “Face Detection and Tracking Using the KLT
Algorithm” on page 8-57 example with packNGo function. The packNGo (MATLAB Coder) function
packages all relevant files in a compressed zip file so you can relocate, unpack, and rebuild your
project in another development environment without MATLAB present. This example also shows how
to create a makefile for the packNGo content, rebuild the source files and finally run the standalone
executable outside MATLAB environment.

This example requires a MATLAB® Coder™ license.

This example is a function with the main body at the top and helper routines in the form of “Nested
Functions” below.

function FaceTrackingKLTpackNGoExample()

Set Up Your C++ Compiler

To run this example, you must have access to a C++ compiler and you must configure it using 'mex -
setup c++' command. For more information, see “Choose a C++ Compiler”. If you deploy the
application on MATLAB host, use a C++ compiler that is compatible with the compiler used to build
OpenCV libraries. For more information, see “Portable C Code Generation for Functions That Use
OpenCV Library” on page 22-4.

Break Out the Computational Part of the Algorithm into a Separate MATLAB Function

MATLAB Coder requires MATLAB code to be in the form of a function in order to generate C code.
The code for the main algorithm of this example resides in a function called
FaceTrackingKLTpackNGo_kernel.m. This file is derived from “Face Detection and Tracking Using the
KLT Algorithm” on page 8-57. To learn how to modify the MATLAB code to make it compatible for
code generation, you can look at example “Introduction to Code Generation with Feature Matching
and Registration” on page 2-9.

fileName = 'FaceTrackingKLTpackNGo_kernel.m';
visiondemo_dir = pwd;
currentDir = pwd; % Store the current directory
fileName = fullfile(visiondemo_dir, fileName);

Configure Code Generation Arguments for packNGo

Create a code generation configuration object for EXE output with packNGo function call in post code
generation stage.

codegenArgs = createCodegenArgs(visiondemo_dir);

Setup Code Generation Environment

Change output directory name.

codegenOutDir = fullfile(visiondemo_dir, 'codegen');
mkdir(codegenOutDir);

Add path to the existing directory to have access to necessary files.

currentPath = addpath(visiondemo_dir);
pathCleanup = onCleanup(@()path(currentPath));

2 Code Generation and Third-Party Examples

2-16

cd(codegenOutDir);
dirChange = onCleanup(@()cd(currentDir));

Create the Packaged Zip-file

Invoke codegen command with packNGo function call.

fprintf('-> Generating Code (it may take a few minutes)\n');
codegen(codegenArgs{:}, fileName);

-> Generating Code (it may take a few minutes)
Warning: C Compiler produced warnings. See the build log for further details.

Code generation successful (with warnings): To view the report, open('codegen\exe\FaceTrackingKLTpackNGo_kernel\html\report.mldatx')

Note that, instead of using codegen command, you can open a dialog and launch a code generation
project using codegen (MATLAB Coder). Use the post code generation command with packNGo
function to create a zip file.

Build Standalone Executable

Unzip the zip file into a new folder. Note that the zip file contains source files, header files, libraries,
MAT-file containing the build information object, data files. unzipPackageContents and other
helper functions are included in the appendix.

zipFileLocation = codegenOutDir;
fprintf('-> Unzipping files\n');
unzipFolderLocation = unzipPackageContents(zipFileLocation);

-> Unzipping files

Create platform dependent makefile from a template makefile.

fprintf('-> Creating makefile\n');
[~, fname, ~] = fileparts(fileName);
makefileName = createMakeFile(visiondemo_dir, unzipFolderLocation, fname);

-> Creating makefile

Create the commands required to build the project and to run it.

fprintf('-> Creating ''Build Command'' and ''Run command''\n');
[buildCommand, runCommand] = createBuildAndRunCommands(zipFileLocation,...
 unzipFolderLocation,makefileName,fname);

-> Creating 'Build Command' and 'Run command'

Build the project using build command.

fprintf('-> Building executable....\n');
buildExecutable(unzipFolderLocation, buildCommand);

-> Building executable....

Run the Executable and Deploy

Run the executable and verify that it works.

 Code Generation for Face Tracking with PackNGo

2-17

cd(unzipFolderLocation);
system(runCommand);

The application can be deployed in another machine by copying the executable and the library files.

isPublishing = ~isempty(snapnow('get'));
if ~isPublishing % skip printing out directory to html page
 fprintf('Executable and library files are located in the following folder:\n%s\n', unzipFolderLocation);
 fprintf('To re-execute run the following commands:\n');
 fprintf('1. cd(''%s'')\n', unzipFolderLocation);
 fprintf('2. system(''%s'')\n', runCommand);
end

Appendix - Helper Functions

 % Configure coder to create executable. Use packNGo at post code
 % generation stage.
 function codegenArgs = createCodegenArgs(folderForMainC)
 % Create arguments required for code generation.

 % For standalone executable a main C function is required. The main.c
 % created for this example is compatible with the content of the file
 % visionFaceTrackingKLTpackNGo_kernel.m
 mainCFile = fullfile(folderForMainC,'main.c');

 % Handle path with space
 if contains(mainCFile, ' ')
 mainCFile = ['"' mainCFile '"'];
 end

 cfg = coder.config('exe');
 cfg.PostCodeGenCommand = 'packNGo(buildInfo,''packType'',''hierarchical'');';
 cfg.CustomSource = mainCFile;
 cfg.CustomInclude = folderForMainC;
 cfg.EnableOpenMP = false;

 codegenArgs = {'-config', cfg};

 end

 % Create a folder and unzip the packNGo content into it.
 function unzipFolderLocation = unzipPackageContents(zipFileLocation)
 % Unzip the packaged zip file.

 unzipFolderLocationName = 'unzipPackNGo';
 mkdir(unzipFolderLocationName);

 % Get the name of the zip file generated by packNGo.
 zipFile = dir('*.zip');

 assert(numel(zipFile)==1);

 unzip(zipFile.name,unzipFolderLocationName);

 % Unzip internal zip files created in hierarchical packNGo.
 zipFileInternal = dir(fullfile(unzipFolderLocationName,'*.zip'));
 assert(numel(zipFileInternal)==3);

2 Code Generation and Third-Party Examples

2-18

 for i=1:numel(zipFileInternal)
 unzip(fullfile(unzipFolderLocationName,zipFileInternal(i).name), ...
 unzipFolderLocationName);
 end

 unzipFolderLocation = fullfile(zipFileLocation,unzipFolderLocationName);
 end

 % Create platform dependent makefile from template makefile. Use
 % buildInfo to get info about toolchain.
 function makefileName = createMakeFile(visiondemo_dir, unzipFolderLocation, fname)
 % Create Makefile from buildInfo.

 binfo = load(fullfile(pwd, 'codegen', 'exe', fname, 'buildInfo.mat'));

 lastDir = cd(unzipFolderLocation);
 dirCleanup = onCleanup(@()cd(lastDir));

 % Get the root directory that contains toolbox/vision sub-directories
 matlabDirName = getRootDirName(unzipFolderLocation);

 % Get defines
 horzcat_with_space = @(cellval)sprintf('%s ',cellval{:});
 defs = horzcat_with_space(getDefines(binfo.buildInfo));

 % Get source file list
 if ispc
 [~, cFiles] = system(['dir /s/b ' '*.c']);
 [~, cppFiles] = system(['dir /s/b ' '*.cpp']);

 else
 [~, cFiles] = system(['find ./ ' '-name ' '''*.c''']);
 [~, cppFiles] = system(['find ./ ' '-name ' '''*.cpp''']);

 end

 cIndx = strfind(cFiles, '.c');
 cppIndx = strfind(cppFiles, '.cpp');
 srcFilesC = [];
 srcFilesCPP = [];

 for i = 1:length(cIndx)
 if i == 1
 startIdx = 1;
 endIdx = cIndx(i);
 else
 startIdx = cIndx(i-1)+1;
 endIdx = cIndx(i);
 end

 [~, b, ~] = fileparts(cFiles(startIdx:endIdx));
 srcFilesC = [srcFilesC ' ' b '.c']; %#ok<AGROW>
 end

 for i = 1:length(cppIndx)
 if i == 1
 startIdx = 1;
 endIdx = cppIndx(i);

 Code Generation for Face Tracking with PackNGo

2-19

 else
 startIdx = cppIndx(i-1)+1;
 endIdx = cppIndx(i);
 end

 [~, b, ~] = fileparts(cppFiles(startIdx:endIdx));
 srcFilesCPP = [srcFilesCPP ' ' b '.cpp']; %#ok<AGROW>
 end

 srcFiles = [srcFilesC ' ' srcFilesCPP];

 % Get platform dependent names
 if isunix % both mac and linux
 tmf = 'TemplateMakefilePackNGo_unix';
 if ismac
 archDir = 'maci64';
 dllExt = 'dylib';
 else
 archDir = 'glnxa64';
 dllExt = 'so';
 end
 else
 tmf = 'TemplateMakefilePackNGo_win';
 archDir = 'win64';
 dllExt = 'dll';
 end

 % Now that we have defines, lets create a platform dependent makefile
 % from template.
 fid = fopen(fullfile(visiondemo_dir,tmf));

 filecontent = char(fread(fid)');
 fclose(fid);

 newfilecontent = regexprep(filecontent,...
 {'PASTE_ARCH','PASTE_EXT','PASTE_DEFINES','PASTE_SRCFILES', 'PASTE_MATLAB'},...
 { archDir, dllExt, defs, srcFiles, matlabDirName});

 makefileName = 'Makefile';
 mk_name = fullfile(unzipFolderLocation,makefileName);

 if isunix
 if(ismac)
 [status,sysHeaderPath] = system('xcode-select -print-path');
 assert(status==0, ['Could not obtain a path to the system ' ...
 'header files using ''xcode-select -print-path''' '']);

 [status,sdkPaths] = system('xcrun -sdk macosx --show-sdk-path');
 assert(status==0, 'Could not find MacOSX sdk');

 % There might be multiple SDK's
 sdkPathCell = strsplit(sdkPaths,'\n');
 for idx = 1:numel(sdkPathCell)
 if ~isempty(sdkPathCell{idx})
 % Pick the first one that's not empty.
 sdkPath = sdkPathCell{idx};
 fprintf('Choosing SDK in %s\n',sdkPath);
 break;

2 Code Generation and Third-Party Examples

2-20

 end
 end
 assert(~isempty(sdkPath), ...
 sprintf('There is no sdk available in %s. Please check system environment.\n',sysHeaderPath));

 ccCMD = ['xcrun clang -isysroot ' deblank(sdkPath)];
 cppCMD = ['xcrun clang++ -isysroot ' deblank(sdkPath)];
 else
 ccCMD = 'gcc';
 cppCMD = 'g++';
 end

 newfilecontent = regexprep(newfilecontent,'PASTE_CC',ccCMD);
 newfilecontent = regexprep(newfilecontent,'PASTE_CPP',cppCMD);
 end

 fid = fopen(mk_name,'w+');
 fprintf(fid,'%s',newfilecontent);
 fclose(fid);

 end

 % Create platform specific commands needed to build the executable and
 % to run it.
 function [buildCommand, runCommand] = createBuildAndRunCommands(...
 packageLocation,unzipFolderLocation,makefileName,fileName)
 % Create the build and run command.

 if ismac
 buildCommand = [' xcrun make -f ' makefileName];
 runCommand = ['./' fileName ' "' fileName '"'];
 elseif isunix
 buildCommand = [' make -f ' makefileName];
 runCommand = ['./' fileName ' "' fileName '"'];
 else
 % On PC we use the generated BAT files (there should be 2) to help
 % build the generated code. These files are copied to the
 % unzipFolderLocation where we can use them to build.
 batFilename = [fileName '_rtw.bat'];
 batFilelocation = fullfile(packageLocation,'codegen', ...
 filesep,'exe',filesep,fileName);
 batFileDestination = unzipFolderLocation;

 % For MSVC, also copy 'setup_msvc.bat'
 fid = fopen(fullfile(batFilelocation, batFilename));
 batFileContent = fread(fid, '*char');
 fclose(fid);
 if ~isempty(regexp(convertCharsToStrings(batFileContent), 'setup_msvc.bat', 'once'))
 setup_msvc_batFile = fullfile(batFilelocation, 'setup_msvc.bat');
 copyfile(setup_msvc_batFile, batFileDestination);
 end

 % Copy it to packNGo output directory.
 copyfile(fullfile(batFilelocation,batFilename),batFileDestination);

 % The Makefile we created is named 'Makefile', whereas the Batch
 % file refers to <filename>_rtw.mk. Hence we rename the file.
 newMakefileName = [fileName '_rtw.mk'];

 Code Generation for Face Tracking with PackNGo

2-21

 oldMakefilename = makefileName;
 copyfile(fullfile(batFileDestination,oldMakefilename),...
 fullfile(batFileDestination,newMakefileName));

 buildCommand = batFilename;
 runCommand = [fileName '.exe' ' "' fileName '"'];
 end

 end

 % Build the executable with the build command.
 function buildExecutable(unzipFolderLocation, buildCommand)
 % Call system command to build the executable.

 lastDir = cd(unzipFolderLocation);
 dirCleanup = onCleanup(@()cd(lastDir));

 [hadError, sysResults] = system(buildCommand);

 if hadError
 error (sysResults);
 end

 end

 % Get the root directory that contains toolbox/vision sub-directories
 function matlabDirName = getRootDirName(unzipFolderName)
 dirLists = dir(unzipFolderName);
 dirLists = dirLists(~ismember({dirLists.name},{'.','..'}));

 matlabDirName='';
 for ij=1:length(dirLists)
 thisDirName = dirLists(ij).name;
 if (isfolder(thisDirName))
 % subdirectory will have toolbox/vision
 [subDir1, hasSubDir1] = hasSubdirectory(thisDirName, 'toolbox');
 if hasSubDir1
 [~, hasSubDir2] = hasSubdirectory(subDir1, 'vision');
 if hasSubDir2
 matlabDirName = thisDirName;
 break;
 end
 end
 end
 end
 end

 % Find the directory that contains the specified sub-directory
 function [subDir, hasSubDir] = hasSubdirectory(dirName, subDirName)
 dirLists = dir(dirName);
 dirLists = dirLists(~ismember({dirLists.name},{'.','..'}));

 subDir = '';
 hasSubDir = false;

 for ij=1:length(dirLists)
 thisDirName = dirLists(ij).name;
 thisDir = fullfile(dirName,thisDirName);

2 Code Generation and Third-Party Examples

2-22

 if (isfolder(thisDir) && strcmp(thisDirName, subDirName))
 hasSubDir = true;
 subDir = thisDir;
 break;
 end
 end
 end

end

 Code Generation for Face Tracking with PackNGo

2-23

Code Generation for Depth Estimation From Stereo Video

This example shows how to use the MATLAB® Coder™ to generate C code for a MATLAB function,
which uses the stereoParameters object produced by Stereo Camera Calibrator app or the
estimateCameraParameters function. The example explains how to modify the MATLAB code in
the “Depth Estimation From Stereo Video” on page 1-150 example to support code generation.

This example requires a MATLAB Coder license.

Code Generation

You can learn about the basics of code generation using the MATLAB® Coder™ from the
“Introduction to Code Generation with Feature Matching and Registration” on page 2-9 example.

Restructuring the MATLAB Code for C Code Generation

MATLAB Coder requires MATLAB code to be in the form of a function in order to generate C code.
Furthermore, the arguments of the function cannot be MATLAB objects.

This presents a problem for generating code from MATLAB code, which uses cameraParameters or
stereoParameters objects, which are typically created in advance during camera calibration. To
solve this problem, use the toStruct() method to convert the cameraParameters or the
stereoParameters object into a struct. The struct can then be passed into the generated code.

The restructured code for the main algorithm of “Depth Estimation From Stereo Video” on page 1-
150 example resides in a function called depthEstimationFromStereoVideo_kernel.m. Note that
depthEstimationFromStereoVideo_kernel is a function that takes a struct created from a
stereoParameters object. Note also that it does not display the reconstructed 3-D point cloud,
because the showPointCloudFunction does not support code generation.

Load the Parameters of the Stereo Camera

Load the stereoParameters object, which is the result of calibrating the camera using either the
stereoCameraCalibrator app or the estimateCameraParameters function.

% Load the stereoParameters object.
load('handshakeStereoParams.mat');

% Visualize camera extrinsics.
showExtrinsics(stereoParams);

% Convert the object into a struct, which can be passed into generated
% code.
stereoParamsStruct = toStruct(stereoParams);

2 Code Generation and Third-Party Examples

2-24

Uncompress Video Files

On Macintosh, VideoReader does not support code generation for reading compressed video.
Uncompress the video files, and store them in the temporary directory.

if strcmp(computer(), 'MACI64')
 % Uncompress the left video.
 videoFileLeft = 'handshake_left.avi';
 reader = VideoReader(videoFileLeft);
 writer = vision.VideoFileWriter(videoFileLeft);
 while hasFrame(reader)
 frame = readFrame(reader);
 step(writer, frame);
 end
 release(reader);
 release(writer);

 % Uncompress the right video.
 videoFileRight = 'handshake_right.avi';
 reader = VideoReader(videoFileRight);
 writer = vision.VideoFileWriter(videoFileRight);
 while hasFrame(reader)
 frame = readFrame(reader);
 step(writer, frame);
 end
 release(reader);

 Code Generation for Depth Estimation From Stereo Video

2-25

 release(writer);
end

Compile the MATLAB Function Into a MEX File

Use the codegen function to compile the depthEstimationFromStereoVideo_kernel function
into a MEX-file. You can specify the '-report' option to generate a compilation report that shows the
original MATLAB code and the associated files that were created during C code generation. You may
want to create a temporary directory where MATLAB Coder can store generated files. Note that the
generated MEX-file has the same name as the original MATLAB file with _mex appended, unless you
use the -o option to specify the name of the executable.

MATLAB Coder requires that you specify the properties of all the input parameters. One easy way to
do this is to define the input properties by example at the command-line using the -args option. For
more information see “Define Input Properties by Example at the Command Line” (MATLAB Coder).

compileTimeInputs = {coder.typeof(stereoParamsStruct)};

% Generate code.
codegen depthEstimationFromStereoVideo_kernel -args compileTimeInputs;

Run the Generated Code

player = vision.VideoPlayer('Position', [100 200 750 560]);
eofReached = false;
while ~eofReached
 [eofReached, dispFrame] = depthEstimationFromStereoVideo_kernel_mex(stereoParamsStruct);

 % Hold the last frame.
 if ~eofReached
 step(player, dispFrame);
 end
end

2 Code Generation and Third-Party Examples

2-26

Clean Up

clear depthEstimationFromStereoVideo_kernel_mex;
release(player);

 Code Generation for Depth Estimation From Stereo Video

2-27

Summary

This example showed how to generate C code from MATLAB code that takes a cameraParameters
or a stereoParameters object as input.

2 Code Generation and Third-Party Examples

2-28

Detect Face (Raspberry Pi2)

This example shows how to use the MATLAB® Coder™ to generate C code from a MATLAB file and
deploy the application on an ARM target.

The example reads video frames from a webcam and detects faces in each of the frames using the
Viola-Jones face detection algorithm. The detected faces are displayed with bounding boxes. The
webcam function, from 'MATLAB Support Package for USB Webcams', and the VideoPlayer object,
from the Computer Vision System toolbox™, are used for the simulation on the MATLAB host. The
two functions do not support the ARM target, so OpenCV-based webcam reader and video viewer
functions are used for deployment.

The target must have OpenCV version 3.4.0 libraries (built with GTK) and a standard C++ compiler.
A Raspberry Pi 2 with Raspbian Stretch operating system was used for deployment. The example
should work on any ARM target.

This example requires a MATLAB Coder license.

This example is a function with the main body at the top and helper routines in the form of “Nested
Functions” below.

function FaceDetectionARMCodeGenerationExample()

Set Up Your C++ Compiler

To run this example, you must have access to a C++ compiler and you must configure it using 'mex -
setup c++' command. For more information, see “Choose a C++ Compiler”.

Break Out the Computational Part of the Algorithm into a Separate MATLAB Function

MATLAB Coder requires MATLAB code to be in the form of a function in order to generate C code.
The code for the main algorithm of this example resides in a function called
faceDetectionARMKernel.m. The function takes an image from a webcam, as the input. The function
outputs the image with a bounding box around the detected faces. The output image will be displayed
on video viewer window. To learn how to modify the MATLAB code to make it compatible for code
generation, you can look at example “Introduction to Code Generation with Feature Matching and
Registration” on page 2-9.

fileName = 'faceDetectionARMKernel.m';

Create Main Function with I/O Functionality

For a standalone executable target, MATLAB Coder requires that you create a C file containing a
function named "main". This example uses faceDetectionARMMain.c file. This main function in this
file performs the following tasks:

• Reads video frames from the webcam
• Sends video frames to the face detection algorithm
• Displays output frames containing bounding boxes around detected faces

For simulation on MATLAB host, the tasks performed in faceDetectionARMMain.c file is implemented
in faceDetectionARMMain.m

 Detect Face (Raspberry Pi2)

2-29

Webcam Reader and Video Viewer

For deployment on ARM, this example implements webcam reader functionality using OpenCV
functions. It also implements a video viewer using OpenCV functions. These OpenCV based utility
functions are implemented in the following files:

• helperOpenCVWebcam.hpp
• helperOpenCVWebcam.cpp
• helperOpenCVVideoViewer.cpp
• helperOpenCVVideoViewer.hpp

For simulation on MATLAB host, the example uses the webcam function from the 'MATLAB Support
Package for USB Webcams' and the VideoPlayer object from the Computer Vision System toolbox.
Run the simulation on the MATLAB host by typing faceDetectionARMMain at the MATLAB®
command line.

OpenCV for ARM Target

This example requires that you install OpenCV 3.4.0 libraries on your ARM target. The video viewer
requires that you build the highqui library in OpenCV with GTK for the ARM target.

Follow the steps to download and build OpenCV 3.4.0 on Raspberry Pi 2 with preinstalled Raspbian
Stretch. You must update your system firmware or install other developer tools and packages as
needed for your system configuration before you start building OpenCV.

Turn off INSTALL_C_EXAMPLES due to: https://github.com/opencv/opencv/issues/5851

Turn off ENABLE_PRECOMPILED_HEADERS due to: https://github.com/opencv/opencv/issues/9942

• $ wget -O opencv-3.4.0.zip https://github.com/opencv/opencv/archive/3.4.0.zip
• $ unzip opencv-3.4.0.zip
• $ cd opencv-3.4.0
• $ mkdir build
• $ cd build
• $ cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D

INSTALL_C_EXAMPLES=OFF -D BUILD_EXAMPLES=ON -D WITH_GTK=ON -D
WITH_FFMPEG=OFF -D ENABLE_PRECOMPILED_HEADERS=OFF ..

These steps are followed to compile and install OpenCV:

• $ make
• $ sudo make install

For official deployment of the example, OpenCV libraries were installed in the following directory on
Raspberry Pi 2:

/usr/local/lib

and the associated headers were placed in

/usr/local/include

2 Code Generation and Third-Party Examples

2-30

https://github.com/opencv/opencv/issues/5851
https://github.com/opencv/opencv/issues/9942
https://github.com/opencv/opencv/archive/3.4.0.zip

Configure Code Generation Arguments

Create a code generation configuration object for EXE output.

codegenArgs = createCodegenArgs();

Generate Code

Invoke codegen command.

fprintf('-> Generating Code (it may take a few minutes)\n');
codegen(codegenArgs{:}, fileName);
% During code generation, all dependent file information is stored in a mat
% file named buildInfo.mat.

-> Generating Code (it may take a few minutes)
Code generation successful.

Create the Packaged Zip-file

Use build information stored in buildInfo.mat to create a zip folder using packNGo.

fprintf('-> Creating zip folder (it may take a few minutes)\n');
bInfo = load(fullfile('codegen','exe','faceDetectionARMKernel','buildInfo.mat'));
packNGo(bInfo.buildInfo, {'packType', 'hierarchical', ...
 'fileName', 'faceDetectionARMKernel'});
% The generated zip folder is faceDetectionARMKernel.zip

-> Creating zip folder (it may take a few minutes)

Create Project Folder

Unzip faceDetectionARMKernel.zip into a folder named FaceDetectionARM. Unzip all files and
remove the .zip files.

packngoDir = hUnzipPackageContents();

Warning: Directory already exists.

Update Makefile and Copy to Project Folder

The Makefile, faceDetectionARMMakefile.mk, provided in this example is written for Raspberry PI 2
with specific optimization flags. The Makefile was written to work with GCC in a Linux environment
and with your OpenCV libraries located in /usr/local/lib. You can update the Makefile based on your
target configuration. Copy the Makefile to the project folder.

copyfile('faceDetectionARMMakefile.mk', packngoDir);
% Also move the file containing the main function in the top level folder.
copyfile('faceDetectionARMMain.c', packngoDir);
% For simplicity, make sure the root directory name is matlab.
setRootDirectory(packngoDir);

Deployment on ARM

Deploy your project on ARM:

disp('Follow these steps to deploy your project on ARM');

Follow these steps to deploy your project on ARM

 Detect Face (Raspberry Pi2)

2-31

Transfer Code to ARM Target

Transfer your project folder named FaceDetectionARM to your ARM target using your preferred file
transfer tool. Since the Raspberry Pi 2 (with Raspbian Stretch) already has an SSH server, you can
use SFTP to transfer files from host to target.

For official deployment of this example, the FileZilla SFTP Client was installed on the host machine
and the project folder was transferred from the host to the /home/pi/FaceDetectionARM folder on
Raspberry Pi.

disp('Step-1: Transfer the folder ''FaceDetectionARM'' to your ARM target');

Step-1: Transfer the folder 'FaceDetectionARM' to your ARM target

Build the Executable on ARM

Run the makefile to build the executable on ARM. For Raspberry Pi 2, (with Raspbian Stretch), open a
linux shell and cd to /home/pi/FaceDetectionARM. Build the executable using the following command:

make -f faceDetectionARMMakefile

The command creates an executable, faceDetectionARMKernel.

disp('Step-2: Build the executable on ARM using the shell command: make -f faceDetectionARMMakefile.mk');

Step-2: Build the executable on ARM using the shell command: make -f faceDetectionARMMakefile.mk

Run the Executable on ARM

Run the executable generated in the above step. For Raspberry Pi 2, (with Raspbian Stretch), use the
following command in the shell window:

./faceDetectionARMKernel

Make sure that you are connected to the Raspberry Pi with a window manager, and not just through a
command line terminal to avoid errors related to GTK. This is necessary for the tracking window to
show up.

To close the video viewer while the executable is running on Raspberry Pi2, click on the video viewer
and press the escape key.

disp('Step-3: Run the executable on ARM using the shell command: ./faceDetectionARMKernel');

Step-3: Run the executable on ARM using the shell command: ./faceDetectionARMKernel

Appendix - Helper Functions

 % Configure coder to create executable. Use packNGo at post code
 % generation stage.
 function codegenArgs = createCodegenArgs()
 % Create arguments required for code generation.

 % First - create configuration object
 %
 % For standalone executable a main C function is required. The
 % faceDetectionARMMain.c created for this example is compatible
 % with the content of the file faceDetectionARMKernel.m
 mainCFile = 'faceDetectionARMMain.c';

2 Code Generation and Third-Party Examples

2-32

 % Include helper functions
 camCPPFile = 'helperOpenCVWebcam.cpp';
 viewerCPPFile = 'helperOpenCVVideoViewer.cpp';

 % Handle path with space
 if contains(mainCFile, ' ')
 mainCFile = ['"' mainCFile '"'];
 camCPPFile = ['"' camCPPFile '"'];
 viewerCPPFile = ['"' viewerCPPFile '"'];
 end

 % Create configuration object
 cfg = coder.config('exe');
 cfg.CustomSource = sprintf('%s\n%s\n%s',mainCFile,camCPPFile,viewerCPPFile);
 cfg.CustomInclude = pwd;
 % Set production hardware to ARM to generate ARM compatible portable code
 cfg.HardwareImplementation.ProdHWDeviceType = 'ARM Compatible->ARM Cortex';
 cfg.EnableOpenMP = false;

 % Create input arguments
 inRGB_type = coder.typeof(uint8(0),[480 640 3]);
 % Use '-c' option to generate C code without calling C++ compiler.
 codegenArgs = {'-config', cfg, '-c', '-args', {inRGB_type}};

 end

 % Unzip the packaged zip file
 function packngoDir = hUnzipPackageContents()

 packngoDirName = 'FaceDetectionARM';

 % create packngo directory
 mkdir(packngoDirName);

 % get the name of the single zip file generated by packngo
 zipFile = dir('*.zip');
 assert(numel(zipFile)==1);

 unzip(zipFile.name,packngoDirName);

 % unzip internal zip files created in hierarchical packNGo
 zipFileInternal = dir(fullfile(packngoDirName,'*.zip'));

 for i=1:numel(zipFileInternal)
 unzip(fullfile(packngoDirName,zipFileInternal(i).name), ...
 packngoDirName);
 end
 % delete internal zip files
 delete(fullfile(packngoDirName,'*.zip'));
 packngoDir = packngoDirName;
 end

 % Set root directory as matlab
 function setRootDirectory(packngoDir)
 dirList = dir(packngoDir);
 if isempty(find(ismember({dirList.name},'matlab'), 1))
 % root directory is not matlab. Change it to matlab

 Detect Face (Raspberry Pi2)

2-33

 for i=1:length(dirList)
 thisDir = fullfile(packngoDir,dirList(i).name, 'toolbox', 'vision');
 if isfolder(thisDir)
 % rename the dir
 movefile(fullfile(packngoDir,dirList(i).name), ...
 fullfile(packngoDir,'matlab'));
 break;
 end
 end
 end
 end

end

2 Code Generation and Third-Party Examples

2-34

Track Face (Raspberry Pi2)

This example shows how to use the MATLAB® Coder™ to generate C code from a MATLAB file and
deploy the application on ARM target.

The example reads video frames from a webcam. It detects a face using Viola-Jones face detection
algorithm and tracks the face in a live video stream using the KLT algorithm. It finally displays the
frame with a bounding box and a set of markers around the face being tracked. The webcam function,
from 'MATLAB Support Package for USB Webcams', and the VideoPlayer object, from the Computer
Vision System toolbox™, are used for the simulation on the MATLAB host. The two functions do not
support the ARM target, so OpenCV-based webcam reader and video viewer functions are used for
deployment.

The target must have OpenCV version 3.4.0 libraries (built with GTK) and a standard C++ compiler.
A Raspberry Pi 2 with Raspbian Stretch operating system was used for deployment. The example
should work on any ARM target.

This example requires a MATLAB Coder license.

This example is a function with the main body at the top and helper routines in the form of “Nested
Functions” below.

function FaceTrackingARMCodeGenerationExample()

Set Up Your C++ Compiler

To run this example, you must have access to a C++ compiler and you must configure it using 'mex -
setup c++' command. For more information, see “Choose a C++ Compiler”.

Break Out the Computational Part of the Algorithm into a Separate MATLAB Function

MATLAB Coder requires MATLAB code to be in the form of a function in order to generate C code.
The code for the main algorithm of this example resides in a function called
faceTrackingARMKernel.m. The function takes an image from a webcam, as the input. The function
outputs the image with a bounding box and a set of markers around the face. The output image will
be displayed on video viewer window. To learn how to modify the MATLAB code to make it compatible
for code generation, you can look at example “Introduction to Code Generation with Feature
Matching and Registration” on page 2-9.

fileName = 'faceTrackingARMKernel.m';

Create Main Function with I/O Functionality

For a standalone executable target, MATLAB Coder requires that you create a C file containing a
function named "main". This example uses faceTrackingARMMain.c file. This main function in this file
performs the following tasks:

• Reads video frames from the webcam
• Sends video frames to the face tracking algorithm
• Displays output frames containing bounding box and markers around the face

For simulation on MATLAB host, the tasks performed in faceTrackingARMMain.c file is implemented
in faceTrackingARMMain.m

 Track Face (Raspberry Pi2)

2-35

Webcam Reader and Video Viewer

For deployment on ARM, this example implements webcam reader functionality using OpenCV
functions. It also implements a video viewer using OpenCV functions. These OpenCV based utility
functions are implemented in the following files:

• helperOpenCVWebcam.hpp
• helperOpenCVWebcam.cpp
• helperOpenCVVideoViewer.cpp
• helperOpenCVVideoViewer.hpp

For simulation on MATLAB host, the example uses the webcam function from the 'MATLAB Support
Package for USB Webcams' and the VideoPlayer object from the Computer Vision System toolbox.
Run the simulation on the MATLAB host by typing faceTrackingARMMain at the MATLAB® command
line.

OpenCV for ARM Target

This example requires that you install OpenCV 3.4.0 libraries on your ARM target. The video viewer
requires that you build the highgui library in OpenCV with GTK for the ARM target.

Follow the steps to download and build OpenCV 3.4.0 on Raspberry Pi 2 with preinstalled Raspbian
Stretch. You must update your system firmware or install other developer tools and packages as
needed for your system configuration before you start building OpenCV.

Turn off INSTALL_C_EXAMPLES due to: https://github.com/opencv/opencv/issues/5851

Turn off ENABLE_PRECOMPILED_HEADERS due to: https://github.com/opencv/opencv/issues/9942

• $ wget -O opencv-3.4.0.zip https://github.com/opencv/opencv/archive/3.4.0.zip
• $ unzip opencv-3.4.0.zip
• $ cd opencv-3.4.0
• $ mkdir build
• $ cd build
• $ cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D

INSTALL_C_EXAMPLES=OFF -D BUILD_EXAMPLES=ON -D WITH_GTK=ON -D
WITH_FFMPEG=OFF -D ENABLE_PRECOMPILED_HEADERS=OFF ..

These steps are followed to compile and install OpenCV:

• $ make
• $ sudo make install

For official deployment of the example, OpenCV libraries were installed in the following directory on
Raspberry Pi 2:

 /usr/local/lib

and the associated headers were placed in

 /usr/local/include

2 Code Generation and Third-Party Examples

2-36

https://github.com/opencv/opencv/issues/5851
https://github.com/opencv/opencv/issues/9942
https://github.com/opencv/opencv/archive/3.4.0.zip

Configure Code Generation Arguments

Create a code generation configuration object for EXE output.

codegenArgs = createCodegenArgs();

Generate Code

Invoke codegen command.

fprintf('-> Generating Code (it may take a few minutes)\n');
codegen(codegenArgs{:}, fileName);
% During code generation, all dependent file information is stored in a mat
% file named buildInfo.mat.

-> Generating Code (it may take a few minutes)
Code generation successful.

Create the Packaged Zip-file

Use build information stored in buildInfo.mat to create a zip folder using packNGo.

fprintf('-> Creating zip folder (it may take a few minutes)\n');
bInfo = load(fullfile('codegen','exe','faceTrackingARMKernel','buildInfo.mat'));
packNGo(bInfo.buildInfo, {'packType', 'hierarchical', ...
 'fileName', 'faceTrackingARMKernel'});
% The generated zip folder is faceTrackingARMKernel.zip

-> Creating zip folder (it may take a few minutes)

Create Project Folder

Unzip faceTrackingARMKernel.zip into a folder named FaceTrackingARM. Unzip all files and remove
the .zip files.

packngoDir = hUnzipPackageContents();

Warning: Directory already exists.

Update Makefile and Copy to Project Folder

The Makefile, faceTrackingARMMakefile.mk, provided in this example is written for Raspberry PI 2
with specific optimization flags. The Makefile was written to work with GCC in a Linux environment
and with your OpenCV libraries located in /usr/local/lib. You can update the Makefile based on your
target configuration. Copy the Makefile to the project folder.

copyfile('faceTrackingARMMakefile.mk', packngoDir);
% Also move the file containing the main function in the top level folder.
copyfile('faceTrackingARMMain.c', packngoDir);
% For simplicity, make sure the root directory name is matlab.
setRootDirectory(packngoDir);

Deployment on ARM

Deploy your project on ARM:

disp('Follow these steps to deploy your project on ARM');

Follow these steps to deploy your project on ARM

 Track Face (Raspberry Pi2)

2-37

Transfer Code to ARM Target

Transfer your project folder named FaceTrackingARM to your ARM target using your preferred file
transfer tool. Since the Raspberry Pi 2 (with Raspbian Stretch) already has an SSH server, you can
use SFTP to transfer files from host to target.

For official deployment of this example, the FileZilla SFTP Client was installed on the host machine
and the project folder was transferred from the host to the /home/pi/FaceTrackingARM folder on
Raspberry Pi.

disp('Step-1: Transfer the folder ''FaceTrackingARM'' to your ARM target');

Step-1: Transfer the folder 'FaceTrackingARM' to your ARM target

Build the Executable on ARM

Run the makefile to build the executable on ARM. For Raspberry Pi 2, (with Raspbian Stretch), open a
command line terminal and 'cd' to /home/pi/FaceTrackingARM. Build the executable using the
following command:

make -f faceTrackingARMMakefile.mk

The command creates an executable, faceTrackingARMKernel.

disp('Step-2: Build the executable on ARM using the shell command: make -f faceTrackingARMMakefile.mk');

Step-2: Build the executable on ARM using the shell command: make -f faceTrackingARMMakefile.mk

Run the Executable on ARM

Run the executable generated in the above step. For Raspberry Pi 2, (with Raspbian Stretch), use the
following command in the shell window:

./faceTrackingARMKernel

Make sure that you are connected to the Raspberry Pi with a window manager, and not just through a
command line terminal to avoid errors related to GTK. This is necessary for the tracking window to
show up.

To close the video viewer while the executable is running on Raspberry Pi2, click on the video viewer
and press the escape key.

disp('Step-3: Run the executable on ARM using the shell command: ./faceTrackingARMKernel');

Step-3: Run the executable on ARM using the shell command: ./faceTrackingARMKernel

Appendix - Helper Functions

 % Configure coder to create executable. Use packNGo at post code
 % generation stage.
 function codegenArgs = createCodegenArgs()
 % Create arguments required for code generation.

 % First - create configuration object
 %
 % For standalone executable a main C function is required. The
 % faceTrackingARMMain.c created for this example is compatible
 % with the content of the file faceTrackingARMKernel.m

2 Code Generation and Third-Party Examples

2-38

 mainCFile = 'faceTrackingARMMain.c';

 % Include helper functions
 camCPPFile = 'helperOpenCVWebcam.cpp';
 viewerCPPFile = 'helperOpenCVVideoViewer.cpp';

 % Handle path with space
 if contains(mainCFile, ' ')
 mainCFile = ['"' mainCFile '"'];
 camCPPFile = ['"' camCPPFile '"'];
 viewerCPPFile = ['"' viewerCPPFile '"'];
 end

 % Create configuration object
 cfg = coder.config('exe');
 cfg.CustomSource = sprintf('%s\n%s\n%s',mainCFile,camCPPFile,viewerCPPFile);
 cfg.CustomInclude = pwd;
 % Set production hardware to ARM to generate ARM compatible portable code
 cfg.HardwareImplementation.ProdHWDeviceType = 'ARM Compatible->ARM Cortex';
 cfg.EnableOpenMP = false;

 % Create input arguments
 inRGB_type = coder.typeof(uint8(0),[480 640 3]);
 % Use '-c' option to generate C code without calling C++ compiler.
 codegenArgs = {'-config', cfg, '-c', '-args', {inRGB_type}};

 end

 % Unzip the packaged zip file
 function packngoDir = hUnzipPackageContents()

 packngoDirName = 'FaceTrackingARM';

 % create packngo directory
 mkdir(packngoDirName);

 % get the name of the single zip file generated by packngo
 zipFile = dir('*.zip');
 assert(numel(zipFile)==1);

 unzip(zipFile.name,packngoDirName);

 % unzip internal zip files created in hierarchical packNGo
 zipFileInternal = dir(fullfile(packngoDirName,'*.zip'));

 for i=1:numel(zipFileInternal)
 unzip(fullfile(packngoDirName,zipFileInternal(i).name), ...
 packngoDirName);
 end
 % delete internal zip files
 delete(fullfile(packngoDirName,'*.zip'));
 packngoDir = fullfile(packngoDirName);
 end

 % Set root directory as matlab
 function setRootDirectory(packngoDir)
 dirList = dir(packngoDir);
 if isempty(find(ismember({dirList.name},'matlab'), 1))

 Track Face (Raspberry Pi2)

2-39

 % root directory is not matlab. Change it to matlab
 for i=1:length(dirList)
 thisDir = fullfile(packngoDir,dirList(i).name, 'toolbox', 'vision');
 if isfolder(thisDir)
 % rename the dir
 movefile(fullfile(packngoDir,dirList(i).name), ...
 fullfile(packngoDir,'matlab'));
 break;
 end
 end
 end
 end

end

2 Code Generation and Third-Party Examples

2-40

Video Display in a Custom User Interface

This example shows how to display multiple video streams in a custom graphical user interface (GUI).

Overview

When working on a project involving video processing, we are often faced with creating a custom
user interface. It may be needed for the purpose of visualizing and/or demonstrating the effects of our
algorithms on the input video stream. This example illustrates how to create a figure window with
two axes to display two video streams. It also shows how to set up buttons and their corresponding
callbacks.

This example is written as a function with the main body at the top. The example also uses nested
functions and a separate helper function listed.

function VideoInCustomGUIExample()

Initialize the video reader.

videoSrc = VideoReader('vipmen.avi');

Create a figure window and two axes to display the input video and the processed video.

[hFig, hAxes] = createFigureAndAxes();

Add buttons to control video playback.

insertButtons(hFig, hAxes, videoSrc);

 Video Display in a Custom User Interface

2-41

Interact with the New User Interface

Now that the GUI is constructed, we can press the play button to trigger the main video processing
loop defined in the getAndProcessFrame function listed below.

% Initialize the display with the first frame of the video
frame = getAndProcessFrame(videoSrc, 0);
% Display input video frame on axis
showFrameOnAxis(hAxes.axis1, frame);
showFrameOnAxis(hAxes.axis2, zeros(size(frame(:,:,1))+60,'uint8'));

Note that each video frame is centered in the axis box. If the axis size is bigger than the frame size,
video frame borders are padded with background color. If axis size is smaller than the frame size
scroll bars are added.

2 Code Generation and Third-Party Examples

2-42

Create Figure, Axes, Titles

Create a figure window and two axes with titles to display two videos.

 function [hFig, hAxes] = createFigureAndAxes()

 % Close figure opened by last run
 figTag = 'CVST_VideoOnAxis_9804532';
 close(findobj('tag',figTag));

 % Create new figure
 hFig = figure('numbertitle', 'off', ...
 'name', 'Video In Custom GUI', ...
 'menubar','none', ...
 'toolbar','none', ...
 'resize', 'on', ...
 'tag',figTag, ...
 'position',[680 678 480 240],...
 'HandleVisibility','callback'); % hide the handle to prevent unintended modifications of our custom UI

 % Create axes and titles
 hAxes.axis1 = createPanelAxisTitle(hFig,[0.1 0.2 0.36 0.6],'Original Video'); % [X Y W H]
 hAxes.axis2 = createPanelAxisTitle(hFig,[0.5 0.2 0.36 0.6],'Rotated Video');

 end

Create Axis and Title

Axis is created on uipanel container object. This allows more control over the layout of the GUI. Video
title is created using uicontrol.

 function hAxis = createPanelAxisTitle(hFig, pos, axisTitle)

 % Create panel
 hPanel = uipanel('parent',hFig,'Position',pos,'Units','Normalized');

 % Create axis
 hAxis = axes('position',[0 0 1 1],'Parent',hPanel);
 hAxis.XTick = [];
 hAxis.YTick = [];
 hAxis.XColor = [1 1 1];
 hAxis.YColor = [1 1 1];
 % Set video title using uicontrol. uicontrol is used so that text
 % can be positioned in the context of the figure, not the axis.
 titlePos = [pos(1)+0.02 pos(2)+pos(3)+0.3 0.3 0.07];
 uicontrol('style','text',...
 'String', axisTitle,...
 'Units','Normalized',...
 'Parent',hFig,'Position', titlePos,...
 'BackgroundColor',hFig.Color);
 end

Insert Buttons

Insert buttons to play, pause the videos.

 function insertButtons(hFig,hAxes,videoSrc)

 Video Display in a Custom User Interface

2-43

 % Play button with text Start/Pause/Continue
 uicontrol(hFig,'unit','pixel','style','pushbutton','string','Start',...
 'position',[10 10 75 25], 'tag','PBButton123','callback',...
 {@playCallback,videoSrc,hAxes});

 % Exit button with text Exit
 uicontrol(hFig,'unit','pixel','style','pushbutton','string','Exit',...
 'position',[100 10 50 25],'callback', ...
 {@exitCallback,videoSrc,hFig});
 end

Play Button Callback

This callback function rotates the input video frame and displays the original input and rotated frame
on two different axes. The helper function showFrameOnAxis, is responsible for displaying a frame
of the video on the user-defined axis.

 function playCallback(hObject,~,videoSrc,hAxes)
 try
 % Check the status of play button
 isTextStart = strcmp(hObject.String,'Start');
 isTextCont = strcmp(hObject.String,'Continue');
 if isTextStart
 % Two cases: (1) starting first time, or (2) restarting
 % Start from first frame
 if ~hasFrame(videoSrc)
 videoSrc.CurrentTime = 0.0;
 end
 end
 if (isTextStart || isTextCont)
 hObject.String = 'Pause';
 else
 hObject.String = 'Continue';
 end

 % Rotate input video frame and display original and rotated
 % frames on figure
 angle = 0;
 while strcmp(hObject.String, 'Pause') && hasFrame(videoSrc)
 % Get input video frame and rotated frame
 [frame,rotatedImg,angle] = getAndProcessFrame(videoSrc,angle);
 % Display input video frame on axis
 showFrameOnAxis(hAxes.axis1, frame);
 % Display rotated video frame on axis
 showFrameOnAxis(hAxes.axis2, rotatedImg);
 end

 % When video reaches the end of file, display "Start" on the
 % play button.
 if ~hasFrame(videoSrc)
 hObject.String = 'Start';
 end
 catch ME
 % Re-throw error message if it is not related to invalid handle
 if ~strcmp(ME.identifier, 'MATLAB:class:InvalidHandle')
 rethrow(ME);
 end

2 Code Generation and Third-Party Examples

2-44

 end
 end

Video Processing Algorithm

This function defines the main algorithm that is invoked when play button is activated.

 function [frame,rotatedImg,angle] = getAndProcessFrame(videoSrc,angle)

 % Read input video frame
 frame = readFrame(videoSrc);

 % Pad and rotate input video frame
 paddedFrame = padarray(frame, [30 30], 0, 'both');
 rotatedImg = imrotate(paddedFrame, angle, 'bilinear', 'crop');
 angle = angle + 1;
 end

Exit Button Callback

This callback function releases system objects and closes figure window.

 function exitCallback(~,~,videoSrc,hFig)

 % Close the video file
 release(videoSrc);
 % Close the figure window
 close(hFig);
 end

end

 Video Display in a Custom User Interface

2-45

Generate Code for Detecting Objects in Images by Using ACF
Object Detector

This example shows how to generate code from a MATLAB function that detects objects in images by
using an acfObjectDetector object. When you intend to generate code from your MATLAB
function that uses an acfObjectDetector object, you must create the object outside of the
MATLAB function. The example explains how to modify the MATLAB code in “Train Stop Sign
Detector Using ACF Object Detector” to support code generation.

Design the MATLAB Code File for Code Generation

To generate C Code, MATLAB Coder requires MATLAB code to be in the form of a function. The
arguments of the function cannot be MATLAB objects. This requirement presents a problem for
generating code from the MATLAB function that uses acfObjectDetector objects created outside
of the MATLAB function. To solve this problem, use the toStruct function to convert the
acfObjectDetector object into a structure and pass the structure to the MATLAB function.

To support code generation, this example restructures the code of an existing example (See “Train
Stop Sign Detector Using ACF Object Detector”) in a function called detectObjectsUsingACF,
which is present in the current working folder as a supporting file. The detectObjectsUsingACF
function takes an image as an input and loads the pretrained ACF stop sign detector.

type("detectObjectsUsingACF.m")

function [bboxes,scores] = detectObjectsUsingACF(InputImage)
% Load a trained detector from a MAT file
S = coder.load('detectorStruct.mat');
% Define a persistent variable
persistent detector
if isempty(detector)
% Re-create the ACF Object Detector
detector = acfObjectDetector(S.detectorStruct.Classifier,S.detectorStruct.TrainingOptions);
end
% Use the detect function to detect objects in the input image
[bboxes,scores] = detect(detector,InputImage);
end

Create ACF Stop Sign Detector Outside of the MATLAB Function

Load the training data.

load("stopSignsAndCars.mat")

Select the ground truth for stop signs. The ground truth data is the set of known locations of stop
signs in the images.

stopSigns = stopSignsAndCars(:,1:2);

Add the full path to the image files.

stopSigns.imageFilename = fullfile(toolboxdir("vision"),...
 "visiondata",stopSigns.imageFilename);

Use the trainACFObjectDetector function to train the ACF detector. Turn off the training
progress output by setting Verbose=false.

2 Code Generation and Third-Party Examples

2-46

detector = trainACFObjectDetector(stopSigns,NegativeSamplesFactor=2,Verbose=false);

Generate C-MEX Function

Because you intend to generate code for the MATLAB function detectObjectsUsingACF, convert
the created detector into a structure.

detectorStruct = toStruct(detector);

Save the trained object structure as a MAT file.

save("detectorStruct.mat","detectorStruct");

Generate C-MEX code that you can run in the MATLAB environment. Use the codegen (MATLAB
Coder) command.

codegen detectObjectsUsingACF -report -args { coder.typeof(uint8(0), [inf inf 3])}

Code generation successful: To view the report, open('codegen\mex\detectObjectsUsingACF\html\report.mldatx')

Detect Objects Using Generated C-MEX Function

To detect objects in an image, load a test image.

img = imread("stopSignTest.jpg");

Call the generated C-MEX function by passing the loaded image img as an input.

[bboxes,scores] = detectObjectsUsingACF_mex(img);

Display the detection results and insert the bounding boxes for objects into the image.

img = insertObjectAnnotation(img,"rectangle",bboxes,scores);
figure
imshow(img)

 Generate Code for Detecting Objects in Images by Using ACF Object Detector

2-47

Clean Up

Release the system memory used to store the generated C-MEX file.

clear ObjectDetectionFromImages_mex;

See Also
“Introduction to Code Generation with Feature Matching and Registration” on page 2-9 | “Generate
Code to Detect Edges on Images” (MATLAB Coder)

2 Code Generation and Third-Party Examples

2-48

Deep Learning, Semantic Segmentation,
and Detection Examples

• “Recognize Seven-Segment Digits Using OCR” on page 3-3
• “Train an OCR Model to Recognize Seven-Segment Digits” on page 3-8
• “Automate Ground Truth Labeling for OCR” on page 3-19
• “Object Detection In Large Satellite Imagery Using Deep Learning” on page 3-33
• “Augmented Reality Using AprilTag Markers” on page 3-52
• “Multiclass Object Detection Using YOLO v2 Deep Learning” on page 3-62
• “Generate Adversarial Examples for Semantic Segmentation” on page 3-72
• “Classify Defects on Wafer Maps Using Deep Learning” on page 3-83
• “Detect Image Anomalies Using Explainable FCDD Network” on page 3-99
• “Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings” on page 3-112
• “Detect Defects on Printed Circuit Boards Using YOLO v4 Network” on page 3-132
• “Train Object Detectors in Experiment Manager” on page 3-138
• “Activity Recognition Using R(2+1)D Video Classification” on page 3-145
• “Activity Recognition from Video and Optical Flow Data Using Deep Learning” on page 3-168
• “Evaluate a Video Classifier” on page 3-196
• “Extract Training Data for Video Classification” on page 3-200
• “Classify Streaming Webcam Video Using SlowFast Video Classifier” on page 3-204
• “Gesture Recognition using Videos and Deep Learning” on page 3-207
• “Explore Semantic Segmentation Network Using Grad-CAM” on page 3-228
• “Point Cloud Classification Using PointNet Deep Learning” on page 3-235
• “Object Detection Using SSD Deep Learning” on page 3-258
• “Object Detection in a Cluttered Scene Using Point Feature Matching” on page 3-270
• “Semantic Segmentation Using Deep Learning” on page 3-281
• “Calculate Segmentation Metrics in Block-Based Workflow” on page 3-300
• “Semantic Segmentation of Multispectral Images Using Deep Learning” on page 3-305
• “3-D Brain Tumor Segmentation Using Deep Learning” on page 3-323
• “Image Category Classification Using Bag of Features” on page 3-333
• “Image Category Classification Using Deep Learning” on page 3-340
• “Image Retrieval Using Customized Bag of Features” on page 3-349
• “Create SSD Object Detection Network” on page 3-356
• “Train YOLO v2 Network for Vehicle Detection” on page 3-359
• “Import Pretrained ONNX YOLO v2 Object Detector” on page 3-364
• “Export YOLO v2 Object Detector to ONNX” on page 3-371

3

• “Estimate Anchor Boxes From Training Data” on page 3-377
• “Object Detection Using YOLO v3 Deep Learning” on page 3-381
• “Object Detection Using YOLO v2 Deep Learning” on page 3-396
• “Create YOLO v2 Object Detection Network” on page 3-406
• “Train Object Detector Using R-CNN Deep Learning” on page 3-411
• “Object Detection Using Faster R-CNN Deep Learning” on page 3-424
• “Train Classification Network to Classify Object in 3-D Point Cloud” on page 3-434
• “Estimate Body Pose Using Deep Learning” on page 3-444
• “Generate Image from Segmentation Map Using Deep Learning” on page 3-452
• “Train Simple Semantic Segmentation Network in Deep Network Designer” on page 3-466
• “Train ACF-Based Stop Sign Detector” on page 3-471
• “Train Fast R-CNN Stop Sign Detector” on page 3-474
• “Perform Instance Segmentation Using Mask R-CNN” on page 3-477
• “Object Detection Using YOLO v4 Deep Learning” on page 3-482

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-2

Recognize Seven-Segment Digits Using OCR

This example shows how to recognize seven-segment digits in an image by using optical character
recognition (OCR). In the example, you use the detectTextCRAFT function and region properties to
detect the seven-segment text regions in the image. Then, you use OCR to recognize the seven-
segment digits in the detected text regions.

Read Image

Read an image into the MATLAB® workspace.

img = imread('meterreading.jpg');

Detect Seven-Segment Text Regions

Detect text regions in the input image by using the detectTextCRAFT function. The
CharacterThreshold value is the region threshold to use for localizing each character in the
image. The LinkThreshold value is the affinity threshold that defines the score for grouping two
detected texts into a single instance. You can fine-tune the detection results by modifying the region
and affinity threshold values. Increase the value of the affinity threshold for more word-level and
character-level detections. For information about the effect of the affinity threshold on the detection
results, see the “Detect Characters by Modifying Affinity Threshold” example.

Set the value of the affinity threshold to 0.005. The default value for the region threshold is 0.4. The
output is a set of bounding boxes that localize the text regions in the input image. The bounding box
specifies the spatial coordinates of the detected text regions in the image and is a vector of form [x,
y, width, height]. The vector specifies the upper left corner and size of the detected region in
pixels.

bbox = detectTextCRAFT(img,LinkThreshold=0.005);

Draw the output bounding boxes on the image by using the insertShape function.

Iout = insertShape(img,"rectangle",bbox,LineWidth=4);

Display the input image and the output text detections.

figure
montage({img;Iout});
title("Input Image | Detected Text Regions")

 Recognize Seven-Segment Digits Using OCR

3-3

In the input image, the seven-segment text region occupies the maximum area. Use the area of the
detected bounding boxes to extract the seven-segment text region.

Compute the area of the bounding boxes and find the bounding box with maximum area.

bboxArea = bbox(:,3).*bbox(:,4);
[value,indx]= max(bboxArea);

Extract the text region with maximum bounding box area from the input image.

roi = bbox(indx,:);
extractedImg = img(roi(2):roi(2)+roi(4),roi(1):roi(1)+roi(3),:);

Display the extracted seven-segment text region.

figure
imshow(extractedImg)
title('Extracted Seven-Segment Text Region')

Recognize Seven-Segment Digits

Recognize the seven-segment digits in the detected text region by using ocr function. Set the value
of the Model name-value argument to "seven-segment". The output is an ocrText object
containing information about the recognized text, the recognition confidence, and the location of the
text in the original image.

output = ocr(img,roi,Model="seven-segment")

output =
 ocrText with properties:

 Text: '810000...'
 CharacterBoundingBoxes: [17x4 double]
 CharacterConfidences: [17x1 single]
 Words: {2x1 cell}
 WordBoundingBoxes: [2x4 double]
 WordConfidences: [2x1 single]
 TextLines: {2x1 cell}
 TextLineBoundingBoxes: [2x4 double]

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-4

 TextLineConfidences: [2x1 single]

Display the recognized seven-segment digits. You can notice that OCR detects two bounding boxes
enclosing the text regions and recognizes the digits in each region.

disp([output.Words])

 {'810000' }
 {'0110555.'}

Iocr = insertObjectAnnotation(img,"Rectangle",output.WordBoundingBoxes,output.Words,LineWidth=4,FontSize=20);
figure
imshow(Iocr)

Challenges Obtaining Accurate Results

The main challenges in accurate recognition of the seven-segment digits are the segmentation of text
regions and the choice of the LayoutAnalysis name-value argument of ocr function.

As a preprocessing step, the ocr function performs binarization to segment the text regions from the
background. Due to the nature of the seven-segment text images, the binarized text regions have
disconnected pixels. If the distance between the pixels disconnected along the vertical direction is
large and the value of the LayoutAnalysis parameter is set to "block", the ocr function considers
the input image to have multiple lines of text. Then, the ocr function groups each line of text into a
region and recognizes the digits within each region. As a result, the recognition results might be
inaccurate. In such cases, you can improve the recognition accuracy by selecting a proper value for
the LayoutAnalysis parameter.

 Recognize Seven-Segment Digits Using OCR

3-5

Improve Results Using LayoutAnalysis Parameter

If the detected image region consists of only one line of seven-segment text, you can set the
LayoutAnalysis name-value argument to "word", "character", or "line" in order to obtain good
recognition results. For more details about how to select the value for LayoutAnalysis name-value
argument, see ocr.

The input image contains a group of seven-segment digits. To recognize all the digits in the group, set
the value of the LayoutAnalysis name-value argument to "word". Compute the OCR results.

output = ocr(img,roi,Model="seven-segment",LayoutAnalysis="word")

output =
 ocrText with properties:

 Text: '010555....'
 CharacterBoundingBoxes: [9x4 double]
 CharacterConfidences: [9x1 single]
 Words: {'010555.'}
 WordBoundingBoxes: [149 213 1057 365]
 WordConfidences: 0.6762
 TextLines: {'010555.'}
 TextLineBoundingBoxes: [149 213 1057 365]
 TextLineConfidences: 0.6762

Display the recognized seven-segment digits.

disp([output.Words])

 {'010555.'}

Draw the output bounding boxes on the image by using the insertObjectAnnotation function.
Display the recognition results. You can notice that the seven-segment text region in the image is well
localized and the digits are recognized correctly.

Iocr = insertObjectAnnotation(img,"Rectangle",output.WordBoundingBoxes,output.Words,LineWidth=4,FontSize=20);
figure
imshow(Iocr)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-6

Further Exploration

• If the detected text region consist of multiple lines of seven-segment texts, set the
LayoutAnalysis name-value argument to "block" for optimal results.

• You can improve the recognition results by accurately localizing and segmenting the seven-
segment text regions in a given image. Though you can use the detectTextCRAFT function for
detecting the text regions, you will have to manually select the appropriate region threshold and
affinity threshold values for good detection results. Alternatively, you can use the Color
Thresholder or Image Segmenter apps to interactively segment the desired text regions in the
image.

• If the segmented region contain outliers, use morphological operations to preprocess the image
before performing OCR. For an example, see the Image Pre-processing and ROI-based Processing
Techniques demonstrated in the “Recognize Text Using Optical Character Recognition (OCR)” on
page 4-46 example. The Improve Recognition Results section in “Automatically Detect and
Recognize Text Using Pretrained CRAFT Network and OCR” on page 4-14 example also
demonstrates the image preprocessing techniques that you can use for improving recognition
results if the image contain multiple lines of texts.

 Recognize Seven-Segment Digits Using OCR

3-7

Train an OCR Model to Recognize Seven-Segment Digits

This example shows how to train an OCR model to recognize seven-segment digits, use quantization
to improve runtime performance, and evaluate text recognition accuracy. The Computer Vision
Toolbox™ provides several pretrained OCR models, including one for seven-segment digits. Training
an OCR model is necessary when a pretrained model is not effective for your application. This
example demonstrates the general procedure for training an OCR model using the YUVA EB dataset
[1].

Load Data

This example uses 119 images from the YUVA EB dataset. The dataset contains images of energy
meter displays with seven-segment numerals. These images were captured under challenging text
recognition conditions such as tilted positions, lens blur, and non-uniform lighting conditions. A small
dataset is useful for exploring the OCR training procedure, but in practice, more labeled images are
needed to train a robust OCR model.

Download and extract dataset.

datasetFiles = helperDownloadDataset;

Downloading evaluation data set (7SegmentImages.zip - 96 MB)...

The images in the dataset were annotated with bounding boxes containing the seven-segment digits
and text labels were added to these bounding boxes as an attribute using the “Get Started with the
Image Labeler” on page 9-34. To learn more about labeling images for OCR training, see “Train
Custom OCR Model” on page 17-2. The labels were exported from the app as groundTruth object
and saved in 7SegmentGtruth.mat file.

Load the ground truth to be used for training and evaluation.

ld = load("7SegmentGtruth.mat");
gTruth = ld.gTruth;

Create datastores that contain images, bounding boxes and text labels from the groundTruth object
using the ocrTrainingData function with the label and attribute names used during labeling.

labelName = "Text";
attributeName = "Digits";
[imds,boxds,txtds] = ocrTrainingData(gTruth,labelName,attributeName);

Display few samples from the ground truth data.

helperDisplayGroundtruthData(imds, boxds, txtds)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-8

Analyze Ground Truth Data

Analyze Ground Truth Character Set

Analyze the ground truth text to verify that all characters of interest for training have observation
samples in the ground truth data. To verify this, find the character set of the ground truth data.

Read all ground truth text corresponding to each image and combine the text in each image.

allImagesText = txtds.readall;
allText = strjoin(vertcat(allImagesText{:}), "");

Find the unique set of characters in the ground truth text.

[characterSet, ~, idx] = unique(char(allText));

Display the ground truth character set.

disp("Ground truth Character Set: " + string(characterSet))

Ground truth Character Set: .0123456789

The ground truth data contains images of the 10 digits from 0-9 and the period symbol in the seven-
segment font.

 Train an OCR Model to Recognize Seven-Segment Digits

3-9

Analyze Dataset Class Distribution

In addition to verifying the ground truth character set, it is important to ensure that all characters
have equal representation in the dataset.

Count the occurences of each of these characters in the ground truth data.

characterSet = cellstr(characterSet');
characterCount = accumarray(idx,1);

Tabulate the character count and sort the count in descending order.

characterCountTbl = table(characterSet, characterCount, ...
 VariableNames=["Character", "Count"]);
characterCountTbl = sortrows(characterCountTbl, ...
 "Count", "descend")

characterCountTbl=11×2 table
 Character Count
 _________ _____

 {'0'} 170
 {'.'} 120
 {'1'} 98
 {'3'} 91
 {'2'} 84
 {'4'} 78
 {'5'} 61
 {'9'} 56
 {'8'} 55
 {'7'} 43
 {'6'} 40

Visualize the character count with a bar graph.

numCharacters = numel(characterSet);

figure
bar(1:numCharacters, characterCountTbl.Count)
xticks(1:numCharacters)
xticklabels(characterCountTbl.Character)
xlabel("Digits")
ylabel("Number of samples")

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-10

The characters '0' and '.' have the maximum number of occurences and the characters '7' and '6' have
the least number of occurences. In text recognition applications, it is common to have such imbalance
in the number of character samples as not all characters occur frequently in paragraphs of text.

Dataset imbalance may result in an OCR model that performs poorly on underrepresented characters.
You can balance the dataset by oversampling the least occuring characters if such behavior exists in
the trained OCR model.

Prepare Data for Training

Combine the datastores extracted from gTruth using ocrTrainingData.

cds = combine(imds,boxds,txtds);

Use 60% of the dataset for training and split the rest of the data evenly for validation and testing. The
following code randomly splits the data into training, validation and test.

trainPercent = 60;
[cdsTrain, cdsVal, cdsTest, numTrain, numVal, numTest] = helperPartitionOCRData(cds, trainPercent);

The 60/20/20 split results in the following number of training, validation and test images:

disp("Number of training images = " + numTrain)

Number of training images = 71

disp("Number of validation images = " + numVal)

 Train an OCR Model to Recognize Seven-Segment Digits

3-11

Number of validation images = 24

disp("Number of test images = " + numTest)

Number of test images = 24

Train OCR Model

Create a directory to save the trained OCR model.

outputDir = "OCRModel";
if ~exist(outputDir, "dir")
 mkdir(outputDir);
end

Create a directory to save checkpoints.

checkpointsDir = "Checkpoints";
if ~exist(checkpointsDir, "dir")
 mkdir(checkpointsDir);
end

Use ocrTrainingOptions function to specify the following training options for OCR Training.
Empirical analysis is required to determine the optimal training options values.

• ocrTrainingOptions uses ADAM solver by default. Set the gradient decay factor for ADAM
optimization to 0.9.

• Use an initial learning rate of 20e-4.
• Set the maximum number of epochs for training to 15.
• Set the verbose frequency to 100 iterations.
• Specify the output directory.
• Specify the checkpoint path to enable saving checkpoints.
• Specify validation data to enable validation step during training.
• Set the validation frequency to 10 iterations.

ocrOptions = ocrTrainingOptions(GradientDecayFactor=0.9,...
 InitialLearnRate=20e-4,...
 MaxEpochs=15,...
 VerboseFrequency=100,...
 OutputLocation=outputDir,...
 CheckpointPath=checkpointsDir,...
 ValidationData=cdsVal,...
 ValidationFrequency=10);

Train a new OCR model by fine-tuning the pretrained "english" model. The training will take about
8-9 minutes.

trainedModelName = "sevenSegmentModel";
baseModel = "english";
[trainedModel, trainingInfo] = trainOCR(cdsTrain, trainedModelName, baseModel, ocrOptions);

Starting OCR training

Model Name: sevenSegmentModel

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-12

Base Model: english

Preparing training data... 100.00 % completed.
Preparing validation data... 100.00 % completed.

Character Set: .0123456789

|==|
| Epoch | Iteration | Time Elapsed | Training Statistics | Validation Statistics | Base Learning |
| | | (hh:mm:ss) | RMSE | Character Error | Word Error | RMSE | Character Error | Word Error | Rate |
|==|
1	1	00:01:45	19.48	100.00	100.00	0.00	0.00	0.00	0.0020
1	100	00:02:14	9.88	44.58	66.00	4.92	14.79	40.00	0.0020
2	200	00:02:46	7.05	28.44	49.00	2.97	8.07	20.00	0.0020
3	300	00:03:21	5.38	20.11	35.67	1.87	5.10	12.50	0.0020
4	400	00:03:55	4.38	15.71	28.50	1.80	5.00	15.00	0.0020
5	500	00:04:30	3.71	12.84	23.40	1.69	5.25	17.50	0.0020
6	600	00:05:02	3.26	10.96	20.33	1.61	3.65	12.50	0.0020
7	700	00:05:36	2.94	9.58	17.86	2.09	9.52	20.00	0.0020
8	800	00:06:09	2.69	8.45	16.00	1.53	4.38	10.00	0.0020
8	900	00:06:42	2.48	7.51	14.22	1.49	3.85	12.50	0.0020
9	1000	00:07:16	2.28	6.76	12.80	1.80	5.52	15.00	0.0020
10	1100	00:07:52	1.34	2.30	6.20	1.52	4.27	12.50	0.0020
11	1200	00:08:27	0.99	1.12	3.30	1.94	6.77	15.00	0.0020
12	1300	00:09:02	0.86	0.79	2.50	1.41	3.02	10.00	0.0020
13	1400	00:09:37	0.80	0.56	1.90	2.21	6.35	17.50	0.0020
14	1500	00:10:12	0.75	0.44	1.70	1.79	5.83	17.50	0.0020
15	1600	00:10:47	0.70	0.28	1.20	1.52	5.10	12.50	0.0020
15	1695	00:11:20	0.68	0.25	1.10	2.03	6.88	22.50	0.0020
==									

OCR training complete.
Exit condition: Reached maximum epochs.

Model file name: OCRModel/sevenSegmentModel.traineddata

Plot training and validation RMSE curves to understand the training progress.

figure
plot(trainingInfo.TrainingRMSE); hold on;
plot(trainingInfo.ValidationRMSE)
legend(["Training", "Validation"])
xlabel("Iterations")
ylabel("RMSE")
title("Training vs Validation RMSE Curve")

 Train an OCR Model to Recognize Seven-Segment Digits

3-13

The maximum number of epochs for training is set to 15 to reduce the time it takes to run the
example. Increasing the MaxEpochs can help improve the accuracy at the cost of training time.

Evaluate Trained Model Using Test Set

Run the trained OCR model on the test dataset and evaluate recognition accuracy using
evaluateOCR.

trainedModelResults = ocr(cdsTest,Model=trainedModel);
trainedModelMetrics = evaluateOCR(trainedModelResults,cdsTest);

Evaluating ocr results

* Selected metrics: character error rate, word error rate.
* Processed 24 images.
* Finalizing... Done.
* Data set metrics:

 CharacterErrorRate WordErrorRate
 __________________ _____________

 0.10455 0.27083

Display test accuracy of the trained model.

trainedModelAccuracy = 100*(1-trainedModelMetrics.DataSetMetrics.CharacterErrorRate);
disp("Test accuracy of the trained model= " + trainedModelAccuracy + "%")

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-14

Test accuracy of the trained model= 89.5453%

Recognize Seven-Segment Digits

Use the trained model to perform OCR on a test image and visualize the results.

I = imread("sevSegDisp.jpg");
roi = [506 725 1418 626];
ocrResults = ocr(I,roi,Model=trainedModel,LayoutAnalysis="Block");
Iocr = insertObjectAnnotation(I,"rectangle",...
 ocrResults.WordBoundingBoxes, ...
 ocrResults.Words, LineWidth=5,FontSize=72);
figure
imshow(Iocr)

Quantize OCR Model

Optionally, you can quantize the trained model to speed-up performance and reduce storage size on
disk at the expense of accuracy. This can be useful when deploying an OCR model in resource
constrained systems.

Use the quantizeOCR function to quantize the trained model.

quantizedModelName = "quantizedModel";
quantizedModel = quantizeOCR(trainedModel,quantizedModelName);

Compare the runtime performance of the quantized model against the trained model.

fOCR = @() ocr(I, Model=trainedModel);
tOCR = timeit(fOCR);

 Train an OCR Model to Recognize Seven-Segment Digits

3-15

fQuantizedOCR = @() ocr(I, Model=quantizedModel);
tQuantizedOCR = timeit(fQuantizedOCR);

perfRatio = tOCR/tQuantizedOCR;
disp("Quantized model is " + perfRatio + "x faster");

Quantized model is 1.1946x faster

Compare the file size of the quantized model with that of the trained model.

trainedModelFile = dir(trainedModel);
trainedModelFileSizeInMB = trainedModelFile.bytes/1000000;

quantizedModelFile = dir(quantizedModel);
quantizedModelFileSizeInMB = quantizedModelFile.bytes/1000000;

sizeRatio = trainedModelFileSizeInMB/quantizedModelFileSizeInMB;
disp("Quantized model is " + sizeRatio + "x smaller");

Quantized model is 7.8516x smaller

Compare the accuracy of the quantized model with that of the trained model.

quantizedModelResults = ocr(cdsTest,Model=quantizedModel);
quantizedModelMetrics = evaluateOCR(quantizedModelResults,cdsTest);

Evaluating ocr results

* Selected metrics: character error rate, word error rate.
* Processed 24 images.
* Finalizing... Done.
* Data set metrics:

 CharacterErrorRate WordErrorRate
 __________________ _____________

 0.15717 0.30556

quantizedModelAccuracy = 100*(1-quantizedModelMetrics.DataSetMetrics.CharacterErrorRate);
disp("Test accuracy of the quantized model = " + quantizedModelAccuracy + "%")

Test accuracy of the quantized model = 84.2832%

dropInAccuracy = trainedModelAccuracy - quantizedModelAccuracy;
disp("Drop in accuracy after quantization = " + dropInAccuracy + "%")

Drop in accuracy after quantization = 5.2621%

Tabulate the quantitative results of the quantization and re-evaluation.

trainedModelResults = [trainedModelAccuracy; trainedModelFileSizeInMB; tOCR];
quantizedModelResults = [quantizedModelAccuracy; quantizedModelFileSizeInMB; tQuantizedOCR];

table(trainedModelResults, quantizedModelResults, ...
 VariableNames=[trainedModelName, quantizedModelName], ...
 RowNames=["Accuracy (in %)", "File Size (in MB)", "Runtime (in seconds)"])

ans=3×2 table
 sevenSegmentModel quantizedModel

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-16

 _________________ ______________

 Accuracy (in %) 89.545 84.283
 File Size (in MB) 11.292 1.4382
 Runtime (in seconds) 0.3014 0.2523

Summary

This example showed how to use OCR ground truth data annotated in the Image Labeler app for
training and evaluating an OCR model. It also demonstrated how to quantize an OCR model and
advantages of such quantization.

Supporting functions

helperDownloadDataset function

The helperDownloadDataset function downloads the YUVA EB dataset as 7SegmentImages.zip
and unzips the folder in the present working directory.

function datasetFiles = helperDownloadDataset()

 datasetURL = "https://ssd.mathworks.com/supportfiles/vision/data/7SegmentImages.zip";
 datasetZip = "7SegmentImages.zip";
 if ~exist(datasetZip,"file")
 disp("Downloading evaluation data set (" + datasetZip + " - 96 MB)...");
 websave(datasetZip,datasetURL);
 end

 datasetFiles = unzip(datasetZip);
end

helperDisplayGroundtruthData function

The helperDisplayGroundtruthData displays first few samples from the ground truth data.

function helperDisplayGroundtruthData(imds, boxds, txtds)

 figure("Position", [10 10 900 600])
 tiledlayout(2,2,TileSpacing="tight",Padding="tight")

 for i = 1:4
 nexttile
 img = read(imds);
 bbox = read(boxds);
 label = read(txtds);
 img = insertObjectAnnotation(img,"rectangle",...
 bbox{1}, label{1}, LineWidth=15, FontSize=72, TextBoxOpacity=0.9);
 imshow(img);
 end

 reset(imds);
 reset(boxds);
 reset(txtds);
end

 Train an OCR Model to Recognize Seven-Segment Digits

3-17

helperPartitionOCRData function

The helperPartitionOCRData function partitions OCR data into training, validation and test sets.
It selects the training samples based on the specified trainPercent and splits the rest of the
samples evently between validation and test sets.

function [cdsTrain, cdsVal, cdsTest, numTrain, numVal, numTest] = helperPartitionOCRData(cds, trainPercent)

 % Set initial random state for example reproducibility.
 rng(0);

 % Shuffle the sample order in the dataset.
 imds = cds.UnderlyingDatastores{1};
 numSamples = numel(imds.Files);
 shuffledIndices = randperm(numSamples);

 % Use trainPercent of samples for training.
 trainRatio = trainPercent/100;
 numTrain = round(trainRatio*numSamples);
 trainIndices = shuffledIndices(1:numTrain);
 cdsTrain = subset(cds, trainIndices);

 % Split the rest of the samples evenly for validation and testing.
 numRest = numSamples - numTrain;
 numVal = ceil(numRest/2);
 numTest = numRest - numVal;

 valIndices = shuffledIndices(numTrain+1:numTrain+numVal);
 testIndices = shuffledIndices(numTrain+numVal+1:end);

 cdsVal = subset(cds, valIndices);
 cdsTest = subset(cds, testIndices);
end

References

[1] Kanagarathinam, Karthick; Sekar, Kavaskar. “Data for: Text detection and Recognition in Raw
Image Dataset of Seven Segment Digital Energy Meter Display.”, Mendeley Data, V1 (2019). https://
doi.org/10.17632/fnn44p4mj8.1.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-18

https://doi.org/10.17632/fnn44p4mj8.1
https://doi.org/10.17632/fnn44p4mj8.1

Automate Ground Truth Labeling for OCR

This example shows how to create an automation algorithm to automatically label data for OCR
training and evaluation in the Image Labeler app.

Overview

The Image Labeler, Video Labeler, and Ground Truth Labeler (Automated Driving Toolbox)
(Automated Driving Toolbox) apps provide an easy way to interactively label data for training or
evaluating image classifiers, object detectors, OCR models, semantic, and instance segmentation
networks. These apps include several built-in automation algorithms and an interface to define
custom automation algorithms to accelerate the labeling process.

In this example, a custom automation algorithm is created in the Image Labeler app to automatically
detect the text regions in images and recognize the words in the detected text regions using a
pretrained OCR model.

Create a Text Detection Algorithm

As described in “Train Custom OCR Model” on page 17-2, ground truth for OCR consists of the
image text location specified as bounding boxes and the actual text content in those locations. The
first step in automation is to create a text detection algorithm. This example uses the algorithm
described in the “Automatically Detect and Recognize Text Using MSER and OCR” on page 4-2
example to illustrate how to create an automation algorithm.

Detect text regions

Load the test image containing text.

I = imread("DSEG14.jpg");
imshow(I)

The helperDetectTextRegions function uses techniques described in the “Automatically Detect
and Recognize Text Using MSER and OCR” on page 4-2 example to detect candidate text regions.
It uses geometric properties of text regions, such as area and aspect ratio, to identify regions that are
likely to contain text. For more information, see “Automatically Detect and Recognize Text Using
MSER and OCR” on page 4-2.

Define geometric property thresholds for the helper function. These thresholds may need to be tuned
for other images.

 Automate Ground Truth Labeling for OCR

3-19

params.MinArea = 20;
params.MinAspectRatio = 0.062;
params.MaxAspectRatio = 4;

Use the helperDetectTextRegions function to detect text regions in this image.

bboxes = helperDetectTextRegions(I, params);

Display text detection results.

showShape("rectangle",bboxes);

Detect Word Bounding Boxes

The detected text regions from the previous step must be combined to produce meaningful bounding
boxes around words.

Merge the character bounding boxes into word bounding boxes using a distance threshold between
characters.

% Find pairwise distances between bounding boxes.
distanceMatrix = helperBboxPairwiseDistance(bboxes);

% Define the distance threshold. This threshold may need to be tuned for
% other images.
maxWordSpacing = 20;

% Filter bounding boxes based on distance threshold.
connectivity = distanceMatrix < maxWordSpacing;
g = graph(connectivity, 'OmitSelfLoops');
componentIndices = conncomp(g);

% Merge bounding boxes.
bboxes = helperBboxMerge(bboxes, componentIndices');

% Display results.
imshow(I);
showShape("rectangle", bboxes);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-20

The character bounding boxes have been successfully merged into word bounding boxes. Some of the
bounding boxes are tightly fit touching the characters. Expand the bounding boxes by 15% so that
they do not touch the character. Tune this expansion scale factor for other images such that the
bounding boxes do not touch any characters.

expansionScale = 1.15;
bboxes = helperBboxExpand(bboxes, expansionScale);

Display the resized bounding boxes.

showShape("rectangle", bboxes);

Recognize Text using a Pretrained OCR Model

Once the text is detected, you can automatically recognize the text using a pretrained OCR model. In
this example, a pretrained OCR model is provided in fourteen-segment.traineddata. Use this model in
the ocr function to recognize the detected text.

model = "fourteen-segment.traineddata";
results = ocr(I, bboxes, Model=model , LayoutAnalysis="word");

Display recognition results.

imshow(I);
showShape("rectangle", bboxes, Label={results.Text}, LabelTextColor="white");

 Automate Ground Truth Labeling for OCR

3-21

Note that the pretrained OCR model may not provide accurate ground truth labeling. For example,
the word QUICK has been incorrectly recognized by the pretrained model. This inaccuracy can be
corrected during manual verification after running the automation algorithm by editing the algorithm
results.

Integrate Text Detection Algorithm Into Image Labeler

Incorporate the text detector in the Image Labeler app by creating an automation class in MATLAB
that inherits from the abstract base class vision.labeler.AutomationAlgorithm. This base
class defines the API that the app uses to configure and run the algorithm. The Image Labeler app
provides a convenient way to obtain an initial automation class template. The
WordDetectorAutomationAlgorithm class is based on this template and provides a ready-to-use
automation class for text detection.

In this section, some of the key properties and methods of the Automation class are discussed.

The properties section of the automation class specifies the custom properties needed to run the
algorithm.

properties

 % Properties related to thresholds for word detection.
 MinArea = 5;
 MinAspectRatio = 0.062;
 MaxAspectRatio = 4;
 MaxWordSpacing = 10;

 % Properties related to OCR.
 DoRecognizeText = false;
 AttributeName = "";
 ModelName = "English";
 UseCustomModel = false;
 CustomModel = "";
 DoCustomizeCharacterSet = false;
 CharacterSet = "";

 % Properties to cache attributes in the label definition.
 AttributeList = [];
 ValidAttributeList = [];
end

The function, checkLabelDefinition, ensures that only labels of the appropriate type are enabled
for automation. For OCR labeling, verify that only labels of type Rectangle are enabled and cache any
attributes associated with the label definitions.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-22

function isValid = checkLabelDefinition(this, labelDef)

 % Only labels for rectangular ROI's are considered valid.
 isValid = labelDef.Type == labelType.Rectangle;

 hasAttributes = isfield(labelDef, 'Attributes');

 % Cache the attribute list associated with the label definitions.
 if isValid && hasAttributes
 attributeNames = fieldnames(labelDef.Attributes);
 numAttributes = numel(attributeNames);
 isStringAttribute = false(numAttributes,1);

 for i = 1:numAttributes
 if isfield(labelDef.Attributes.(attributeNames{i}), 'DefaultValue')
 isStringAttribute(i) = ...
 isstring(labelDef.Attributes.(attributeNames{i}).DefaultValue);
 end
 end

 this.AttributeList = attributeNames;
 this.ValidAttributeList = attributeNames(isStringAttribute);
 end
end

The function, settingsDialog, obtains and modifies the properties defined above. Use this API call
to create a dialog box that opens when a user clicks the Settings button in the Automate tab. The
function uses helperCreateUIComponents to create the UI elements in the settings dialog and
helperAttachCallbacks to attach action callbacks to these created UI elements. Review these
functions in the WordDetectorAutomationAlgorithm class file.

function settingsDialog(this)

 app = helperCreateUIComponents(this);
 helperAttachCallbacks(this, app);
end

The function, run, defines the core algorithms discussed previously in this example. run gets called
for each image, and expects the automation class to return a set of labels. The helperDetectWords
function implements the logic discussed in Create a Text Detection Algorithm on page 3-19 section.
The helperRecognizeText implements the logic discussed in Recognize Text using a Pretrained
OCR Model on page 3-21 section. Review these functions in the
WordDetectorAutomationAlgorithm class file.

function autoLabels = run(this, I)

 bboxes = helperDetectWords(this, I);

 autoLabels = [];
 if ~isempty(bboxes)
 autoLabels = helperRecognizeText(this, I, bboxes);
 end
end

Use the Text Detection Automation Class in the App

The properties and methods described in the previous section have been implemented in the
WordDetectorAutomationAlgorithm class file. To use this class in the app:

 Automate Ground Truth Labeling for OCR

3-23

• Create the folder structure +vision/+labeler under the current folder, and copy the
automation class into it.

mkdir('+vision/+labeler');
copyfile('WordDetectorAutomationAlgorithm.m','+vision/+labeler');

• Open the Image Labeler app. For illustration purposes, open the CVT-DSEG14.jpg image.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-24

• Define a rectangle ROI label and give it a name, for example, 'Text'.
• Define a string attribute for the label and give it a name, for example, 'Word'. The attribute holds

the text information for the ROI.

 Automate Ground Truth Labeling for OCR

3-25

• Click Algorithm > Word Detector. If you do not see this option, ensure that the current working
folder has a folder called +vision/+labeler, with a file named
WordDetectorAutomationAlgorithm.m in it.

• Click Automate. A new panel will open, displaying directions for using the algorithm.
• Click Run. The automated algorithm executes on the image, detecting words. After the run is

completed, verify the result of the automation algorithm.

• If you are not satisfied with the labels, click Settings. A new dialog will open to display the
detection algorithm parameters. Adjust these parameters and rerun the automation algorithm
until you get satisfactory results.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-26

• In settings dialog, click the Recognize detected words using OCR checkbox to enable
Recognition options. The attribute name will populate all the string attributes available for the
selected label defintion. Choose Word attribute and select a custom OCR model. Click the Browse
button and select the fourteen-segment.traineddata OCR model to recognize the text inside the
bounding boxes. Click OK and re-run the automation algorithm.

 Automate Ground Truth Labeling for OCR

3-27

• In addition to the detected bounding boxes, the text in them will be recognized and populated in
their attribute fields. These can be seen in the View Labels, Sublabels and Attributes section in
the right side of the App.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-28

• Automation for OCR labeling for the image is now complete. Manually verify the text bounding
boxes and the recognized text in the attribute fields.

• Click Accept to save and export the results of this labeling run.

Conclusion

This example demonstrated how to detect words in images using geometric properties of text and
recognize them using a pretrained OCR model to accelerate labeling of text in Image Labeler app
using the AutomationAlgorithm interface. If a text detector based on geometric properties is not
sufficient, use the steps described in this example to create an automation algorithm that uses a
pretrained text detector based on deep learning. For more information, see detectTextCRAFT and
“Automatically Detect and Recognize Text Using Pretrained CRAFT Network and OCR” on page 4-
14.

Supporting Functions

helperDetectTextRegions function

The helperDetectTextRegions function detects bounding boxes around connected components in
the image and filters them using geometric properties such as area, aspect ratio and overlap.

function bboxes = helperDetectTextRegions(in, params)

 % Binarize the image.
 bw = helperBinarizeImage(in);

 % Find candidate bounding boxes for text regions.
 cc = bwconncomp(bw);
 stats = regionprops(cc, {'BoundingBox'});
 bboxes = vertcat(stats(:).BoundingBox);

 Automate Ground Truth Labeling for OCR

3-29

 % Filter bounding boxes based on minimum area.
 area = prod(bboxes(:,[3 4]), 2);
 toRemove = area < params.MinArea;

 % Filter bounding boxes based on minimum and maxium aspect ratio.
 aspectRatio = bboxes(:,3)./bboxes(:,4);
 toRemove = toRemove | (aspectRatio < params.MinAspectRatio | aspectRatio > params.MaxAspectRatio);

 % Filter bounding boxes based on overlap ratio.
 overlap = bboxOverlapRatio(bboxes, bboxes, 'min');

 % remove boxes that overlap more than 5 other boxes
 overlap(toRemove,:) = 0; % do not count those boxes that are to be removed.
 numChildren = sum(overlap > 0) - 1; % -1 for self
 toRemove = toRemove | numChildren' > 5;

 % Remove filtered bounding boxes.
 bboxes(toRemove, :) = [];

 % Find overlapping bounding boxes.
 overlap = bboxOverlapRatio(bboxes,bboxes, 'min');
 g = graph(overlap > 0.5, 'OmitSelfLoops');
 componentIndices = conncomp(g);

 % Merge bounding boxes.
 bboxes = helperBboxMerge(bboxes, componentIndices');
end

helperBinarizeImage function

The helperBinarizeImage function binarizes the image and inverts the binary image if the text in
the image is darker than the background.

function I = helperBinarizeImage(I)

 if ~ismatrix(I)
 I = rgb2gray(I);
 end

 if ~islogical(I)
 I = imbinarize(I);
 end

 % determine text polarity; dark on light vs. light on dark.
 % For text detection, we want light on dark.
 c = imhist(I);
 [~,bin] = max(c);

 if bin == 2 % light background
 % complement image to switch polarity
 I = imcomplement(I);
 end
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-30

helperBboxMerge function

The helperBboxMerge function merges bounding boxes based on group indices. inBboxes is a M-
by-4 vector and outBboxes is a N-by-4 vectors. groupIndices is a M-by-1 label vector
corresponding to its merge group (1, ... ,N).

function outBboxes = helperBboxMerge(inBboxes, groupIndices)

 % Convert the [x y width height] coordinates to start and end coordinates.
 xmin = inBboxes(:,1);
 ymin = inBboxes(:,2);
 xmax = xmin + inBboxes(:,3) - 1;
 ymax = ymin + inBboxes(:,4) - 1;

 % Merge the boxes based on the minimum and maximum dimensions.
 xmin = accumarray(groupIndices, xmin, [], @min);
 ymin = accumarray(groupIndices, ymin, [], @min);
 xmax = accumarray(groupIndices, xmax, [], @max);
 ymax = accumarray(groupIndices, ymax, [], @max);

 outBboxes = [xmin ymin xmax-xmin+1 ymax-ymin+1];
end

helperBboxPairwiseDistance function

The helperBboxPairwiseDistance function computes pairwise distances between bounding
boxes. The distance between two bounding boxes is defined as the distance between their closest
edges. bboxes is a M-by-4 vector of bounding boxes. dists is a M-by-M matrix of pairwise distances.

function dists = helperBboxPairwiseDistance(bboxes)

 numBoxes = size(bboxes, 1);
 dists = zeros(numBoxes);

 % Populate distance matrix row by row by computing distance between one
 % bounding box to all other bounding boxes iteratively.
 for i = 1:numBoxes
 % Pick a bounding box to start with.
 bbox1 = bboxes(i,:);

 % Convert bounding boxes to corner points.
 point1 = bbox2points(bbox1);
 points = bbox2points(bboxes);

 % Find centroid of the bounding boxes.
 centroid1 = permute(mean(point1), [3 2 1]);
 centroids = permute(mean(points), [3 2 1]);

 % Compute distance between their closest edges.
 w1 = bbox1(3);
 h1 = bbox1(4);

 ws = bboxes(:,3);
 hs = bboxes(:,4);

 xDists = abs(centroid1(1)-centroids(:,1)) - (w1+ws)/2;
 yDists = abs(centroid1(2)-centroids(:,2)) - (h1+hs)/2;

 Automate Ground Truth Labeling for OCR

3-31

 dists1 = max(xDists, yDists);
 dists1(dists1 < 0) = 0;

 % Store the result in the distance matrix.
 dists(:, i) = dists1;
 end
end

helperBboxExpand function

The helperBboxExpand function returns a bounding box bboxOut that is scale times the size of
bboxIn. bboxIn and bboxOut are M-by-4 vectors of input and output bounding boxes respectively.
scale is a scalar specifying the resize factor.

function bboxOut = helperBboxExpand(bboxIn, scale)

 % Convert input bounding boxes to corner points.
 points = bbox2points(bboxIn);

 % Find centroid of the input bounding boxes.
 centroids = permute(mean(points), [3 2 1]);

 % Compute width and height of output bounding boxes.
 newWidth = scale*bboxIn(:,3);
 newHeight = scale*bboxIn(:,4);

 % Find the coordinates of the output bounding boxes.
 newX = centroids(:,1) - newWidth/2;
 newY = centroids(:,2) - newHeight/2;

 bboxOut = [newX, newY, newWidth, newHeight];
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-32

Object Detection In Large Satellite Imagery Using Deep
Learning

This example shows how to perform object detection on large satellite imagery using deep learning.

Overview

Object detection is a key component in many computer vision applications such as automated driving,
surveillance, and tracking. For many of these applications, the size of the image data is typically
smaller than 1K-by-1K pixels. Generally, images of this size do not require a size-management
process. However, satellite images, which can be greater than 10K-by-10K pixels in size will usually
require additional strategies.

The size of satellite imagery gives rise to several challenges. One challenge is the amount of memory
needed to store and process the images. Object detector training and prediction on very large images
is impractical due to GPU resource constraints.

Another challenge is the sparsity of objects within the images. There are often large regions in the
image that do not contain any objects at all. Processing these areas is wasteful and often not useful
for training object detectors.

A third challenge is class imbalance where one or more classes do not have the same number of
samples as other classes. This can bias the performance of deep learning based object detectors
towards the overrepresented classes.

This example shows how to apply several strategies to mitigate these challenges by:

• Using block processing during training and prediction to make better use of the available GPU
resources.

• Automatically sample blocks of data from the large imagery to ensure that the blocks used for
training contain objects of interest.

• Balance the class distribution in a training dataset created from sampled blocks.

This example first shows how to perform object detection on a large satellite image from the
RarePlanes [1,2] dataset using a pretrained SSD object detector [3]. The second part of the example
shows how to train a SSD object detector on the RarePlanes dataset. All the steps for object detection
and training can be adapted to other large image datasets.

To learn more about the RarePlanes dataset, see the RarePlanes User Guide.

Load Pretrained Object Detector

Download a pretrained object detector. See the Train Object Detector on page 3-44 example section
for more information on training this detector.

downloadFolder = tempdir;
detector = helperDownloadObjectDetector(downloadFolder);

Load Satellite Image

Use blockedImage to load a test image from the RarePlanes dataset. The blockedImage object
represents a very large image as a collection of smaller blocks which permits processing on a
resource constrained system.

 Object Detection In Large Satellite Imagery Using Deep Learning

3-33

https://www.cosmiqworks.org/rareplanes/
https://www.cosmiqworks.org/rareplanes-public-user-guide/
https://www.cosmiqworks.org/rareplanes/

imageFilename = helperDownloadSampleImage(downloadFolder);
bim = blockedImage(imageFilename);

Use bigimageshow to display the image.

figure
bigimageshow(bim)

Perform Object Detection

Apply the pretrained object detector to overlapping image blocks from the large image using the
blockedImage apply method. Overlapping blocks are necessary for object detection in large
imagery because some objects may be clipped when a block is extracted from the image. If this is not
addressed, the clipped objects may introduce detection artifacts. The
helperDetectObjectsInBlock on page 3-47 function, listed at the end of this example,
addresses this by discarding detections that overlap the border area by more than 50%. The use of
overlapping blocks ensures that an object clipped in one block is going to be fully visible in an
adjacent block.

Specify the desired size of the blocks to process based on the detector input size. See Select Blocks
for Training and Validation on page 3-41 for more information on choosing a block size.

blockSize = detector.InputSize(1:2);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-34

Specify the border size around the block to create overlapping blocks. Choose the border size based
on the largest object size you expect for your application to ensure that the object is not clipped in at
least one of the overlapping blocks. For the real portion of the RarePlanes dataset, the largest object
is about 360-by-360 pixels. See Analyze Dataset Object Sizes on page 3-39 to see how to determine
object sizes in a dataset.

borderSize = [180 180];

Calculate the actual block size that the blockedImage apply object function should produce.

actualBlockSize = blockSize - 2*borderSize;

The apply object function executes a custom function for each block within the blockedImage.
Define the custom function, helperDetectObjectsInBlock, as the function to execute for each
block.

threshold = 0.3;
detectionFcn = @(bstruct)helperDetectObjectsInBlock(bstruct, detector, borderSize, threshold);

For faster throughput on a GPU, (at the cost of additional memory usage), specify a batch size value
greater than one to have blocks concatenated into a batch of images. The exact amount of speed-up
depends on how fast blocks can be read from the image versus the time it takes to process the batch
of data. Empirical performance analysis is required to identify the ideal batch size each system.
Reduce the batch size to prevent out-of-memory errors.

batchSize = 4;

Invoke the apply object function to run the object detector on overlapping blocks. Set
PadPartialBlocks to true to ensure all the blocks have the same size. This simplifies the code in
helperDetectObjectsInBlock because all the input blocks have the same size.

results = apply(bim, detectionFcn, ...
 PadPartialBlocks=true, ...
 BlockSize=actualBlockSize,...
 BorderSize=borderSize, ...
 DisplayWaitbar=true,...
 BatchSize=batchSize);

Aggregate the detection results across all the blocks.

allBoxes = vertcat(results.Source.bboxes);
allScores = vertcat(results.Source.scores);
allLabels = vertcat(results.Source.labels);

Display the all the detection results.

figure
bigimageshow(bim)
showShape("rectangle", allBoxes)

 Object Detection In Large Satellite Imagery Using Deep Learning

3-35

It is difficult to see the detections in the large image because the objects in the RarePlanes dataset
are much smaller compared to the image. Set the x and y axis limits to zoom into a region with
multiple detections.

figure
bigimageshow(bim)
showShape("rectangle", allBoxes)
xlim([2700 3300])
ylim([3800 4100])

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-36

The pretrained detector detects many of the airplanes but a several are missed. Many factors
contribute to the overall performance of the detector such as the number of objects in the training
data, the object detector configuration, as well as the hyperparameters used for training.

Detecting objects in satellite imagery is a challenging application and the RarePlanes dataset
provides data you can use to explore various techniques to create a robust detector. This example
shows you setup the training and prediction pipelines but does not explore other avenues to improve
the detector as that requires additional empirical analysis.

The rest of the example shows how to train a SSD object detector on the real portion of the
RarePlanes dataset.

Load Training Data

Create a directory to store the RarePlanes dataset.

dataFolder = fullfile(tempdir,"RarePlanes");

Go to the RarePlanes Dataset website, follow the instructions to download all the real images (~107
GB), and then uncompress the data into the folder created above. After uncompressing the data you
should have the following folders:

<dataFolder>/RarePlanes/real/train

<dataFolder>/RarePlanes/real/test

 Object Detection In Large Satellite Imagery Using Deep Learning

3-37

https://www.cosmiqworks.org/rareplanes/

Create a list of all the RGB images and their corresponding label data files from the train/PS-
RGB_cog folder with matlab.io.datastore.FileSet. The data from this folder is used for
training and validation.

trainingImagesFolder = fullfile(dataFolder,"real","train","PS-RGB_cog");
trainingLabelFolder = fullfile(dataFolder,"real","train","geojson_aircraft");

trainingImages = matlab.io.datastore.FileSet(trainingImagesFolder);
trainingLabels = matlab.io.datastore.FileSet(trainingLabelFolder);

The RarePlanes dataset contains ground truth for many object attributes. In this example, the object
classes are created based on the "wing_type", which consists of four classes:

classes = ["delta"
 "straight"
 "swept"
 "variable swept"
];

Load the labels using a fileDatastore with the custom read function,
helperReadGeoJSONGroundTruth on page 3-49, which is listed at the end of this example.
helperReadGeoJSONGroundTruth parses the GeoJSON files that contain the ground truth
information for each image and returns the latitude and longitude coordinates of polygon ROI labels
around each plane.

labelDS = fileDatastore(trainingLabels, ReadFcn=@(filename)helperReadGeoJSONGroundTruth(filename,'wing_type'));

Prepare Data for Training

The polygon ROI label data is provided in latitude and longitude coordinates. To train an object
detector, the polygon ROIs must be transformed to axis-aligned rectangle ROIs and the latitude and
longitude coordinate values must be transformed to intrinsic image coordinates. The
helperLatLonPolyToBoundingBox on page 3-48 function uses georasterinfo (Mapping
Toolbox) and geographicToIntrinsic (Mapping Toolbox) from the Mapping Toolbox™ to convert
geographic coordinates into intrinsic image coordinates.

The conversion process requires the label and image data. Combine the label datastore with a
datastore that returns the image filenames and create a datastore transform to apply the
helperLatLonPolyToBoundingBox function to the combined datastore.

imageFileNameDS = arrayDatastore(trainingImages.FileInfo.Filename);
bldsTrain = combine(labelDS, imageFileNameDS);
bldsTrain = transform(bldsTrain, @(data)helperLatLonPolyToBoundingBox(data, classes));

Extract the transformed bounding boxes and labels.

boxLabels = readall(bldsTrain);
bboxes = vertcat(boxLabels{:,1});
labels = vertcat(boxLabels{:,2});

Inspect Dataset Statistics

It is important to understand the distribution of classes in a dataset as well as the size of objects. This
can help you identify issues in your dataset prior to running training experiments and can often help
you remedy certain data issues ahead of time.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-38

Analyze Dataset Object Sizes

Approximate the size of each object using the diagonal of the bounding box.

diagonalLength = hypot(bboxes(:,3),bboxes(:,4));

Group object sizes by class.

G = findgroups(labels);
groupedDiagonalLength = splitapply(@(x){x},diagonalLength,G);

Visualize the distribution of object lengths for each class.

figure
numClasses = numel(classes);
for i = 1:numClasses
 len = groupedDiagonalLength{i};
 x = repelem(i,numel(len),1);
 semilogy(x,len,"o");
 hold on
end
hold off
ylabel("Diagonal box length (pixels)")

xticks(1:numClasses)
xticklabels(classes)

 Object Detection In Large Satellite Imagery Using Deep Learning

3-39

The object size analysis shows that, across all classes, most of the objects have roughly the same size.
In the next section, the example shows how to use this information to select blocks for training.

Analyze Object Class Distribution

Count the labels in the training dataset to determine the distribution of classes in the training
dataset. This checks whether or not the dataset classes are balanced.

originalDatasetCount = countlabels(labels);

Display the class distribution.

figure
histogram(Categories=originalDatasetCount.Label, BinCounts=originalDatasetCount.Count);

The class distribution analysis shows that this dataset is imbalanced. The delta and variable swept
classes have significantly fewer samples than straight and swept. Class imbalance is a common
challenge in many object detection applications. Common approaches to address this challenge
include over or under sampling objects, data augmentation, specialized loss functions, and data
synthesis. The RarePlanes dataset includes synthetic data to help balance the classes, but this
example does not highlight that workflow. Instead, the Select Blocks for Training and Validation on
page 3-41 section below shows how to sample very large images to balance the class distribution in
the training dataset.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-40

Select Blocks for Training and Validation

As mentioned earlier, one challenge with processing large satellite imagery using deep learning is
that the data must be processed in blocks due to GPU resource constraints. Use blockedImage to
represent training images as a collection of blocks.

filenames = trainingImages.FileInfo.Filename;
bims = blockedImage(filenames);

The block size is a critical parameter for blocked-based object detector training. Select a block size
based on the size of objects in the dataset such that the object and a sufficient amount of background
is visible. This ensures that the object detector is trained on image blocks where the objects of
interest are fully visible. Use the object data size analysis on page 3-39 to guide the block size
selection. In this dataset, using a block size of 512-by-512 pixels ensures that all the objects of
interest are visible in the image blocks.

blockSize = [512 512];

With the block size defined, the next step is to specify which blocks to use from the training images.
This is not a trivial task in satellite imagery because large areas within the images often do not
contain any objects of interest. Therefore, naively selecting all the overlapping blocks from the
training images using the selectBlockLocations function would create many image blocks with
no objects, which do not provide any useful information during training. In addition, the class
distribution analysis showed that the classes are imbalanced.

To find image blocks with objects for training and balance the training dataset, use
balanceBoxLabels. This function samples blocks in the images from regions that contain objects
and returns a predefined number of blocks. Areas of the image with underrepresented object classes
are sampled at a higher frequency to help balance the class distribution. The sampling processing
randomly shifts a sampling window to ensure objects are not at the same position in all the blocks.
Set the number of blocks balanceBoxLabels should select based on the average number of object
instances per class.

numClasses = height(originalDatasetCount);
numBlocks = mean(originalDatasetCount.Count) * numClasses;

Create a table from the boxes and labels and invoke balanceBoxLabels. In this example, blocks are
selected from the highest resolution level.

boxLabelTable = table(boxLabels(:,1),boxLabels(:,2));
balancedLocationSet = balanceBoxLabels(boxLabelTable, bims, blockSize, numBlocks, Levels=1);

[==] 100%
[==] 100%
Elapsed time: 00:00:11
Estimated time remaining: 00:00:00
Balancing box labels complete.

Recompute the class distribution to verify that the class distribution is better.

bldsBalanced = boxLabelDatastore(boxLabelTable, balancedLocationSet);
balancedDatasetCount = countEachLabel(bldsBalanced);

Display the class distribution.

figure
histogram(Categories=balancedDatasetCount.Label, BinCounts=balancedDatasetCount.Count);

 Object Detection In Large Satellite Imagery Using Deep Learning

3-41

The balancing process increased the number of underrepresented classes, but there is still an
imbalance due to the severity of the class imbalance. This will hinder the performance of the detector
on the underrepresented classes. You can consider trying additional techniques to address the class
imbalance such as collecting more data, use a data augmentation, or generate synthetic data. Using
these additional techniques is beyond the scope of this example.

Because of the class imbalance, training a robust detector for all four classes is not feasible. This
example combines all the classes into a single Airplane class. Use helperCombineClasses on page
3-50, to combine all the box labels to Airplane and rerun balanceBoxLabels to sample new block
locations from the dataset. Although class balancing is not needed for a single class,
balanceBoxLabels enables you to sample block locations from regions of the image where objects
are present.

boxLabelTable = helperCombineClasses(boxLabelTable);
numObservations = 5000;
airplaneLocationSet = balanceBoxLabels(boxLabelTable, bims, blockSize, numObservations, Levels=1);

[==] 100%
Elaps[==] 100%
Elapsed time: 00:00:04
Estimated time remaining: 00:00:00
Balancing box labels complete.

bldsAirplane = boxLabelDatastore(boxLabelTable, airplaneLocationSet);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-42

The number of observations is selected to be 5000 to ensure that the number of objects in the block
location has as many objects as the original dataset. Count the number of labeled objects to verify the
number of objects matches the original dataset.

countEachLabel(bldsAirplane)

ans=1×3 table
 Label Count ImageCount
 ________ _____ __________

 Airplane 13431 5000

Split Blocks Into Training and Validation Sets

With a set of blocks sampled from the images, the next step is to split the set of blocks into a training
set and validation sets. Create a blockedImageDatastore to load the selected block locations from
the training images.

bimds = blockedImageDatastore(bims, BlockLocationSet=airplaneLocationSet);

Combine the blockedImageDatastore with the corresponding boxLabelDatastore.

ds = combine(bimds, bldsAirplane);

Shuffle the datastore prior to splitting into training and validation sets to ensure blocks from all
images are included in both the training and validation sets.

ds = shuffle(ds);

Finally, split the selected blocks into a training set and validation set into an 80/20 split.

totalNumBlocks = bimds.TotalNumBlocks;
numBlocksTraining = round(totalNumBlocks*0.8);
dsTrain = subset(ds,1:numBlocksTraining);
dsVal = subset(ds,numBlocksTraining+1:totalNumBlocks);

Configure Object Detector

The SSD object detection network is composed of a feature extraction network followed by a
detection subnetwork. The feature extraction network is typically a pretrained CNN. The detection
subnetwork is a small CNN, compared to the feature extraction network and is composed of a few
convolutional layers and layers specific to SSD.

This example uses ImageNet pretrained ResNet-50 for feature extraction from the Deep Learning
Toolbox™ Model for ResNet-50 Network. Other pretrained networks such as MobileNet v2 or
ResNet-18 can also be used depending on application requirements.

Load ResNet-50 and extract the layer graph. If Deep Learning Toolbox™ Model for ResNet-50
Network is not installed, the software provides a download link.

net = resnet50;
featureExtractionNet = layerGraph(net);

Specify the feature extraction layers to connect the SSD detection subnetworks. Choosing the optimal
feature extraction layers depends on the size of objects in the training dataset requires empirical
analysis.

 Object Detection In Large Satellite Imagery Using Deep Learning

3-43

layersToConnect = ["activation_22_relu", "activation_40_relu"];

The SSD object detector uses anchor boxes. Use the estimateAnchorBoxes function to estimate
anchor boxes based on the size of objects in the training data. In this example, 6 anchor boxes are
estimated. Choosing the optimal number of anchor boxes requires empirical analysis.

numAnchors = 6;
anchors = estimateAnchorBoxes(bldsBalanced, numAnchors);

Sort the anchors by size and distribute them into two groups for each detection subnetwork in SSD.
For more information on about anchor boxes, see “Anchor Boxes for Object Detection” on page 17-
44.

area = anchors(:,1).*anchors(:,2);
[~,idx] = sort(area,"descend");
sortedAnchors = anchors(idx,:);
anchorBoxes = {sortedAnchors(1:3,:); sortedAnchors(4:6,:)};

Use ssdObjectDetector to configure a detector for the classes in RarePlanes. The SSD detection
subnetworks are automatically added to the feature extraction network and the input size is set to
match the size of the blocks.

detector = ssdObjectDetector(featureExtractionNet, classes, anchorBoxes, ...
 DetectionNetworkSource=layersToConnect,...
 InputSize=blockSize);

Specify Training Options

Specify the training options.

opts = trainingOptions("adam", ...
 MaxEpochs=20,...
 MiniBatchSize=batchSize,...
 InitialLearnRate=1e-3,...
 LearnRateSchedule="piecewise",...
 LearnRateDropPeriod=10,...
 LearnRateDropFactor=0.1,...
 Plots="none",...
 Shuffle="every-epoch",...
 BatchNormalizationStatistics="moving",...
 ValidationData=dsVal,...
 VerboseFrequency=1);

These training options were selected using Experiment Manager. For more information on using
Experiment Manager for hyperparameter tuning, see Train Object Detectors in Experiment Manager.

Train Object Detector

Use trainSSDObjectDetector to train the object detector if the doTraining variable is true.
Training takes about 8 hours and was run on a GPU with 12 GB of memory.

doTraining = false;
if doTraining
 detector = trainSSDObjectDetector(dsTrain, detector, opts);
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-44

http://vision_ug/#mw_55613d8b-264d-42cf-ad86-be6556d75292

Evaluate Object Detector

Evaluate the trained object detector on test images to measure the performance. Computer Vision
Toolbox™ provides object detector evaluation functions to measure common metrics such as average
precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all relevant
objects (recall).

Load the test set data using the helperLoadTestData on page 3-49 function, which uses same
loading procedure as shown when loading the training data.

[bimsTest, bldsTest] = helperLoadTestData(dataFolder);

Use blockedImage apply to run the object detector on all the test images with a detection
threshold value of 0.01. The low threshold value generates many detections provides a more
comprehensive view of detector performance across the full threshold range. By default, this example
loads saved test results to allow the example to run quickly. Set the doEvaluation to true to
recompute the evaluation results, if required.

doEvaluation = false;
if doEvaluation

 threshold = 0.01;
 testSetResults = apply(bimsTest, ...
 @(bs) helperDetectObjectsInBlock(bs, detector, borderSize, threshold), ...
 PadPartialBlocks=true, ...
 BlockSize=actualBlockSize,...
 BorderSize=borderSize, ...
 BatchSize=batchSize);

 %Gather the results from across all the images into a table.
 numTestImages = numel(testSetResults);
 allResults = table(...
 Size=[numTestImages 3], ...
 VariableNames=["Boxes", "Scores", "Labels"], ...
 VariableTypes=["cell", "cell", "cell"]);

 for i = 1:numTestImages
 allResults.Boxes{i} = vertcat(testSetResults(i).Source.bboxes);
 allResults.Scores{i} = vertcat(testSetResults(i).Source.scores);
 allResults.Labels{i} = vertcat(testSetResults(i).Source.labels);
 end
else
 % Load test results.
 allResults = helperLoadTestResults(downloadFolder);
end

Use evaluateDetectionPrecision to compute the precision and recall metrics.

[ap, recall, precision] = evaluateDetectionPrecision(allResults, bldsTest);

Plot the precision and recall metrics for each class. The plot shows that the detector recalls about
35% of the objects in the test dataset at the specified threshold value. This highlights the challenging
nature of the RarePlanes dataset. Improving the results may require adding data augmentation, more
hyperparameter tuning, or trying another object detector such as YOLO v4 or Faster R-CNN.

 Object Detection In Large Satellite Imagery Using Deep Learning

3-45

figure
plot(recall,precision)
title("Airplane" + " (AP:" + ap + ")")
xlabel("Recall")
ylabel("Precision")
grid on

Summary

This example showed how to use blockedImage to implement block-based object detector training
and prediction workflows. Block-based processing enables object detection on large images by
breaking down large images into blocks of data that can be processed on resource constrained GPUs.
Moreover, selecting blocks for training with balanceBoxLabels help mitigate class imbalance and
helps select training blocks that contain objects of interest.

The SSD training and detection workflow shown in this example can be extended to other object
detectors such as Faster R-CNN, YOLO v4, and YOLO v2 by changing the detector and training
function used in the Configure Object Detector on page 3-43 and Train Object Detector on page 3-44
section, respectively. For more information about other object detectors, see “Getting Started with
Object Detection Using Deep Learning” on page 17-34.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-46

Supporting Functions

helperDetectObjectsInBlock

Run object detector on blocks of data supplied by the blockedImage apply method.

function bres = helperDetectObjectsInBlock(bstruct, detector, borderSize, threshold)

% Get the block of data.
paddedBlock = bstruct.Data;

% Run the object detector.
[bboxes, scores, labels] = detect(detector, paddedBlock, Threshold = threshold);
if ~iscell(bboxes)
 bboxes = {bboxes};
 scores = {scores};
 labels = {labels};
end

% Determine the position of the valid block region (excluding the border
% area). This is needed to remove boxes that are detected in the border.
actualBlockSize = size(paddedBlock,[1 2]) - 2*borderSize;
blockPosition = [borderSize([2 1])+1 actualBlockSize([2 1])];

% Offset to place boxes in data world coords. This offset is used to update
% the position of the boxes from the local block space to the world
% coordinates of the larger image.
offset = [1 1] - bstruct.Start(:,[2 1]);

for i = 1:numel(bboxes)

 % Remove boxes that lie in the border region.
 [bboxes{i}, scores{i}, labels{i}] = ...
 helperRemoveDetectionsInBorderRegion(bboxes{i}, scores{i}, labels{i}, blockPosition);

 % Update box positions to be relative to the world coordinates.
 bboxes{i}(:,[1 2]) = bboxes{i}(:,[1 2]) - offset(i,:);
end

% Pack the detection results into a struct and ensure the last dimension
% equals bstruct.BatchSize by transposing the struct.
bres = struct('bboxes', bboxes, 'labels', labels, 'scores', scores)';

end

helperRemoveDetectionsInBorderRegion

This function removes detections that fall between the edge of two blocks and would have been cut in
half.

function [bboxes, scores, labels] = helperRemoveDetectionsInBorderRegion(...
 bboxes, scores, labels, blockPosition)

% Use bboxcrop to find out which boxes are inside the block position.
[~, valid] = bboxcrop(bboxes, blockPosition, OverlapThreshold=0.5);
bboxes = bboxes(valid,:);
scores = scores(valid);

 Object Detection In Large Satellite Imagery Using Deep Learning

3-47

labels = labels(valid);
end

helperPolygonToBoundingBox

Converts M four-sided polygons stored in a 4-by-2-by-M array to axis-aligned bounding boxes stored
in an M-by-4 matrix.

function bbox = helperBboxFromPolygon(poly)
X = poly(:,1,:);
Y = poly(:,2,:);
X = squeeze(X);
Y = squeeze(Y);
xmin = min(X)';
xmax = max(X)';
ymin = min(Y)';
ymax = max(Y)';

bbox = [xmin ymin xmax-xmin ymax-ymin];
end

helperLatLonPolyToBoundingBox

Convert a polygon specified in latitude and longitude coordinates to a bounding box in pixel
coordinates. This function uses georasterinfo and geographicToIntrinsic from the Mapping
Toolbox™.

function out = helperLatLonPolyToBoundingBox(data, classes)
poly = data{1}{1};
imageFile = data{2};
rasterInfo = georasterinfo(imageFile);
rasterRef = rasterInfo.RasterReference;
for i = 1:size(poly,3)
 lon = poly(:,1,i);
 lat = poly(:,2,i);
 [xi,yi] = geographicToIntrinsic(rasterRef,lat,lon);
 poly(:,1,i) = xi;
 poly(:,2,i) = yi;
end

bbox = helperBboxFromPolygon(poly);

if nargin == 1
 % Use single Airplane class.
 numObjects = size(bbox,1);
 labels = repmat("Airplane",numObjects,1);
 labels = categorical(labels,"Airplane");
else
 % Use classes from input.
 labels = categorical(data{1}{2}, classes);
end
out = {bbox, labels};
end

helperDownloadObjectDetector

Download a pretrained YOLO v4 object detector.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-48

function detector = helperDownloadObjectDetector(folder)
url = "https://ssd.mathworks.com/supportfiles/vision/data/pretrainedSSDRarePlanes.zip";
zipFile = fullfile(folder,"pretrainedSSDRarePlanes.zip");
if ~exist(zipFile,"file")
 websave(zipFile, url);
end
matFile = fullfile(folder, "pretrainedSSDRarePlanes.mat");
if ~exist(matFile, "file")
 unzip(zipFile,folder);
end

pretrained = load(matFile);
detector = pretrained.detector;
end

helperReadGeoJSONGroundTruth

Read GeoJSON ground truth data from the RarePlanes dataset. For more information about the
ground truth format, see the RarePlanes User Guide.

function [data, info] = helperReadGeoJSONGroundTruth(filename, attribute)

% Load labels from JSON file.
txt = fileread(filename);
labelsJSON = jsondecode(txt);

s = [labelsJSON.features(:).geometry];

% Concatenate coordinates into numObjects-by-5-by-2. These are the
% coordinates of the polygon used to label the planes. The coordinates are
% stored as [longitude latitude] in GeoJSON.
lonlat = cat(1,s(:).coordinates);

% Discard the last coordinate. It is the same as the first and closes the
% polygon.
lonlat(:,5,:) = [];

% Permute the coordinates to 4-by-2-by-N and then to a cell of array of
% M-by-2 matrices.
lonlat = permute(lonlat,[2 3 1]);

% Extract object property information.
info = vertcat(labelsJSON.features(:).properties);

% Extract out object label information.
labels = string({info(:).(attribute)}');

data = {lonlat labels};
end

helperLoadTestData

Load RarePlanes test data.

function [bimsTest, bldsTest] = helperLoadTestData(dataFolder)
% Load test images.
testImagesFolder = fullfile(dataFolder,"real","test","PS-RGB_cog");

 Object Detection In Large Satellite Imagery Using Deep Learning

3-49

https://www.cosmiqworks.org/rareplanes-public-user-guide/

testImages = matlab.io.datastore.FileSet(testImagesFolder);
bimsTest = blockedImage(testImages);

% Load test box labels.
testLabelFolder = fullfile(dataFolder,"real","test","geojson_aircraft");
testLabels = matlab.io.datastore.FileSet(testLabelFolder);
testLabelDS = fileDatastore(testLabels, ReadFcn=@(filename)helperReadGeoJSONGroundTruth(filename,'wing_type'));
imageFileNameDS = arrayDatastore(testImages.FileInfo.Filename);
dsTest = combine(testLabelDS, imageFileNameDS);
bldsTest = transform(dsTest, @(data)helperLatLonPolyToBoundingBox(data));
end

helperLoadTestResults

Load saved test results.

function allResults = helperLoadTestResults(folder)
url = "https://ssd.mathworks.com/supportfiles/vision/data/pretrainedSSDRarePlanes.zip";
zipFile = fullfile(folder,"pretrainedSSDRarePlanes.zip");
if ~exist(zipFile,"file")
 websave(zipFile, url);
end
matFile = fullfile(folder, "pretrainedSSDRarePlanes.mat");
if ~exist(matFile, "file")
 unzip(zipFile,folder);
end

pretrained = load(matFile);
allResults = pretrained.allResults;
end

helperCombineClasses

Combine airplane classes into a single Airplane class.

function boxLabelTable = helperCombineClasses(boxLabelTable)
for i = 1:height(boxLabelTable)
 numLabels = numel(boxLabelTable{i,2}{1});
 boxLabelTable{i,2}{1} = repmat("Airplane", numLabels, 1);
end
end

helperDownloadSampleImage

Download a sample image from the RarePlanes dataset.

function filename = helperDownloadSampleImage(folder)
url = "https://ssd.mathworks.com/supportfiles/vision/data/RarePlanesSampleImage.zip";
zipFile = fullfile(folder,"RarePlanesSampleImage.zip");
if ~exist(zipFile,"file")
 websave(zipFile, url);
end
filename = fullfile(folder, "113_104001003D8DB300.tif");
if ~exist(filename, "file")
 unzip(zipFile,folder);
end
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-50

References

[1] J. Shermeyer, T. Hossler, A. Van Etten, D. Hogan, R. Lewis, and D. Kim, RarePlanes Dataset. In-Q-
Tel - CosmiQ Works, 2020.

[2] J. Shermeyer, T. Hossler, A. Van Etten, D. Hogan, R. Lewis, and D. Kim, “RarePlanes: Synthetic
Data Takes Flight,” Jun. 2020.

[3] W. Liu, E. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Fu, and A.C. Berg. "SSD: Single Shot
MultiBox Detector." European Conference on Computer Vision (ECCV), Springer Verlag, 2016

See Also
blockedImageDatastore | blockedImage

 Object Detection In Large Satellite Imagery Using Deep Learning

3-51

Augmented Reality Using AprilTag Markers

This example shows how to use marker-based augmented reality to render virtual content into a
scene.

Overview

Augmented reality (AR) enables the creation of novel applications by enhancing the real-world scene
through naturally blending real and virtual content. For example, an augmented reality application
can add virtual rulers to enable a user to make measurements directly from image data.
Implementing an augmented reality system requires using computer vision techniques to understand
the scene geometry so that virtual content can be added to a scene with the proper perspective and
scale.

A common approach to determining scene geometry is to use a calibrated camera to detect a known
fiducial marker, such as an AprilTag. The benefit of using fiducial markers is that they are designed to
be detected under a variety of imaging conditions and viewpoints and can be used to produce
accurate camera pose estimates. Accurate pose estimates are critical for producing a seamless AR
experience that does not jitter as the camera moves through the scene.

In this example, a calibrated camera is used to detect and track an AprilTag marker placed on top of a
table. The AprilTag pose is estimated as the camera moves through the scene and this information is
used to project a virtual cuboid on top of the AprilTag. The workflow shown in this example highlights
the fundamental computer vision techniques used in many AR applications.

Load Video

Download the video file into a temporary directory.

videoFilename = downloadVideo(tempdir);

Load the video into which AR content is to be added and read the first frame.

reader = VideoReader(videoFilename);
I = readFrame(reader);

Display the first frame.

figure
imshow(I)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-52

Load Camera Intrinsics

AR and VR applications require a calibrated camera to define the position of the camera in the world.
Load the camera intrinsics estimated using the “Using the Single Camera Calibrator App” on page
16-24 app.

data = load("arCameraCalibrationParameters.mat");
intrinsics = data.cameraParams.Intrinsics;

Estimate AprilTag Pose

The readAprilTag function can be used to detect and estimate the pose of multiple AprilTags. To
estimate the pose, the function requires the camera intrinsics and the size of the AprilTag. Specify the
size of the AprilTag in millimeters to match the units used during camera calibration. Because the
AprilTag is square, measuring the length of one side is sufficient. It is important to measure the size
accurately to produce an accurate pose estimate.

tagSize = 27.7813; % in mm

To make the AprilTag detection faster and reduce false detections, specify the AprilTag family.
readAprilTag supports a wide range of AprilTags. For more information, see the readAprilTag
reference page.

tagFamily = "tag36h11";

Estimate the AprilTag pose.

[~, ~, tagPose] = readAprilTag(I, tagFamily, intrinsics, tagSize);

The pose of the AprilTag defines the world coordinate system used in this example. The center of the
AprilTag is the origin. The X-Y plane is defined by the planar surface on which the AprilTag sits and

 Augmented Reality Using AprilTag Markers

3-53

the Z axis points into the tag. Use helperInsertXYZAxes on page 3-60 to visualize the X, Y, and Z
world axes on the AprilTag to get a better understanding of the world coordinate system. The X, Y,
and Z axes are represented by red, green, and blue lines, respectively.

annotatedImage = helperInsertXYZAxes(I, tagPose, intrinsics, tagSize);
figure
imshow(annotatedImage)

By convention, the readAprilTag function returns the AprilTag pose such that the z-axis points into
the AprilTag. For this example, it is more intuitive to have the z-axis point out of the tag such that
virtual objects that sit on top of the AprilTag can be defined to have positive height values. Apply a
rotation to the estimated tag pose that rotates the y-axis by 180 degrees to flip the z-axis.

rotationAngles = [0 180 0];
tform = rigidtform3d(rotationAngles, [0 0 0]);
updatedR = tagPose.R * tform.R;
tagPose = rigidtform3d(updatedR, tagPose.Translation);

Display the updated world coordinate axes.

annotatedImage = helperInsertXYZAxes(I, tagPose, intrinsics, tagSize);
figure
imshow(annotatedImage)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-54

Define Virtual Content

Define a 3-D cuboid to project onto the top of the AprilTag. The cube is centered on the AprilTag and
defined to have the same size as the tag.

[cubeWidth, cubeHeight, cubeDepth] = deal(tagSize);

vertices = [cubeWidth/2 -cubeHeight/2;
 cubeWidth/2 cubeHeight/2;
 -cubeWidth/2 cubeHeight/2;
 -cubeWidth/2 -cubeHeight/2];

cuboidVertices = [vertices zeros(4,1);
 vertices (cubeDepth)*ones(4,1)];

Add Virtual Content to Image

Use world2img to project the virtual cuboid vertices into the image coordinate system.

projectedVertices = world2img(cuboidVertices, tagPose, intrinsics);

Use insertShape to augment the image with the virtual content.

figure
augmentedImage = insertShape(I, "projected-cuboid", projectedVertices, ...
 Color="green", LineWidth=6);
imshow(augmentedImage)

 Augmented Reality Using AprilTag Markers

3-55

Visualize Camera Pose in 3-D

Use the estimated AprilTag pose and camera intrinsics to create a 3-D virtual representation of the
scene corresponding to the image shown above. This virtual representation is useful for visualizing
the camera trajectory and debugging AR applications. To start, add the cuboid defined above to the
virtual scene with helperShowVirtualCuboid on page 3-61, which is a function listed at the end
of this example.

figure
ax = helperShowVirtualCuboid(cuboidVertices);

Next, use pose2extr to convert the tag pose to the camera extrinsics, which represent the camera
orientation and location in world coordinates.

camExtrinsics = pose2extr(tagPose);

Finally, use plotCamera to visualize the camera in 3-D.

hold on
cam = plotCamera(AbsolutePose=camExtrinsics, Size=15, Parent=ax);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-56

The next section of this example shows how to update the camera position to visualize the trajectory
as the camera moves through the scene.

Add Virtual Content to Video and Visualize Camera Trajectory

Repeat the steps above on the remaining video frames.

% Create a video player to display video content.
player = vision.VideoPlayer();

% Create an animated line to display camera trajectory.
camTrajectory = animatedline(ax, ...
 camExtrinsics.Translation(1),...
 camExtrinsics.Translation(2),...
 camExtrinsics.Translation(3),...
 Color="blue", ...
 LineWidth=2);
% Loop over remaining video frames.
while hasFrame(reader)

 % Read next video frame.

 Augmented Reality Using AprilTag Markers

3-57

 I = readFrame(reader);

 % Estimate AprilTag pose.
 [~, ~, tagPose] = readAprilTag(I, tagFamily, intrinsics, tagSize);

 % Update the tag pose to have z-axis pointing out of the tag.
 tagPose = rigidtform3d(tagPose.A*tform.A);

 % Project cuboid vertices from the world to image.
 projectedVertices = world2img(cuboidVertices, tagPose, intrinsics);

 % Insert cuboid into video frame.
 augmentedImage = insertShape(I, "projected-cuboid", projectedVertices, ...
 Color="green", LineWidth=6);

 % Display the augmented video frame.
 player(augmentedImage)

 % Update the camera position in the virtual scene.
 camExtrinsics = pose2extr(tagPose);
 cam.AbsolutePose = camExtrinsics;

 % Update camera trajectory in the virtual scene.
 addpoints(camTrajectory, ...
 camExtrinsics.Translation(1),...
 camExtrinsics.Translation(2),...
 camExtrinsics.Translation(3));

 % Flush the graphics pipeline.
 drawnow limitrate
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-58

 Augmented Reality Using AprilTag Markers

3-59

Summary

This example showcased the fundamental computer vision techniques needed to augment a scene
with virtual content using marker-based AR. The techniques shown in this example can be extended
to add different types of content to a scene such as images or other 3-D shapes.

Supporting Functions

helperInsertXYZAxes - Insert XYZ axes into an image

function J = helperInsertXYZAxes(I, pose, intrinsics, axisLength)

xyzWorld = [0 0 0; axisLength 0 0; 0 axisLength 0; 0 0 axisLength];
xyzImage = worldToImage(intrinsics, pose, xyzWorld);

J = insertShape(I,...
 "Line", [
 xyzImage(1,:) xyzImage(2,:)
 xyzImage(1,:) xyzImage(3,:)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-60

 xyzImage(1,:) xyzImage(4,:)
], ...
 Color=["red";"green";"blue"],...
 LineWidth=7);
end

helperShowVirtualCuboid - Display a cuboid in a 3-D plot

function ax = helperShowVirtualCuboid(cuboidVertices)

% Create an axes with predefined limits.
ax = axes(XLim=[-300 300], YLim=[-300 300], ZLim=[0 300],...
 XLimMode="manual", YLimMode="manual", ZLimMode="manual");
grid on

% Create a cuboid using patch. Define faces corresponding to
% sets of cuboid vertices.
faces = [1 2 3 4;
 5 6 7 8;
 2 6 7 3;
 1 4 8 5;
 1 2 6 5;
 3 4 8 7];

patch(Faces=faces, Vertices=cuboidVertices, FaceColor="green", FaceAlpha=0.3);

% Add axis labels.
xlabel("X (mm)")
ylabel("Y (mm)")
zlabel("Z (mm)")
view(3)
end

downloadVideo - Download example video

function videoFilename = downloadVideo(downloadFolder)

url = "https://ssd.mathworks.com/supportfiles/vision/data/arAprilTag.zip";
zipFile = fullfile(downloadFolder,"arAprilTag.zip");

% Download video file.
if ~exist(zipFile, "file")
 websave(zipFile,url)
end

% Unzip video file.
videoFilename = fullfile(downloadFolder,"arAprilTag.avi");
if ~exist(videoFilename, "file")
 unzip(zipFile,downloadFolder);
end
end

Copyright 2022 The MathWorks, Inc.

 Augmented Reality Using AprilTag Markers

3-61

Multiclass Object Detection Using YOLO v2 Deep Learning

This example shows how to train a multiclass object detector.

Overview

Deep learning is a powerful machine learning technique that you can use to train robust multiclass
object detectors such as YOLO v2, YOLO v4, SSD, and Faster R-CNN. This example trains a YOLO v2
multiclass indoor object detector using the trainYOLOv2ObjectDetector function. The trained
object detector is able to detect and identify multiple different indoor objects. For more information
regarding training other multiclass object detectors such as YOLO v4, SSD, or Faster R-CNN, see,
“Getting Started with Object Detection Using Deep Learning” on page 17-34.

Perform Object Detection using Pretrained Detector

Read a test image that contains objects of the target classes and display it.

I = imread('indoorTest.jpg');
imshow(I)

Download and load the the pretrained YOLO v2 object detector.

pretrainedURL = "https://www.mathworks.com/supportfiles/vision/data/yolov2IndoorObjectDetector.zip";
pretrainedFolder = fullfile(tempdir,"pretrainedNetwork");
pretrainedNetworkZip = fullfile(pretrainedFolder, "yolov2IndoorObjectDetector.zip");

if ~exist(pretrainedNetworkZip,"file")
 mkdir(pretrainedFolder);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-62

 disp("Downloading pretrained network (98 MB)...");
 websave(pretrainedNetworkZip, pretrainedURL);
end

unzip(pretrainedNetworkZip, pretrainedFolder)

pretrainedNetwork = fullfile(pretrainedFolder, "yolov2IndoorObjectDetector.mat");
pretrained = load(pretrainedNetwork);
detector = pretrained.detector;

Detect objects and their labels in the image using the detect function.

[bbox, score, label] = detect(detector, I);

Visualize the predictions by overlaying the detected bounding boxes on the image using the
insertObjectAnnotation function.

imshow(I)
showShape("rectangle", bbox, Label=label);

Load Dataset

This example uses the Indoor Object Detection dataset created by Bishwo Adhikari [1]. The dataset
consists of 2213 labeled images collected from indoor scenes containing 7 classes - fireextinguisher,
chair, clock, trashbin, screen, and printer. Each image contains one or more labeled instances of the
categories mentioned.

Download the dataset.

dsURL = "https://zenodo.org/record/2654485/files/Indoor%20Object%20Detection%20Dataset.zip?download=1";

 Multiclass Object Detection Using YOLO v2 Deep Learning

3-63

outputFolder = fullfile(tempdir,"indoorObjectDetection");
imagesZip = fullfile(outputFolder,"indoor.zip");

if ~exist(imagesZip,"file")
 mkdir(outputFolder)
 disp("Downloading 401 MB Indoor Objects dataset images...");
 websave(imagesZip, dsURL);
 unzip(imagesZip, fullfile(outputFolder));
end

datapath = fullfile(outputFolder, "Indoor Object Detection Dataset");

The images are organized into 6 folders of different sequences. Create an imageDatastore by
specifying the different folder paths.

numSequences = 6;
imds = imageDatastore(datapath, IncludeSubfolders=true, FileExtensions=".jpg");

Annotations and dataset split have been provided in the file annotationsIndoor.mat. Load the
annotations and the indices corresponding to the training, validation, and test splits. Note that the
split contains 2207 images in total instead of 2213 images as 6 images have no labels associated with
them. Store the indices of images containing labels in cleanIdx.

data = load("annotationsIndoor.mat");
bbStore = data.BBstore;
trainingIdx = data.trainingIdx;
validationIdx = data.validationIdx;
testIdx = data.testIdx;
cleanIdx = data.idxs;

Finally, combine the imageDatastore and the boxLabelDatastore. Split the combined datastore
into train, validation and test datastores by using the subset command and specifying the preloaded
indices.

ds = combine(imds,bbStore);
% Remove the 6 images with no labels.
ds = subset(ds,cleanIdx);

% Set random seed.
rng(0);

% Shuffle the dataset before the split to ensure good class distibution.
ds = shuffle(ds);
dsTrain = subset(ds,trainingIdx);
dsVal = subset(ds,validationIdx);
dsTest = subset(ds,testIdx);

Analyze the Data

First, visualize a sample image from the dataset with the dataset.

data = read(dsTrain);
I = data{1,1};
box = data{1,2};
label = data{1,3};
imshow(I)
showShape("rectangle", box, Label=label)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-64

To measure distribution of class labels in the dataset, use countEachLabel to counts the number of
objects by the class label.

bbStore = ds.UnderlyingDatastores{2};
tbl = countEachLabel(bbStore)

Visualize the counts by class.

bar(tbl.Label,tbl.Count)
ylabel("Frequency")

 Multiclass Object Detection Using YOLO v2 Deep Learning

3-65

The classes in this dataset are unbalanced. If not handled correctly, this imbalance can be detrimental
to the learning process because the learning is biased in favor of the dominant classes. There are
multiple techniques used to deal will this issue - oversampling the underrepresented classes,
modifying loss function, and data augmentation. You will apply data augmentation to your training
data in a later section.

Create a Yolov2 Object Detection Network

For this example, you will create a YOLO v2 object detection network. A YOLO v2 object detection
network is composed of two subnetworks. A feature extraction network followed by a detection
network. The feature extraction network is typically a pretrained CNN. This example uses ResNet-50
for feature extraction.

First, specify the network input size and the number of classes. When choosing the network input
size, consider the minimum size required by the network itself, the size of the training images, and
the computational cost incurred by processing data at the selected size. When feasible, choose a
network input size that is close to the size of the training image and larger than the input size
required for the network. However, reducing image resolution can make it harder for the object
detector to detect smaller objects. To maintain a balance between accuracy and computational cost of
running the example, specify a network input size of [450 450 3].

inputSize = [450 450 3];

Define number of object classes to detect.

numClasses = 7;

Select the base network and the feature extraction layer. Select 'activation_40_relu' as the feature
extraction layer to replace the layers after 'activation_40_relu' with the detection subnetwork. This

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-66

feature extraction layer outputs feature maps that are downsampled by a factor of 16. This amount of
downsampling is a good trade-off between spatial resolution and the strength of the extracted
features, as features extracted further down the network encode stronger image features at the cost
of spatial resolution. Choosing the optimal feature extraction layer requires empirical analysis.

network = resnet50();
featureLayer = "activation_40_relu";

Preprocess the training data to prepare data for training. The preprocessing function will resize
images and the bounding boxes. In addition, it also sanitizes the bounding boxes to convert them to a
valid shape.

preprocessedTrainingData = transform(dsTrain,@(data)resizeImageAndLabel(data, inputSize));

Next, use estimateAnchorBoxes to estimate two anchor boxes based on the size of objects in the
training data. Choosing the optimal number of anchor boxes requires empirical analysis.

numAnchors = 2;
aboxes = estimateAnchorBoxes(preprocessedTrainingData, numAnchors);

Use the yolov2Layers function to create a YOLO v2 object detection network.

lgraph = yolov2Layers(inputSize, numClasses, aboxes, network, featureLayer);

You can visualize the network using analyzeNetwork or DeepNetworkDesigner from Deep
Learning Toolbox.

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples. Use transform to augment the
training data by

• Randomly flipping the image and associated box labels horizontally.
• Randomly scale the image, associated box labels.
• Jitter image color.

augmentedTrainingData = transform(preprocessedTrainingData, @augmentData);

Display one of the training images and box labels.

data = read(augmentedTrainingData);
I = data{1};
bbox = data{2};
label = data{3};
imshow(I)
showShape("rectangle", bbox, Label=label)

 Multiclass Object Detection Using YOLO v2 Deep Learning

3-67

Train YOLOv2 Object Detector

Use trainingOptions to specify network training options.

opts = trainingOptions("rmsprop",...
 InitialLearnRate=0.001,...
 MiniBatchSize=4,...
 MaxEpochs=10,...
 LearnRateSchedule="piecewise",...
 LearnRateDropPeriod=3,...
 VerboseFrequency=30, ...
 L2Regularization=0.001,...
 ValidationData=dsVal,...
 ValidationFrequency=50);

Use trainYOLOv2ObjectDetector function to train YOLO v2 object detector if doTraining is
true.

doTraining = false;
if doTraining

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-68

 % Train the YOLO v2 detector.
 [detector, info] = trainYOLOv2ObjectDetector(augmentedTrainingData,lgraph, opts);
else
 % Load pretrained detector for the example.
 pretrained = load(pretrainedNetwork);
 detector = pretrained.detector;
end

This example was verified on an NVIDIA™ Titan X GPU with 12 GB of memory. If your GPU has less
memory, you may run out of memory. If this happens, lower the MiniBatchSize using the
trainingOptions function. Training this network took approximately 2 hours using this setup.
Training time varies depending on the hardware you use.

Evaluate Detector Using Test Set

Evaluate the trained object detector on test images to measure the performance. Computer Vision
Toolbox™ provides object detector evaluation functions to measure common metrics such as average
precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all
relevant objects (recall).

Apply the same preprocessing transform to the test data as for the training data. Note that data
augmentation is not applied to the test data. Test data should be representative of the original data
and be left unmodified for unbiased evaluation.

preprocessedTestData = transform(dsTest, @(data)resizeImageAndLabel(data, inputSize));
results = detect(detector,preprocessedTestData, MiniBatchSize=4, Threshold=0.5);
[ap, precision, recall] = evaluateDetectionPrecision(results, preprocessedTestData);

The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. The
ideal precision is 1 at all recall levels. The use of more data can help improve the average precision
but might require more training time. Plot the PR curve for a selected class.

classID = 1;
figure
plot(recall{classID},precision{classID})
xlabel("Recall")
ylabel("Precision")
grid on
title(sprintf("Average Precision = %.2f",ap(classID)))

 Multiclass Object Detection Using YOLO v2 Deep Learning

3-69

Code Generation

Once the detector is trained and evaluated, you can generate code for the yolov2ObjectDetector
using GPU Coder™. See “Code Generation for Object Detection by Using YOLO v2” (GPU Coder)
example for more details.

Supporting Functions
function B = augmentData(A)
% Apply random horizontal flipping, and random X/Y scaling. Boxes that get
% scaled outside the bounds are clipped if the overlap is above 0.25. Also,
% jitter image color.
B = cell(size(A));

I = A{1};
sz = size(I);
if numel(sz)==3 && sz(3) == 3
 I = jitterColorHSV(I,...
 Contrast=0.2,...
 Hue=0,...
 Saturation=0.1,...

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-70

 Brightness=0.2);
end

% Randomly flip and scale image.
tform = randomAffine2d(XReflection=true, Scale=[1 1.1]);
rout = affineOutputView(sz, tform, BoundsStyle="CenterOutput");
B{1} = imwarp(I, tform, OutputView=rout);

% Sanitize boxes, if needed. This helper function is attached as a
% supporting file. Open the example in MATLAB to open this function.
A{2} = helperSanitizeBoxes(A{2});

% Apply same transform to boxes.
[B{2},indices] = bboxwarp(A{2}, tform, rout, OverlapThreshold=0.25);
B{3} = A{3}(indices);

% Return original data only when all boxes are removed by warping.
if isempty(indices)
 B = A;
end
end

function data = resizeImageAndLabel(data,targetSize)
% Resize the images and scale the corresponding bounding boxes.

 scale = (targetSize(1:2))./size(data{1},[1 2]);
 data{1} = imresize(data{1},targetSize(1:2));
 data{2} = bboxresize(data{2},scale);

 data{2} = floor(data{2});
 imageSize = targetSize(1:2);
 boxes = data{2};
 % Set boxes with negative values to have value 1.
 boxes(boxes<=0) = 1;

 % Validate if bounding box in within image boundary.
 boxes(:,3) = min(boxes(:,3),imageSize(2) - boxes(:,1)-1);
 boxes(:,4) = min(boxes(:,4),imageSize(1) - boxes(:,2)-1);

 data{2} = boxes;

end

References

[1] Adhikari, Bishwo; Peltomaki, Jukka; Huttunen, Heikki. (2019). Indoor Object Detection Dataset
[Data set]. 7th European Workshop on Visual Information Processing 2018 (EUVIP), Tampere,
Finland.

 Multiclass Object Detection Using YOLO v2 Deep Learning

3-71

Generate Adversarial Examples for Semantic Segmentation

This example shows how to generate adversarial examples for a semantic segmentation network
using the basic iterative method (BIM).

Semantic segmentation is the process of assigning each pixel in an image a class label, for example,
car, bike, person, or sky. Applications for semantic segmentation include road segmentation for
autonomous driving and cancer cell segmentation for medical diagnosis.

Neural networks can be susceptible to a phenomenon known as adversarial examples [1], where very
small changes to an input can cause it to be misclassified. These changes are often imperceptible to
humans. This example shows how to generate an adversarial example for a semantic segmentation
network.

This example generates adversarial examples using the CamVid [2] data set from the University of
Cambridge. The CamVid data set is a collection of images containing street-level views obtained while
driving. The data set provides pixel-level labels for 32 semantic classes including car, pedestrian, and
road.

Load Network

Load a pretrained semantic segmentation network. This example loads a Deeplab v3+ network
trained on the CamVid data set with weights initialized from a pretrained ResNet-18 network. For
more information on building and training a Deeplab v3+ semantic segmentation network, see
“Semantic Segmentation Using Deep Learning” (Deep Learning Toolbox).

pretrainedURL = "https://www.mathworks.com/supportfiles/vision/data/deeplabv3plusResnet18CamVid.mat";
pretrainedFolder = fullfile(tempdir,"pretrainedNetwork");
pretrainedNetwork = fullfile(pretrainedFolder,"deeplabv3plusResnet18CamVid.mat");
if ~exist(pretrainedNetwork,"file")
 mkdir(pretrainedFolder);
 disp("Downloading pretrained network (58 MB)...");
 websave(pretrainedNetwork,pretrainedURL);
end

Load the network and convert it to a dlnetwork.

data = load(pretrainedNetwork);
net = data.net;

lgraph = layerGraph(net);
lgraph = removeLayers(lgraph,lgraph.Layers(end).Name);
net = dlnetwork(lgraph);

Load Image

Load an image and its corresponding label image. The image is a street-level view obtained from a
car being driven. The label image contains the ground truth pixel labels. In this example, you create
an adversarial example that causes the semantic segmentation network to misclassify the pixels in
the Bicyclist class.

img = imread("0016E5_08145.png");

Use the supporting function convertCamVidLabelImage, defined at the end of this example, to
convert the label image to a categorical array.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-72

http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/

T = convertCamVidLabelImage(imread("0016E5_08145_L.png"));

The data set contains 32 classes. Use the supporting function camVidClassNames11, defined at the
end of this example, to reduce the number of classes to 11 by grouping multiple classes from the
original data set together.

classNames = camVidClassNames11;

Use the supporting function camVidColorMap11 to create a colormap for the 11 classes.

cmap = camVidColorMap11;

Display the image with an overlay showing the pixels with the ground truth label Bicyclist.

classOfInterest = "Bicyclist";
notTheClassOfInterest = T ~= classOfInterest;

TClassOfInterest = T;
TClassOfInterest(notTheClassOfInterest) = "";

overlayImage = labeloverlay(img,TClassOfInterest,ColorMap=cmap);
imshow(overlayImage)

 Generate Adversarial Examples for Semantic Segmentation

3-73

Create Adversarial Target Labels

To create an adversarial example, you must specify the adversarial target label for each pixel you
want the network to misclassify. In this example, the aim is to get the network to misclassify the
Bicyclist pixels as another class. Therefore, you need to specify target classes for each of the
Bicyclist pixels.

Using the supporting function eraseClass, defined at the end of this example, create adversarial
target labels by replacing all Bicyclist pixel labels with the label of the nearest pixel that is not in
the Bicyclist class [3].

TDesired = eraseClass(T,classOfInterest);

Display the adversarial target labels.

overlayImage = labeloverlay(img,TDesired,ColorMap=cmap);
figure
imshow(overlayImage)
pixelLabelColorbar(cmap,classNames);

The labels of the Bicyclist pixels are now Road, Building, or Pavement.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-74

Prepare Data

To create the adversarial example using the image and the adversarial target labels, you must first
prepare the image and the labels.

Prepare the image by converting it to a dlarray.

X = dlarray(single(img), "SSCB");

Prepare the label by one-hot encoding it. Because some of the pixels have undefined labels, replace
NaN values with 0.

TDesired = onehotencode(TDesired,3,"single",ClassNames=classNames);
TDesired(isnan(TDesired)) = 0;
TDesired = dlarray(TDesired,"SSCB");

Create Adversarial Example

Use the adversarial target labels to create an adversarial example using the basic iterative method
(BIM) [4]. The BIM iteratively calculates the gradient ∇XL X, T of the loss function L with respect to
the image X you want to find an adversarial example for and the adversarial target labels T. The
negative of this gradient describes the direction to "push" the image in to make the output closer to
the desired class labels.

The adversarial example image is calculated iteratively as follows:

Xadv = X − α . sign ∇XL X, T .

Parameter α controls the size of the push for a single iteration. After each iteration, clip the
perturbation to ensure the magnitude does not exceed ϵ. Parameter ϵ defines a ceiling on how large
the total change can be over all the iterations. A larger ϵ value increases the chance of generating a
misclassified image, but makes the change in the image more visible.

Set the epsilon value to 5, set the step size alpha to 1, and perform 10 iterations.

epsilon = 5;
alpha = 1;
numIterations = 10;

Keep track of the perturbation and clip any values that exceed epsilon.

delta = zeros(size(X),like=X);
for i = 1:numIterations
 gradient = dlfeval(@targetedGradients,net,X+delta,TDesired);

 delta = delta - alpha*sign(gradient);
 delta(delta > epsilon) = epsilon;
 delta(delta < -epsilon) = -epsilon;
end

XAdvTarget = X + delta;

Display the original image, the perturbation added to the image, and the adversarial image.

showAdversarialImage(X,XAdvTarget,epsilon)

 Generate Adversarial Examples for Semantic Segmentation

3-75

The added perturbation is imperceptible, demonstrating how adversarial examples can exploit
robustness issues within a network.

Predict Pixel Labels

Predict the class labels of the original image and the adversarial image using the semantic
segmentation network.

Y = semanticseg(extractdata(X),net);
YAdv = semanticseg(extractdata(XAdvTarget),net);

Display an overlay of the predictions for both images.

overlayImage = labeloverlay(uint8(extractdata(X)),Y,ColorMap=cmap);
overlayAdvImage = labeloverlay(uint8(extractdata(XAdvTarget)),YAdv,ColorMap=cmap);

figure
tiledlayout("flow",TileSpacing="tight")
nexttile
imshow(uint8(extractdata(X)))
title("Original Image")
nexttile
imshow(overlayImage)
pixelLabelColorbar(cmap,classNames);
title("Original Predicted Labels")
nexttile
imshow(uint8(extractdata(XAdvTarget)))

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-76

title("Adversarial Image")
nexttile
imshow(overlayAdvImage)
pixelLabelColorbar(cmap,classNames);
title("Adversarial Predicted Labels")

The network correctly identifies the bicyclist in the original image. However, because of
imperceptible perturbation, the network mislabels the bicyclist in the adversarial image.

Supporting Functions

Convert CamVid Label Image to a Categorical

The supporting function convertCamVidLabelImage takes as input a label image from the CamVid
data set and converts it to a categorical array.

function labelImage = convertCamVidLabelImage(image)

colorMap32 = camVidColorMap32;
map32To11 = cellfun(@(x,y)repmat(x,size(y,1),1), ...
 num2cell((1:numel(colorMap32))'), ...
 colorMap32, ...
 UniformOutput=false);

colorMap32 = cat(1,colorMap32{:});
map32To11 = cat(1,map32To11{:});

labelImage = rgb2ind(double(image)./255,colorMap32);

 Generate Adversarial Examples for Semantic Segmentation

3-77

labelImage = map32To11(labelImage+1);
labelImage = categorical(labelImage,1:11,camVidClassNames11);

end

CamVid Color Map (32 classes)

The supporting function camVidColorMap32 returns the color map for the 32 original classes in the
CamVid data set.

function cmap = camVidColorMap32

cmap = {

 % Sky
 [
 128 128 128
]

 % Building
 [
 0 128 64 % Bridge
 128 0 0 % Building
 64 192 0 % Wall
 64 0 64 % Tunnel
 192 0 128 % Archway
]

 % Pole
 [
 192 192 128 % Column_Pole
 0 0 64 % TrafficCone
]

 % Road
 [
 128 64 128 % Road
 128 0 192 % LaneMkgsDriv
 192 0 64 % LaneMkgsNonDriv
]

 % Pavement
 [
 0 0 192 % Sidewalk
 64 192 128 % ParkingBlock
 128 128 192 % RoadShoulder
]

 % Tree
 [
 128 128 0 % Tree
 192 192 0 % VegetationMisc
]

 % SignSymbol
 [
 192 128 128 % SignSymbol
 128 128 64 % Misc_Text

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-78

 0 64 64 % TrafficLight
]

 % Fence
 [
 64 64 128 % Fence
]

 % Car
 [
 64 0 128 % Car
 64 128 192 % SUVPickupTruck
 192 128 192 % Truck_Bus
 192 64 128 % Train
 128 64 64 % OtherMoving
]

 % Pedestrian
 [
 64 64 0 % Pedestrian
 192 128 64 % Child
 64 0 192 % CartLuggagePram
 64 128 64 % Animal
]

 % Bicyclist
 [
 0 128 192 % Bicyclist
 192 0 192 % MotorcycleScooter
]

 % Void
 [
 0 0 0 % Void
]

 };

% Normalize between [0 1].
cmap = cellfun(@(x)x./255,cmap,UniformOutput=false);

end

CamVid Color Map (11 classes)

The supporting function camVidColorMap11 returns the color map for the 11 umbrella classes in the
CamVid data set.

function cmap = camVidColorMap11

cmap = [
 128 128 128 % Sky
 128 0 0 % Building
 192 192 192 % Pole
 128 64 128 % Road
 60 40 222 % Pavement
 128 128 0 % Tree
 192 128 128 % SignSymbol

 Generate Adversarial Examples for Semantic Segmentation

3-79

 64 64 128 % Fence
 64 0 128 % Car
 64 64 0 % Pedestrian
 0 128 192 % Bicyclist
];

% Normalize between [0 1].
cmap = cmap ./ 255;

end

CamVid Labels (11 classes)

The supporting function classNames returns the 11 umbrella classes of the CamVid data set.

function classNames = camVidClassNames11
classNames = [
 "Sky"
 "Building"
 "Pole"
 "Road"
 "Pavement"
 "Tree"
 "SignSymbol"
 "Fence"
 "Car"
 "Pedestrian"
 "Bicyclist"
];
end

Pixel Label Colorbar Function

The supporting function pixelLabelColorbar adds a colorbar to the current axis. The colorbar is
formatted to display the class names with the color.

function pixelLabelColorbar(cmap, classNames)
% Add a colorbar to the current axis. The colorbar is formatted
% to display the class names with the color.

colormap(gca,cmap)

% Add colorbar to current figure.
c = colorbar("peer", gca);

% Use class names for tick marks.
c.TickLabels = classNames;
numClasses = size(cmap,1);

% Center tick labels.
c.Ticks = 1/(numClasses*2):1/numClasses:1;

% Remove tick mark.
c.TickLength = 0;
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-80

Erase Class Function

The supporting function eraseClass removes class classToErase from the label image T by
relabeling the pixels in class classToErase. For each pixel in class classToErase, the
eraseClass function sets the pixel label to the class of the nearest pixel not in class classToErase.

function TDesired = eraseClass(T,classToErase)
classToEraseMask = T == classToErase;
[~,idx] = bwdist(~(classToEraseMask | isundefined(T)));
TDesired = T;
TDesired(classToEraseMask) = T(idx(classToEraseMask));
end

Targeted Input Gradient Function

Calculate the gradient used to create a targeted adversarial example. The gradient is the gradient of
the mean squared error.

function gradient = targetedGradients(net,X,target)
Y = predict(net,X);
loss = mse(Y,target);
gradient = dlgradient(loss,X);
end

Show Adversarial Image

Show an image, the corresponding adversarial image, and the difference between the two
(perturbation).

function showAdversarialImage(image,imageAdv,epsilon)

figure
tiledlayout(1,3,TileSpacing="compact")
nexttile
imgTrue = uint8(extractdata(image));
imshow(imgTrue)
title("Original Image")

nexttile
perturbation = uint8(extractdata(imageAdv-image+127.5));
imshow(perturbation)
title("Perturbation")

nexttile
advImg = uint8(extractdata(imageAdv));
imshow(advImg)
title("Adversarial Image" + newline + "Epsilon = " + string(epsilon))
end

References

[1] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing
Adversarial Examples.” Preprint, submitted March 20, 2015. https://arxiv.org/abs/1412.6572.

[2] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. “Semantic Object Classes in Video: A
High-Definition Ground Truth Database.” Pattern Recognition Letters 30, no. 2 (January 2009): 88–97.
https://doi.org/10.1016/j.patrec.2008.04.005.

 Generate Adversarial Examples for Semantic Segmentation

3-81

[3] Fischer, Volker, Mummadi Chaithanya Kumar, Jan Hendrik Metzen, and Thomas Brox. “Adversarial
Examples for Semantic Image Segmentation.” Preprint, submitted March 3, 2017. http://
arxiv.org/abs/1703.01101.

[4] Kurakin, Alexey, Ian Goodfellow, and Samy Bengio. “Adversarial Examples in the Physical World.”
Preprint, submitted February 10, 2017. https://arxiv.org/abs/1607.02533.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-82

Classify Defects on Wafer Maps Using Deep Learning

This example shows how to classify eight types of manufacturing defects on wafer maps using a
simple convolutional neural network (CNN).

Wafers are thin disks of semiconducting material, typically silicon, that serve as the foundation for
integrated circuits. Each wafer yields several individual circuits (ICs), separated into dies. Automated
inspection machines test the performance of ICs on the wafer. The machines produce images, called
wafer maps, that indicate which dies perform correctly (pass) and which dies do not meet
performance standards (fail).

The spatial pattern of the passing and failing dies on a wafer map can indicate specific issues in the
manufacturing process. Deep learning approaches can efficiently classify the defect pattern on a
large number of wafers. Therefore, by using deep learning, you can quickly identify manufacturing
issues, enabling prompt repair of the manufacturing process and reducing waste.

This example shows how to train a classification network that detects and classifies eight types of
manufacturing defect patterns. The example also shows how to evaluate the performance of the
network.

Download WM-811K Wafer Defect Map Data

This example uses the WM-811K Wafer Defect Map data set [1 on page 3-97] [2 on page 3-97]. The
data set consists of 811,457 wafer maps images, including 172,950 labeled images. Each image has
only three pixel values. The value 0 indicates the background, the value 1 represents correctly
behaving dies, and the value 2 represents defective dies. The labeled images have one of nine labels
based on the spatial pattern of the defective dies. The size of the data set is 3.5 GB.

Set dataDir as the desired location of the data set. Download the data set using the
downloadWaferMapData helper function. This function is attached to the example as a supporting
file.

dataDir = fullfile(tempdir,"WaferDefects");
downloadWaferMapData(dataDir)

Preprocess and Augment Data

The data is stored in a MAT file as an array of structures. Load the data set into the workspace.

dataMatFile = fullfile(dataDir,"MIR-WM811K","MATLAB","WM811K.mat");
waferData = load(dataMatFile);
waferData = waferData.data;

Explore the data by displaying the first element of the structure. The waferMap field contains the
image data. The failureType field contains the label of the defect.

disp(waferData(1))

 waferMap: [45×48 uint8]
 dieSize: 1683
 lotName: 'lot1'
 waferIndex: 1
 trainTestLabel: 'Training'
 failureType: 'none'

 Classify Defects on Wafer Maps Using Deep Learning

3-83

Reformat Data

This example uses only labeled images. Remove the unlabeled images from the structure.

unlabeledImages = zeros(size(waferData),"logical");
for idx = 1:size(unlabeledImages,1)
 unlabeledImages(idx) = isempty(waferData(idx).trainTestLabel);
end
waferData(unlabeledImages) = [];

The dieSize, lotName, and waferIndex fields are not relevant to the classification of the images.
The example partitions data into training, validation, and test sets using a different convention than
specified by trainTestLabel field. Remove these fields from the structure using the rmfield
function.

fieldsToRemove = ["dieSize","lotName","waferIndex","trainTestLabel"];
waferData = rmfield(waferData,fieldsToRemove);

Specify the image classes.

defectClasses = ["Center","Donut","Edge-Loc","Edge-Ring","Loc","Near-full","Random","Scratch","none"];
numClasses = numel(defectClasses);

To apply additional preprocessing operations on the data, such as resizing the image to match the
network input size or applying random train the network for classification, you can use an augmented
image datastore. You cannot create an augmented image datastore from data in a structure, but you
can create the datastore from data in a table. Convert the data into a table with two variables:

• WaferImage - Wafer defect map images
• FailureType - Categorical label for each image

waferData = struct2table(waferData);
waferData.Properties.VariableNames = ["WaferImage","FailureType"];
waferData.FailureType = categorical(waferData.FailureType,defectClasses);

Display a sample image from each input image class using the displaySampleWaferMaps helper
function. This function is attached to the example as a supporting file.

displaySampleWaferMaps(waferData)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-84

Balance Data By Oversampling

Display the number of images of each class. The data set is heavily unbalanced, with significantly
fewer images of each defect class than the number of images without defects.

summary(waferData.FailureType)

 Center 4294
 Donut 555
 Edge-Loc 5189
 Edge-Ring 9680
 Loc 3593
 Near-full 149
 Random 866
 Scratch 1193
 none 147431

To improve the class balancing, oversample the defect classes using the
oversampleWaferDefectClasses helper function. This function is attached to the example as a
supporting file. The helper function appends the data set with five modified copies of each defect
image. Each copy has one of these modifications: horizontal reflection, vertical reflection, or rotation
by a multiple of 90 degrees.

waferData = oversampleWaferDefectClasses(waferData);

 Classify Defects on Wafer Maps Using Deep Learning

3-85

Display the number of images of each class after class balancing.

summary(waferData.FailureType)

 Center 25764
 Donut 3330
 Edge-Loc 31134
 Edge-Ring 58080
 Loc 21558
 Near-full 894
 Random 5196
 Scratch 7158
 none 147431

Partition Data into Training, Validation, and Test Sets

Split the oversampled data set into training, validation, and test sets using the splitlabels
function. Approximately 90% of the data is used for training, 5% is used for validation, and 5% is used
for testing.

labelIdx = splitlabels(waferData,[0.9 0.05 0.05],"randomized",TableVariable="FailureType");
trainingData = waferData(labelIdx{1},:);
validationData = waferData(labelIdx{2},:);
testingData = waferData(labelIdx{3},:);

Augment Training Data

Specify a set of random augmentations to apply to the training data using an imageDataAugmenter
(Deep Learning Toolbox) object. Adding random augmentations to the training images can avoid the
network from overfitting to the training data.

aug = imageDataAugmenter(FillValue=0,RandXReflection=true,RandYReflection=true,RandRotation=[0 360]);

Specify the input size for the network. Create an augmentedImageDatastore (Deep Learning
Toolbox) that reads the training data, resizes the data to the network input size, and applies random
augmentations.

inputSize = [48 48];
dsTrain = augmentedImageDatastore(inputSize,trainingData,"FailureType",DataAugmentation=aug);

Create datastores that read validation and test data and resize the data to the network input size. You
do not need to apply random augmentations to validation or test data.

dsVal = augmentedImageDatastore(inputSize,validationData,"FailureType");
dsVal.MiniBatchSize = 64;
dsTest = augmentedImageDatastore(inputSize,testingData,"FailureType");

Create Network

Define the convolutional neural network architecture. The range of the image input layer reflects the
fact that the wafer maps have only three levels.

layers = [
 imageInputLayer([inputSize 1], ...
 Normalization="rescale-zero-one",Min=0,Max=2);

 convolution2dLayer(3,8,Padding="same")
 batchNormalizationLayer

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-86

 reluLayer

 maxPooling2dLayer(2,Stride=2)

 convolution2dLayer(3,16,Padding="same")
 batchNormalizationLayer
 reluLayer

 maxPooling2dLayer(2,Stride=2)

 convolution2dLayer(3,32,Padding="same")
 batchNormalizationLayer
 reluLayer

 maxPooling2dLayer(2,Stride=2)

 convolution2dLayer(3,64,Padding="same")
 batchNormalizationLayer
 reluLayer

 dropoutLayer

 fullyConnectedLayer(numClasses)
 softmaxLayer
 classificationLayer];

Specify Training Options

Specify the training options for Adam optimization. Train the network for 30 epochs.

options = trainingOptions("adam", ...
 ResetInputNormalization=true, ...
 MaxEpochs=30, ...
 InitialLearnRate=0.001, ...
 L2Regularization=0.001, ...
 MiniBatchSize=64, ...
 Shuffle="every-epoch", ...
 Verbose=false, ...
 Plots="training-progress", ...
 ValidationData=dsVal, ...
 ValidationFrequency=20);

Train Network or Download Pretrained Network

By default, the example loads a pretrained wafer defect classification network. The pretrained
network enables you to run the entire example without waiting for training to complete.

To train the network, set the doTraining variable in the following code to true. Train the model
using the trainNetwork (Deep Learning Toolbox) function.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox).

doTraining = ;
if doTraining
 trainedNet = trainNetwork(dsTrain,layers,options);

 Classify Defects on Wafer Maps Using Deep Learning

3-87

 modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
 save(fullfile(dataDir,"trained-WM811K-"+modelDateTime+".mat"),"trainedNet");

else
 downloadTrainedWaferNet(dataDir);
 trainedNet = load(fullfile(dataDir,"CNN-WM811K.mat"));
 trainedNet = trainedNet.preTrainedNetwork;
end

Quantify Network Performance on Test Data

Classify each of test image using the classify (Deep Learning Toolbox) function.

defectPredicted = classify(trainedNet,dsTest);

Calculate the performance of the network compared to the ground truth classifications as a confusion
matrix using the confusionmat (Deep Learning Toolbox) function. Visualize the confusion matrix
using the confusionchart (Deep Learning Toolbox) function. The values across the diagonal of this
matrix indicate correct classifications. The confusion matrix for a perfect classifier has values only on
the diagonal.

defectTruth = testingData.FailureType;

cmTest = confusionmat(defectTruth,defectPredicted);
figure
confusionchart(cmTest,categories(defectTruth),Normalization="row-normalized", ...
 Title="Test Data Confusion Matrix");

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-88

Precision, Recall, and F1 Scores

This example evaluates the network performance using several metrics: precision, recall, and F1
scores. These metrics are defined for a binary classification. To overcome the limitation for this
multiclass problem, you can consider the prediction as a set of binary classifications, one for each
class.

Precision is the proportion of images that are correctly predicted to belong to a class. Given the count
of true positive (TP) and false positive (FP) classifications, you can calculate precision as:

precision = TP
TP + FP

Recall is the proportion of images belonging to a specific class that were predicted to belong the
class. Given the count of TP and false negative (FN) classifications, you can calculate recall as:

recall = TP
TP + FN

F1 scores are the harmonic mean of the precision and recall values:

F1 = 2 * precision * recall
precision + recall

 Classify Defects on Wafer Maps Using Deep Learning

3-89

For each class, calculate the precision, recall, and F1 score using the counts of TP, FP, and FN results
available in the confusion matrix.

prTable = table(Size=[numClasses 3],VariableTypes=["cell","cell","double"], ...
 VariableNames=["Recall","Precision","F1"],RowNames=defectClasses);

for idx = 1:numClasses
 numTP = cmTest(idx,idx);
 numFP = sum(cmTest(:,idx)) - numTP;
 numFN = sum(cmTest(idx,:),2) - numTP;

 precision = numTP / (numTP + numFP);
 recall = numTP / (numTP + numFN);

 defectClass = defectClasses(idx);
 prTable.Recall{defectClass} = recall;
 prTable.Precision{defectClass} = precision;
 prTable.F1(defectClass) = 2*precision*recall/(precision + recall);
end

Display the metrics for each class. Scores closer to 1 indicate better network performance.

prTable

prTable=9×3 table
 Recall Precision F1
 __________ __________ _______

 Center {[0.9169]} {[0.9578]} 0.93693
 Donut {[0.8193]} {[0.9067]} 0.86076
 Edge-Loc {[0.7900]} {[0.8384]} 0.81349
 Edge-Ring {[0.9859]} {[0.9060]} 0.94426
 Loc {[0.6642]} {[0.8775]} 0.75607
 Near-full {[0.7556]} {[1]} 0.86076
 Random {[0.9692]} {[0.7683]} 0.85714
 Scratch {[0.4609]} {[0.8639]} 0.60109
 none {[0.9696]} {[0.9345]} 0.95173

Precision-Recall Curves and Area-Under-Curve (AUC)

In addition to returning a classification of each test image, the network can also predict the
probability that a test image is each of the defect classes. In this case, precision-recall curves provide
an alternative way to evaluate the network performance.

To calculate precision-recall curves, start by performing a binary classification for each defect class
by comparing the probability against an arbitrary threshold. When the probability exceeds the
threshold, you can assign the image to the target class. The choice of threshold impacts the number
of TP, FP, and FN results and the precision and recall scores. To evaluate the network performance,
you must consider the performance at a range of thresholds. Precision-recall curves plot the tradeoff
between precision and recall values as you adjust the threshold for the binary classification. The AUC
metric summarizes the precision-recall curve for a class as a single number in the range [0, 1], where
1 indicates a perfect classification regardless of threshold.

Calculate the probability that each test image belongs to each of the defect classes using the
predict (Deep Learning Toolbox) function.

defectProbabilities = predict(trainedNet,dsTest);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-90

Use the rocmetrics function to calculate the precision, recall, and AUC for each class over a range
of thresholds. Plot the precision-recall curves.

roc = rocmetrics(defectTruth,defectProbabilities,defectClasses,AdditionalMetrics="prec");
figure
plot(roc,XAxisMetric="reca",YAxisMetric="prec");
xlabel("Recall")
ylabel("Precision")
grid on
title("Precision-Recall Curves for All Classes")

The precision-recall curve for an ideal classifier passes through the point (1, 1). The classes that have
precision-recall curves that tend towards (1, 1), such as Edge-Ring and Center, are the classes for
which the network has the best performance. The network has the worst performance for the
Scratch class.

Compute and display the AUC values of the precision/recall curves for each class.

prAUC = zeros(numClasses, 1);
for idx = 1:numClasses
 defectClass = defectClasses(idx);
 currClassIdx = strcmpi(roc.Metrics.ClassName, defectClass);
 reca = roc.Metrics.TruePositiveRate(currClassIdx);
 prec = roc.Metrics.PositivePredictiveValue(currClassIdx);
 prAUC(idx) = trapz(reca(2:end),prec(2:end)); % prec(1) is always NaN

 Classify Defects on Wafer Maps Using Deep Learning

3-91

end
prTable.AUC = prAUC;
prTable

prTable=9×4 table
 Recall Precision F1 AUC
 __________ __________ _______ _______

 Center {[0.9169]} {[0.9578]} 0.93693 0.97314
 Donut {[0.8193]} {[0.9067]} 0.86076 0.89514
 Edge-Loc {[0.7900]} {[0.8384]} 0.81349 0.88453
 Edge-Ring {[0.9859]} {[0.9060]} 0.94426 0.73498
 Loc {[0.6642]} {[0.8775]} 0.75607 0.82643
 Near-full {[0.7556]} {[1]} 0.86076 0.79863
 Random {[0.9692]} {[0.7683]} 0.85714 0.95798
 Scratch {[0.4609]} {[0.8639]} 0.60109 0.65661
 none {[0.9696]} {[0.9345]} 0.95173 0.99031

Visualize Network Decisions Using GradCAM

Gradient-weighted class activation mapping (Grad-CAM) produces a visual explanation of decisions
made by the network. You can use the gradCAM (Deep Learning Toolbox) function to identify parts of
the image that most influenced the network prediction.

Donut Defect Class

The Donut defect is characterized by an image having defective pixels clustered in a concentric circle
around the center of the die. Most images of the Donut defect class do not have defective pixels
around the edge of the die.

These two images both show data with the Donut defect. The network correctly classified the image
on the left as a Donut defect. The network misclassified the image on the right as an Edge-Ring
defect. The images have a color overlay that corresponds to the output of the gradCAM function. The
regions of the image that most influenced the network classification appear with bright colors on the
overlay. For the image classified as an Edge-Ring defect, the defects at the boundary at the die were
treated as important. A possible reason for this could be there are far more Edge-Ring images in the
training set as compared to Donut images.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-92

 Classify Defects on Wafer Maps Using Deep Learning

3-93

Loc Defect Class

The Loc defect is characterized by an image having defective pixels clustered in a blob away from the
edges of the die. These two images both show data with the Loc defect. The network correctly
classified the image on the left as a Loc defect. The network misclassified the image on the right and
classified the defect as an Edge-Loc defect. For the image classified as an Edge-Loc defect, the
defects at the boundary at the die are most influential in the network prediction. The Edge-Loc
defect differs from the Loc defect primarily in the location of the cluster of defects.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-94

 Classify Defects on Wafer Maps Using Deep Learning

3-95

Compare Correct Classifications and Misclassifications

You can explore other instances of correctly classified and misclassified images. Specify a class to
evaluate.

defectClass = ;

Find the index of all images with the specified defect type as the ground truth or predicted label.

idxTrue = find(testingData.FailureType == defectClass);
idxPred = find(defectPredicted == defectClass);

Find the indices of correctly classified images. Then, select one of the images to evaluate. By default,
this example evaluates the first correctly classified image.

idxCorrect = intersect(idxTrue,idxPred);

idxToEvaluateCorrect = ;
imCorrect = testingData.WaferImage{idxCorrect(idxToEvaluateCorrect)};

Find the indices of misclassified images. Then, select one of the images to evaluate and get the
predicted class of that image. By default, this example evaluates the first misclassified image.

idxIncorrect = setdiff(idxTrue,idxPred);

idxToEvaluateIncorrect = ;
imIncorrect = testingData.WaferImage{idxIncorrect(idxToEvaluateIncorrect)};
labelIncorrect = defectPredicted(idxIncorrect(idxToEvaluateIncorrect));

Resize the test images to match the input size of the network.

imCorrect = imresize(imCorrect,inputSize);
imIncorrect = imresize(imIncorrect,inputSize);

Generate the score maps using the gradCAM (Deep Learning Toolbox) function.

scoreCorrect = gradCAM(trainedNet,imCorrect,defectClass);
scoreIncorrect = gradCAM(trainedNet,imIncorrect,labelIncorrect);

Display the score maps over the original wafer maps using the displayWaferScoreMap helper
function. This function is attached to the example as a supporting file.

figure
tiledlayout(1,2)
t = nexttile;
displayWaferScoreMap(imCorrect,scoreCorrect,t)
title("Correct Classification ("+defectClass+")")
t = nexttile;
displayWaferScoreMap(imIncorrect,scoreIncorrect,t)
title("Misclassification ("+string(labelIncorrect)+")")

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-96

References

[1] Wu, Ming-Ju, Jyh-Shing R. Jang, and Jui-Long Chen. “Wafer Map Failure Pattern Recognition and
Similarity Ranking for Large-Scale Data Sets.” IEEE Transactions on Semiconductor Manufacturing
28, no. 1 (February 2015): 1–12. https://doi.org/10.1109/TSM.2014.2364237.

[2] Jang, Roger. "MIR Corpora." http://mirlab.org/dataset/public/.

[3] Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based
Localization.” In 2017 IEEE International Conference on Computer Vision (ICCV), 618–26. Venice:
IEEE, 2017. https://doi.org/10.1109/ICCV.2017.74.

[4] T., Bex. “Comprehensive Guide on Multiclass Classification Metrics.” October 14, 2021. https://
towardsdatascience.com/comprehensive-guide-on-multiclass-classification-metrics-af94cfb83fbd.

See Also
trainingOptions | trainNetwork | augmentedImageDatastore | imageDataAugmenter |
imageDatastore | classify | predict | confusionmat | confusionchart

 Classify Defects on Wafer Maps Using Deep Learning

3-97

https://doi.org/10.1109/TSM.2014.2364237
https://doi.org/10.1109/ICCV.2017.74

Related Examples
• “Detect Image Anomalies Using Explainable FCDD Network” on page 3-99
• “Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings” on page 3-112

More About
• “Datastores for Deep Learning” (Deep Learning Toolbox)
• “Preprocess Images for Deep Learning” (Deep Learning Toolbox)
• “List of Deep Learning Layers” (Deep Learning Toolbox)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-98

Detect Image Anomalies Using Explainable FCDD Network

This example shows how to detect defects on pill images using a one-class fully convolutional data
description (FCDD) anomaly detection network.

A crucial goal of anomaly detection is for a human observer to be able to understand why a trained
network classifies images as anomalies. FCDD enables explainable classification, which supplements
the class prediction with information that justifies how the neural network reached its classification
decision [1 on page 3-111]. The FCDD network returns a heatmap with the probability that each pixel
is anomalous. The classifier labels images as normal or anomalous based on the mean value of the
anomaly score heatmap.

Download Pill Images for Classification Data Set

This example uses the PillQC data set. The data set contains images from three classes: normal
images without defects, chip images with chip defects in the pills, and dirt images with dirt
contamination. The data set provides 149 normal images, 43 chip images, and 138 dirt images.
The size of the data set is 3.57 MB.

Set dataDir as the desired location of the data set. Download the data set using the
downloadPillQCData helper function. This function is attached to the example as a supporting file.
The function downloads a ZIP file and extracts the data into the subdirectories chip, dirt, and
normal.

dataDir = fullfile(tempdir,"PillDefects");
downloadPillQCData(dataDir)

This image shows an example image from each class. A normal pill with no defects is on the left, a pill
contaminated with dirt is in the middle, and a pill with a chip defect is on the right. While the images
in this data set contain instances of shadows, focus blurring, and background color variation, the
approach used in this example is robust to these image acquisition artifacts.

 Detect Image Anomalies Using Explainable FCDD Network

3-99

Load and Preprocess Data

Create an imageDatastore that reads and manages the image data. Label each image as chip,
dirt, or normal according to the name of its directory.

imageDir = fullfile(dataDir,"pillQC-main","images");
imds = imageDatastore(imageDir,IncludeSubfolders=true,LabelSource="foldernames");

Partition Data into Training, Calibration, and Test Sets

Create training, calibration, and test sets using the splitAnomalyData function. This example
implements an FCDD approach that uses outlier exposure, in which the training data consists
primarily of normal images with the addition of a small number of anomalous images. Despite
training primarily on samples only of normal scenes, the model learns how to distinguish between
normal and anomalous scenes.

Allocate 50% of the normal images and a small percentage (5%) of each anomaly class in the training
data set. Allocate 10% of the normal images and 20% of each anomaly class to the calibration set.
Allocate the remaining images to the test set.

normalTrainRatio = 0.5;
anomalyTrainRatio = 0.05;
normalCalRatio = 0.10;
anomalyCalRatio = 0.20;
normalTestRatio = 1 - (normalTrainRatio + normalCalRatio);
anomalyTestRatio = 1 - (anomalyTrainRatio + anomalyCalRatio);

anomalyClasses = ["chip","dirt"];
[imdsTrain,imdsCal,imdsTest] = splitAnomalyData(imds,anomalyClasses, ...
 NormalLabelsRatio=[normalTrainRatio normalCalRatio normalTestRatio], ...
 AnomalyLabelsRatio=[anomalyTrainRatio anomalyCalRatio anomalyTestRatio]);

Splitting anomaly dataset

* Finalizing... Done.
* Number of files and proportions per class in all the datasets:

 Input Train Validation Test
 NumFiles Ratio NumFiles Ratio NumFiles Ratio NumFiles Ratio
 ___________________ ____________________ ___________________ ___________________

 chip 43 0.1303 2 0.02381 9 0.17647 32 0.1641

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-100

 dirt 138 0.41818 7 0.083333 28 0.54902 103 0.52821
 normal 149 0.45152 75 0.89286 14 0.27451 60 0.30769

Further split the training data into two datastores, one containing only normal data and another
containing only anomaly data.

[imdsNormalTrain,imdsAnomalyTrain] = splitAnomalyData(imdsTrain,anomalyClasses, ...
 NormalLabelsRatio=[1 0 0],AnomalyLabelsRatio=[0 1 0],Verbose=false);

Augment Training Data

Augment the training data by using the transform function with custom preprocessing operations
specified by the helper function augmentDataForPillAnomalyDetector. The helper function is
attached to the example as supporting files.

The augmentDataForPillAnomalyDetector function randomly applies 90 degree rotation and
horizontal and vertical reflection to each input image.

imdsNormalTrain = transform(imdsNormalTrain,@augmentDataForPillAnomalyDetector);
imdsAnomalyTrain = transform(imdsAnomalyTrain,@augmentDataForPillAnomalyDetector);

Add binary labels to the calibration and test data sets by using the transform function with the
operations specified by the addLabelData helper function. The helper function is defined at the end
of this example, and assigns images in the normal class a binary label 0 and images in the chip or
dirt classes a binary label 1.

dsCal = transform(imdsCal,@addLabelData,IncludeInfo=true);
dsTest = transform(imdsTest,@addLabelData,IncludeInfo=true);

Visualize a sample of nine augmented training images.

exampleData = readall(subset(imdsNormalTrain,1:9));
montage(exampleData(:,1));

 Detect Image Anomalies Using Explainable FCDD Network

3-101

Create FCDD Model

This example uses a fully convolutional data description (FCDD) model [1 on page 3-111]. The basic
idea of FCDD is to train a network to produce an anomaly score map that describes the probability
that each region in the input image contains anomaly content.

The pretrainedEncoderNetwork function returns the first three downsampling stages of an
ImageNet pretrained Inception-v3 network for use as a pretrained backbone.

backbone = pretrainedEncoderNetwork("inceptionv3",3);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-102

Create an FCDD anomaly detector network by using the fcddAnomalyDetector function with the
Inception-v3 backbone.

net = fcddAnomalyDetector(backbone);

Train Network or Download Pretrained Network

By default, this example downloads a pretrained version of the FCDD anomaly detector using the
helper function downloadTrainedNetwork. The helper function is attached to this example as a
supporting file. You can use the pretrained network to run the entire example without waiting for
training to complete.

To train the network, set the doTraining variable in the following code to true. Specify the number
of epochs to use for training numEpochs by entering a value in the field. Train the model by using the
trainFCDDAnomalyDetector function.

Train on one or more GPUs, if available. Using a GPU requires Parallel Computing Toolbox™ and a
CUDA® enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about 3 minutes on an NVIDIA Titan RTX™.

doTraining =

numEpochs = ;
if doTraining
 options = trainingOptions("adam", ...
 Shuffle="every-epoch",...
 MaxEpochs=numEpochs,InitialLearnRate=1e-4, ...
 MiniBatchSize=32,...
 BatchNormalizationStatistics="moving");
 detector = trainFCDDAnomalyDetector(imdsNormalTrain,imdsAnomalyTrain,net,options);
 modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
 save(fullfile(dataDir,"trainedPillAnomalyDetector-"+modelDateTime+".mat"),"detector");
else
 trainedPillAnomalyDetectorNet_url = "https://ssd.mathworks.com/supportfiles/"+ ...
 "vision/data/trainedFCDDPillAnomalyDetectorSpkg.zip";
 downloadTrainedNetwork(trainedPillAnomalyDetectorNet_url,dataDir);
 load(fullfile(dataDir,"folderForSupportFilesInceptionModel", ...
 "trainedPillFCDDNet.mat"));
end

Set Anomaly Threshold

Select an anomaly score threshold for the anomaly detector, which classifies images based on
whether their scores are above or below the threshold value. This example uses a calibration data set
that contains both normal and anomalous images to select the threshold.

Obtain the mean anomaly score and ground truth label for each image in the calibration set.

scores = predict(detector,dsCal);
labels = imdsCal.Labels ~= "normal";

Plot a histogram of the mean anomaly scores for the normal and anomaly classes. The distributions
are well separated by the model-predicted anomaly score.

numBins = 20;
[~,edges] = histcounts(scores,numBins);

 Detect Image Anomalies Using Explainable FCDD Network

3-103

figure
hold on
hNormal = histogram(scores(labels==0),edges);
hAnomaly = histogram(scores(labels==1),edges);
hold off
legend([hNormal,hAnomaly],"Normal","Anomaly")
xlabel("Mean Anomaly Score")
ylabel("Counts")

Calculate the optimal anomaly threshold by using the anomalyThreshold function. Specify the first
two input arguments as the ground truth labels, labels, and predicted anomaly scores, scores, for
the calibration data set. Specify the third input argument as true because true positive anomaly
images have a labels value of true. The anomalyThreshold function returns the optimal
threshold and the receiver operating characteristic (ROC) curve for the detector, stored as an
rocmetrics (Deep Learning Toolbox) object.

[thresh,roc] = anomalyThreshold(labels,scores,true);

Set the Threshold property of the anomaly detector to the optimal value.

detector.Threshold = thresh;

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-104

Plot the ROC by using the plot (Deep Learning Toolbox) object function of rocmetrics. The ROC
curve illustrates the performance of the classifier for a range of possible threshold values. Each point
on the ROC curve represents the false positive rate (x-coordinate) and true positive rate (y-
coordinate) when the calibration set images are classified using a different threshold value. The solid
blue line represents the ROC curve. The red dashed line represents a no-skill classifier corresponding
to a 50% success rate. The ROC area under the curve (AUC) metric indicates classifier performance,
and the maximum ROC AUC corresponding to a perfect classifier is 1.0.

plot(roc)
title("ROC AUC: "+ roc.AUC)

Evaluate Classification Model

Classify each image in the test set as either normal or anomalous.

testSetOutputLabels = classify(detector,dsTest);

Get the ground truth labels of each test image.

testSetTargetLabels = dsTest.UnderlyingDatastores{1}.Labels;

 Detect Image Anomalies Using Explainable FCDD Network

3-105

Evaluate the anomaly detector by calculating performance metrics by using the
evaluateAnomalyDetection function. The function calculates several metrics that evaluate the
accuracy, precision, sensitivity, and specificity of the detector for the test data set.

metrics = evaluateAnomalyDetection(testSetOutputLabels,testSetTargetLabels,anomalyClasses);

Evaluating anomaly detection results

* Finalizing... Done.
* Data set metrics:

 GlobalAccuracy MeanAccuracy Precision Recall Specificity F1Score FalsePositiveRate FalseNegativeRate
 ______________ ____________ _________ _______ ___________ _______ _________________ _________________

 0.96923 0.97778 1 0.95556 1 0.97727 0 0.044444

The ConfusionMatrix property of metrics contains the confusion matrix for the test set. Extract
the confusion matrix and display a confusion plot. The classification model in this example is very
accurate and predicts a small percentage of false positives and false negatives.

M = metrics.ConfusionMatrix{:,:};
confusionchart(M,["Normal","Anomaly"])
acc = sum(diag(M)) / sum(M,"all");
title("Accuracy: "+acc)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-106

If you specify multiple anomaly class labels, such as dirt and chip in this example, the
evaluateAnomalyDetection function calculates metrics for the whole data set and for each
anomaly class. The per-class metrics are returned in the ClassMetrics property of the
anomalyDetectionMetrics object, metrics.

metrics.ClassMetrics

ans=2×2 table
 Accuracy AccuracyPerSubClass
 ________ ___________________

 Normal 1 {1×1 table}
 Anomaly 0.95556 {2×1 table}

metrics.ClassMetrics(2,"AccuracyPerSubClass").AccuracyPerSubClass{1}

ans=2×1 table
 AccuracyPerSubClass

 chip 0.84375
 dirt 0.99029

Explain Classification Decisions

You can use the anomaly heatmap predicted by the anomaly detector to help explain why an image is
classified as normal or anomalous. This approach is useful for identifying patterns in false negatives
and false positives. You can use these patterns to identify strategies for increasing class balancing of
the training data or improving the network performance.

Calculate Anomaly Heat Map Display Range

Calculate a display range that reflects the range of anomaly scores observed across the entire
calibration set, including normal and anomalous images. Using the same display range across images
allows you to compare images more easily than if you scale each image to its own minimum and
maximum. Apply the display range for all heatmaps in this example.

minMapVal = inf;
maxMapVal = -inf;
reset(dsCal)
while hasdata(dsCal)
 img = read(dsCal);
 map = anomalyMap(detector,img{1});
 minMapVal = min(min(map,[],"all"),minMapVal);
 maxMapVal = max(max(map,[],"all"),maxMapVal);
end
displayRange = [minMapVal,maxMapVal];

View Heatmap of Anomaly Image

Select an image of a correctly classified anomaly. This result is a true positive classification. Display
the image.

testSetAnomalyLabels = testSetTargetLabels ~= "normal";
idxTruePositive = find(testSetAnomalyLabels' & testSetOutputLabels,1,"last");
dsExample = subset(dsTest,idxTruePositive);

 Detect Image Anomalies Using Explainable FCDD Network

3-107

img = read(dsExample);
img = img{1};
map = anomalyMap(detector,img);
imshow(anomalyMapOverlay(img,map,MapRange=displayRange,Blend="equal"))

View Heatmap of Normal Image

Select and display an image of a correctly classified normal image. This result is a true negative
classification.

idxTrueNegative = find(~(testSetAnomalyLabels' | testSetOutputLabels));
dsExample = subset(dsTest,idxTrueNegative);
img = read(dsExample);
img = img{1};
map = anomalyMap(detector,img);
imshow(anomalyMapOverlay(img,map,MapRange=displayRange,Blend="equal"))

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-108

View Heatmaps of False Negative Images

False negatives are images with pill defect anomalies that the network classifies as normal. Use the
explanation from the network to gain insights into the misclassifications.

Find any false negative images from the test set. Obtain heatmap overlays of the false negative
images by using the transform function. The operations of the transform are specified by an
anonymous function that applies the anomalyMapOverlay function to obtain heatmap overlays for
each false negative in the test set.

falseNegativeIdx = find(testSetAnomalyLabels' & ~testSetOutputLabels);
if ~isempty(falseNegativeIdx)
 fnExamples = subset(dsTest,falseNegativeIdx);
 fnExamplesWithHeatmapOverlays = transform(fnExamples,@(x) {...
 anomalyMapOverlay(x{1},anomalyMap(detector,x{1}), ...
 MapRange=displayRange,Blend="equal")});
 fnExamples = readall(fnExamples);
 fnExamples = fnExamples(:,1);
 fnExamplesWithHeatmapOverlays = readall(fnExamplesWithHeatmapOverlays);
 montage(fnExamples)
 montage(fnExamplesWithHeatmapOverlays)
else
 disp("No false negatives detected.")
end

 Detect Image Anomalies Using Explainable FCDD Network

3-109

View Heatmaps of False Positive Images

False positives are images without pill defect anomalies that the network classifies as anomalous.
Find any false positives in the test set. Use the explanation from the network to gain insights into the
misclassifications. For example, if anomalous scores are localized to the image background, you can
explore suppressing the background during preprocessing.

falsePositiveIdx = find(~testSetAnomalyLabels' & testSetOutputLabels);
if ~isempty(falsePositiveIdx)
 fpExamples = subset(dsTest,falsePositiveIdx);
 fpExamplesWithHeatmapOverlays = transform(fpExamples,@(x) { ...
 anomalyMapOverlay(x{1},anomalyMap(detector,x{1}), ...
 MapRange=displayRange,Blend="equal")});
 fpExamples = readall(fpExamples);
 fpExamples = fpExamples(:,1);
 fpExamplesWithHeatmapOverlays = readall(fpExamplesWithHeatmapOverlays);
 montage(fpExamples)
 montage(fpExamplesWithHeatmapOverlays)
else
 disp("No false positives detected.")
end

No false positives detected.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-110

Supporting Functions

The addLabelData helper function creates a one-hot encoded representation of label information in
data.

function [data,info] = addLabelData(data,info)
 if info.Label == categorical("normal")
 onehotencoding = 0;
 else
 onehotencoding = 1;
 end
 data = {data,onehotencoding};
end

References

[1] Liznerski, Philipp, Lukas Ruff, Robert A. Vandermeulen, Billy Joe Franks, Marius Kloft, and Klaus-
Robert Müller. "Explainable Deep One-Class Classification." Preprint, submitted March 18, 2021.
https://arxiv.org/abs/2007.01760.

[2] Ruff, Lukas, Robert A. Vandermeulen, Billy Joe Franks, Klaus-Robert Müller, and Marius Kloft.
"Rethinking Assumptions in Deep Anomaly Detection." Preprint, submitted May 30, 2020. https://
arxiv.org/abs/2006.00339.

[3] Simonyan, Karen, and Andrew Zisserman. "Very Deep Convolutional Networks for Large-Scale
Image Recognition." Preprint, submitted April 10, 2015. https://arxiv.org/abs/1409.1556.

[4] ImageNet. https://www.image-net.org.

See Also
transform | pretrainedEncoderNetwork | fcddAnomalyDetector |
trainFCDDAnomalyDetector | predict | anomalyThreshold | anomalyMapOverlay |
evaluateAnomalyDetection | anomalyDetectionMetrics | rocmetrics | confusionchart

Related Examples
• “Detect Anomalies in Pills During Live Image Acquisition” (Image Acquisition Toolbox)
• “Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings” on page 3-112
• “Classify Defects on Wafer Maps Using Deep Learning” on page 3-83

More About
• “Getting Started with Anomaly Detection Using Deep Learning” on page 17-11
• “Datastores for Deep Learning” (Deep Learning Toolbox)

 Detect Image Anomalies Using Explainable FCDD Network

3-111

https://arxiv.org/abs/2007.01760
https://arxiv.org/abs/2006.00339
https://arxiv.org/abs/2006.00339
https://arxiv.org/abs/1409.1556
https://www.image-net.org

Detect Image Anomalies Using Pretrained ResNet-18 Feature
Embeddings

This example shows how to train a similarity-based anomaly detector using one-class learning of
feature embeddings extracted from a pretrained ResNet-18 convolutional neural network.

This example applies patch distribution modeling (PaDiM) [1 on page 3-131] to train an anomaly
detection classifier. During training, you fit a Gaussian distribution that models the mean and
covariance of normal image features. During testing, the classifier labels images whose features
deviate from the Gaussian distribution by more than a certain threshold as anomalous. PaDiM is a
similarity-based method because the similarity between test images and the normal image
distribution drives classification. The PaDiM method has several practical advantages.

• PaDiM extracts features from a pretrained CNN without requiring that you retrain the network.
Therefore, you can run the example efficiently without special hardware requirements such as a
GPU.

• PaDiM is a one-class learning approach. The classification model is trained using only normal
images. Training does not require images with anomalies, which can be rare, expensive, or unsafe
to obtain for certain applications.

• PaDiM is an explainable classification method. The PaDiM classifier generates an anomaly score
for each spatial patch. You can visualize the scores as a heatmap to localize anomalies and gain
insight into the model.

The PaDiM method is suitable for image data sets that can be cropped to match the input size of the
pretrained CNN. The input size of the CNN depends on the data used to train the network. For
applications requiring more flexibility in image size, an alternative approach might be more
appropriate. For an example of such an approach, see “Detect Image Anomalies Using Explainable
FCDD Network”.

Download Concrete Crack Images for Classification Data Set

This example uses the Concrete Crack Images for Classification data set [4 on page 3-131] [5 on page
3-131]. The data set contains images of two classes: Negative images (or normal images) without
cracks present in the road and Positive images (or anomaly images) with cracks. The data set
provides 20,000 images of each class. The size of the data set is 235 MB.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-112

https://data.mendeley.com/datasets/5y9wdsg2zt/2

Set dataDir as the desired location of the data set.

dataDir = fullfile(tempdir,"ConcreteCrackDataset");
if ~exist(dataDir,"dir")
 mkdir(dataDir);
end

To download the data set, go to this link: https://prod-dcd-datasets-cache-zipfiles.s3.eu-
west-1.amazonaws.com/5y9wdsg2zt-2.zip. Extract the ZIP file to obtain a RAR file, then extract the
contents of the RAR file into the directory specified by the dataDir variable. When extracted
successfully, dataDir contains two subdirectories: Negative and Positive.

Load and Preprocess Data

Create an imageDatastore that reads and manages the image data. Label each image as Positive
or Negative according to the name of its directory.

imdsPositive = imageDatastore(fullfile(dataDir,"Positive"),LabelSource="foldernames");
imdsNegative = imageDatastore(fullfile(dataDir,"Negative"),LabelSource="foldernames");

Display an example of each class. Display a negative, or good, image without crack anomalies on the
left. In the good image, imperfections and deviations in texture are small. Display a positive, or
anomalous, image on the right. The anomalous image shows a large black crack oriented vertically.

samplePositive = preview(imdsPositive);
sampleNegative = preview(imdsNegative);
montage({sampleNegative,samplePositive})
title("Road Images Without (Left) and with (Right) Cracks")

Partition Data into Training, Calibration, and Test Sets

To simulate a more typical semisupervised workflow, create a training set of 250 images from the
Negative class only. Allocate 100 Negative images and 100 Positive images to a calibration set.

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

3-113

https://prod-dcd-datasets-cache-zipfiles.s3.eu-west-1.amazonaws.com/5y9wdsg2zt-2.zip
https://prod-dcd-datasets-cache-zipfiles.s3.eu-west-1.amazonaws.com/5y9wdsg2zt-2.zip

This example uses a calibration set to pick a threshold for the classifier. The classifier labels images
with anomaly scores above the threshold as anomalous. Using separate calibration and test sets
avoids information leaking from the test set into the design of the classifier. Allocate 1000 Negative
images and 1000 Positive images to a test set.

numTrainNormal = 250;
numCal = 100;
numTest = 1000;

[imdsTestPos,imdsCalPos] = splitEachLabel(imdsPositive,numTest,numCal);
[imdsTrainNeg,imdsTestNeg,imdsCalNeg] = splitEachLabel(imdsNegative,numTrainNormal,numTest,numCal,"randomized");

trainFiles = imdsTrainNeg.Files;
calibrationFiles = cat(1,imdsCalPos.Files,imdsCalNeg.Files);
testFiles = cat(1,imdsTestPos.Files,imdsTestNeg.Files);

imdsTrain = imageDatastore(trainFiles,LabelSource="foldernames");
imdsCal = imageDatastore(calibrationFiles,LabelSource="foldernames");
imdsTest = imageDatastore(testFiles,LabelSource="foldernames");

Define an anonymous function, addLabelFcn, that creates a one-hot encoded representation of label
information from an input image. Then, transform the datastores by using the transform function
such that the datastores return a cell array of image data and a corresponding one-hot encoded array.
The transform function applies the operations specified by addLabelFcn.

addLabelFcn = @(x,info) deal({x,onehotencode(info.Label,1)},info);
tdsTrain = transform(imdsTrain,addLabelFcn,IncludeInfo=true);
tdsCal = transform(imdsCal,addLabelFcn,IncludeInfo=true);
tdsTest = transform(imdsTest,addLabelFcn,IncludeInfo=true);

Resize and Crop Images

Define an anonymous function, resizeAndCropImageFcn, that applies the
resizeAndCropForConcreteAnomalyDetector helper function to the input images. The
resizeAndCropForConcreteAnomalyDetector helper function resizes and center crops input
images, and is attached to the example as a supporting file. Transform the datastores by using the
transform function with the operations specified by resizeAndCropImageFcn. This operation
crops each image in the training, calibration, and test datastores to a size of 244-by-224 to match the
input size of the pretrained CNN.

resizeImageSize = [256 256];
targetImageSize = [224 224];
resizeAndCropImageFcn = @(x,info) deal({resizeAndCropForConcreteAnomalyDetector(x{1},resizeImageSize,targetImageSize),x{2}});
tdsTrain = transform(tdsTrain,resizeAndCropImageFcn);
tdsCal = transform(tdsCal,resizeAndCropImageFcn);
tdsTest = transform(tdsTest,resizeAndCropImageFcn);

Batch Training Data

Create a minibatchqueue (Deep Learning Toolbox) object that manages the mini-batches of training
data. The minibatchqueue object automatically converts data to a dlarray (Deep Learning
Toolbox) object that enables automatic differentiation in deep learning applications.

Specify the mini-batch data extraction format as "SSCB" (spatial, spatial, channel, batch).

minibatchSize = 128;
trainQueue = minibatchqueue(tdsTrain, ...

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-114

 PartialMiniBatch="return", ...
 MiniBatchFormat=["SSCB","CB"], ...
 MiniBatchSize=minibatchSize);

Create PaDiM Model

This example applies the PaDiM method described in [1 on page 3-131]. The basic idea of PaDiM is to
simplify 2-D images into a lower resolution grid of embedding vectors that encode features extracted
from a subset of layers of a pretrained CNN. Each embedding vector generated from the lower
resolution CNN layers corresponds to a spatial patch of pixels in the original resolution image. The
training step generates feature embedding vectors for all training set images and fits a statistical
Gaussian distribution to the training data. A trained PaDiM classifier model consists of the mean and
covariance matrix describing the learned Gaussian distribution for normal training images.

Extract Image Features from Pretrained CNN

This example uses the ResNet-18 network [2 on page 3-131] to extract features of input images.
ResNet-18 is a convolutional neural network with 18 layers and is pretrained on ImageNet [3 on page
3-131].

Extract features from three layers of ResNet-18 located at the end of the first, second, and third
blocks. For an input image of size 224-by-224, these layers correspond to activations with spatial
resolutions of 56-by-56, 28-by-28, and 14-by-14, respectively. For example, the XTrainFeatures1
variable contains 56-by-56 feature vectors from the bn2b_branch2b layer for each training set
image. The layer activations with higher and lower spatial resolutions provide a balance between
greater visual detail and global context, respectively.

net = resnet18("Weights","imagenet");

feature1LayerName = "bn2b_branch2b";
feature2LayerName = "bn3b_branch2b";
feature3LayerName = "bn4b_branch2b";

XTrainFeatures1 = []; %#ok<*UNRCH>
XTrainFeatures2 = [];
XTrainFeatures3 = [];

reset(trainQueue);
shuffle(trainQueue);
idx = 1;
while hasdata(trainQueue)
 [X,T] = next(trainQueue);

 XTrainFeatures1 = cat(4,XTrainFeatures1,activations(net,extractdata(X),feature1LayerName));
 XTrainFeatures2 = cat(4,XTrainFeatures2,activations(net,extractdata(X),feature2LayerName));
 XTrainFeatures3 = cat(4,XTrainFeatures3,activations(net,extractdata(X),feature3LayerName));
 idx = idx+size(X,4);
end

Concatenate Feature Embeddings

Combine the features extracted from the three ResNet-18 layers by using the
formAlignedEmbeddings helper function defined at the end of this example. The
formAlignedEmbeddings helper function upsamples the feature vectors extracted from the second
and third blocks of ResNet-18 to match the spatial resolution of the first block and concatenates the
three feature vectors.

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

3-115

XTrainEmbeddings = concatenateEmbeddings(XTrainFeatures1,XTrainFeatures2,XTrainFeatures3);

The variable XTrainEmbeddings is a numeric array containing feature embedding vectors for the
training image set. The first two spatial dimensions correspond to the number of spatial patches in
each image. The 56-by-56 spatial patches match the size of the bn2b_branch2b layer of ResNet-18.
The third dimension corresponds to the channel data, or the length of the feature embedding vector
for each patch. The fourth dimension corresponds to the number of training images.

whos XTrainEmbeddings

 Name Size Bytes Class Attributes

 XTrainEmbeddings 56x56x448x250 1404928000 single

Randomly Downsample Feature Embedding Channel Dimension

Reduce the dimensionality of the embedding vector by randomly selecting a subset of 100 out of 448
elements in the channel dimension to keep. As shown in [1 on page 3-131], this random
dimensionality reduction step increases classification efficiency without decreasing accuracy.

selectedChannels = 100;
totalChannels = 448;
rIdx = randi(totalChannels,[1 selectedChannels]);
XTrainEmbeddings = XTrainEmbeddings(:,:,rIdx,:);

Compute Mean and Covariance of Gaussian Distribution

Model the training image patch embedding vectors as a Gaussian distribution by calculating the
mean and covariance matrix across training images.

Reshape the embedding vector to have a single spatial dimension of length H*W.

[H, W, C, B] = size(XTrainEmbeddings);
XTrainEmbeddings = reshape(XTrainEmbeddings,[H*W C B]);

Calculate the mean of the embedding vector along the third dimension, corresponding to the average
of the 250 training set images. In this example, the means variable is a 3136-by-100 matrix, with
average feature values for each of the 56-by-56 spatial patches and 100 channel elements.

means = mean(XTrainEmbeddings,3);

For each embedding vector, calculate the covariance matrix between the 100 channel elements.
Include a regularization constant based on the identity matrix to make covars a full rank and
invertible matrix. In this example, the covars variable is a 3136-by-100-by-100 matrix.

covars = zeros([H*W C C]);
identityMatrix = eye(C);
for idx = 1:H*W
 covars(idx,:,:) = cov(squeeze(XTrainEmbeddings(idx,:,:))') + 0.01* identityMatrix;
end

Choose Anomaly Score Threshold for Classification

An important part of the semisupervised anomaly detection workflow is deciding on an anomaly score
threshold for separating normal images from anomaly images. This example uses the calibration set
to calculate the threshold.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-116

In this example, the anomaly score metric is the Mahalanobis distance between the feature
embedding vector and the learned Gaussian distribution for normal images. The anomaly score for
each calibration image patch forms an anomaly score map that localizes predicted anomalies.

Calculate Anomaly Scores for Calibration Set

Calculate feature embedding vectors for the calibration set images. First, create a minibatchqueue
(Deep Learning Toolbox) object to manage the mini-batches of calibration observations. Specify the
mini-batch data extraction format as "SSCB" (spatial, spatial, channel, batch).

minibatchSize = 20;
calibrationQueue = minibatchqueue(tdsCal, ...
 MiniBatchFormat=["SSCB","CB"], ...
 MiniBatchSize=minibatchSize, ...
 OutputEnvironment="auto");

Perform the following steps to compute the anomaly scores for the calibration set images.

• Extract features of the calibration images from the same three layers of ResNet-18 used in
training.

• Combine the features from the three layers into an overall embedding variable XCalEmbeddings
by using the formAlignedEmbeddings helper function. The helper function is defined at the end
of this example.

• Downsample the embedding vectors to the same 100 channel elements used during training,
specified by rIdx.

• Reshape the embedding vectors into an H*W-by-C-by-B array, where B is the number of images in
the mini-batch.

• Calculate the Mahalanobis distance between each embedding feature vector and the learned
Gaussian distribution by using the calculateDistance helper function. The helper function is
defined at the end of this example.

• Create an anomaly score map for each image by using the createAnomalyScoreMap helper
function. The helper function is defined at the end of this example.

maxScoresCal = zeros(tdsCal.numpartitions,1);
minScoresCal = zeros(tdsCal.numpartitions,1);
meanScoresCal = zeros(tdsCal.numpartitions,1);
idx = 1;

while hasdata(calibrationQueue)
 XCal = next(calibrationQueue);

 XCalFeatures1 = activations(net,extractdata(XCal),feature1LayerName);
 XCalFeatures2 = activations(net,extractdata(XCal),feature2LayerName);
 XCalFeatures3 = activations(net,extractdata(XCal),feature3LayerName);

 XCalEmbeddings = concatenateEmbeddings(XCalFeatures1,XCalFeatures2,XCalFeatures3);

 XCalEmbeddings = XCalEmbeddings(:,:,rIdx,:);
 [H, W, C, B] = size(XCalEmbeddings);
 XCalEmbeddings = reshape(permute(XCalEmbeddings,[1 2 3 4]),[H*W C B]);

 distances = calculateDistance(XCalEmbeddings,H,W,B,means,covars);

 anomalyScoreMap = createAnomalyScoreMap(distances,H,W,B,targetImageSize);

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

3-117

 % Calculate max, min, and mean values of the anomaly score map
 maxScoresCal(idx:idx+size(XCal,4)-1) = squeeze(max(anomalyScoreMap,[],[1 2 3]));
 minScoresCal(idx:idx+size(XCal,4)-1) = squeeze(min(anomalyScoreMap,[],[1 2 3]));
 meanScoresCal(idx:idx+size(XCal,4)-1) = squeeze(mean(anomalyScoreMap,[1 2 3]));

 idx = idx+size(XCal,4);
 clear XCalFeatures1 XCalFeatures2 XCalFeatures3 anomalyScoreMap distances XCalEmbeddings XCal
end

Create Anomaly Score Histograms

Assign the known ground truth labels "Positive" and "Negative" to the calibration set images.

labelsCal = tdsCal.UnderlyingDatastores{1}.Labels ~= "Negative";

Use the minimum and maximum values of the calibration data set to normalize the mean scores to the
range [0, 1].

maxScore = max(maxScoresCal,[],"all");
minScore = min(minScoresCal,[],"all");

scoresCal = mat2gray(meanScoresCal, [minScore maxScore]);

Plot a histogram of the mean anomaly scores for the normal and anomaly classes. The distributions
are well separated by the model-predicted anomaly score.

[~,edges] = histcounts(scoresCal,20);
hGood = histogram(scoresCal(labelsCal==0),edges);
hold on
hBad = histogram(scoresCal(labelsCal==1),edges);
hold off
legend([hGood,hBad],"Normal (Negative)","Anomaly (Positive)")
xlabel("Mean Anomaly Score");
ylabel("Counts");

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-118

Calculate Threshold Value

Create a receiver operating characteristic (ROC) curve to calculate the anomaly threshold. Each point
on the ROC curve represents the false positive rate (x-coordinate) and true positive rate (y-
coordinate) when the calibration set images are classified using a different threshold value. An
optimal threshold maximizes the true positive rate and minimizes the false positive rate. Using ROC
curves and related metrics allows you to select a threshold based on the tradeoff between false
positives and false negatives. These tradeoffs depend on the application-specific implications of
misclassifying images as false positives versus false negatives.

Create the ROC curve by using the perfcurve (Statistics and Machine Learning Toolbox) function.
The solid blue line represents the ROC curve. The red dashed line represents a random classifier
corresponding to a 50% success rate. Display the area under the curve (AUC) metric for the
calibration set in the title of the figure. A perfect classifier has an ROC curve with a maximum AUC of
1.

[xroc,yroc,troc,auc] = perfcurve(labelsCal,scoresCal,true);
figure
lroc = plot(xroc,yroc);
hold on
lchance = plot([0 1],[0 1],"r--");
hold off
xlabel("False Positive Rate")
ylabel("True Positive Rate")
title("ROC Curve AUC: "+auc);
legend([lroc,lchance],"ROC curve","Random Chance")

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

3-119

This example uses the maximum Youden Index metric to select the anomaly score threshold from the
ROC curve. This corresponds to the threshold value that maximizes the distance between the blue
model ROC curve and the red random chance ROC curve.

[~,ind] = max(yroc-xroc);
anomalyThreshold = troc(ind)

anomalyThreshold = 0.2082

Evaluate Classification Model

Calculate Anomaly Score Map for Test Set

Calculate feature embedding vectors for the test set images. First, create a minibatchqueue (Deep
Learning Toolbox) object to manage the mini-batches of test observations. Specify the mini-batch data
extraction format as "SSCB" (spatial, spatial, channel, batch).

testQueue = minibatchqueue(tdsTest, ...
 MiniBatchFormat=["SSCB","CB"], ...
 MiniBatchSize=minibatchSize, ...
 OutputEnvironment="auto");

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-120

Perform the following steps to compute the anomaly scores for the test set images.

• Extract features of the test images from the same three layers of ResNet-18 used in training.
• Combine the features from the three layers into an overall embedding variable

XTestEmbeddings by using the formAlignedEmbeddings helper function. The helper function
is defined at the end of this example.

• Downsample the embedding vectors to the same 100 channel elements used during training,
specified by rIdx.

• Reshape the embedding vectors into an H*W-by-C-by-B array, where B is the number of images in
the mini-batch.

• Calculate the Mahalanobis distance between each embedding feature vector and the learned
Gaussian distribution by using the calculateDistance helper function. The helper function is
defined at the end of this example.

• Create an anomaly score map for each image by using the createAnomalyScoreMap helper
function. The helper function is defined at the end of this example.

• Concatenate the anomaly score maps across mini-batches. The anomalyScoreMapsTest variable
specifies score maps for all test set images.

idx = 1;

XTestImages = [];
anomalyScoreMapsTest = [];

while hasdata(testQueue)
 XTest = next(testQueue);

 XTestFeatures1 = activations(net,extractdata(XTest),feature1LayerName);
 XTestFeatures2 = activations(net,extractdata(XTest),feature2LayerName);
 XTestFeatures3 = activations(net,extractdata(XTest),feature3LayerName);

 XTestEmbeddings = concatenateEmbeddings(XTestFeatures1,XTestFeatures2,XTestFeatures3);

 XTestEmbeddings = XTestEmbeddings(:,:,rIdx,:);
 [H, W, C, B] = size(XTestEmbeddings);
 XTestEmbeddings = reshape(XTestEmbeddings,[H*W C B]);

 distances = calculateDistance(XTestEmbeddings,H,W,B,means,covars);

 anomalyScoreMap = createAnomalyScoreMap(distances,H,W,B,targetImageSize);
 XTestImages = cat(4,XTestImages,gather(XTest));
 anomalyScoreMapsTest = cat(4,anomalyScoreMapsTest,gather(anomalyScoreMap));

 idx = idx+size(XTest,4);
 clear XTestFeatures1 XTestFeatures2 XTestFeatures3 anomalyScoreMap distances XTestEmbeddings XTest
end

Classify Test Images

Calculate an overall mean anomaly score for each test image. Normalize the anomaly scores to the
same range used to pick the threshold, defined by minScore and maxScore.

scoresTest = squeeze(mean(anomalyScoreMapsTest,[1 2 3]));
scoresTest = mat2gray(scoresTest, [minScore maxScore]);

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

3-121

Predict class labels for each test set image by comparing the mean anomaly score map value to the
anomalyThreshold value.

predictedLabels = scoresTest > anomalyThreshold;

Calculate Classification Accuracy

Assign the known ground truth labels "Positive" or "Negative" to the test set images.

labelsTest = tdsTest.UnderlyingDatastores{1}.Labels ~= "Negative";

Calculate the confusion matrix and the classification accuracy for the test set. The classification
model in this example is accurate and predicts a small percentage of false positives and false
negatives.

targetLabels = logical(labelsTest);
M = confusionmat(targetLabels,predictedLabels);
confusionchart(M,["Negative","Positive"])
acc = sum(diag(M)) / sum(M,"all");
title("Accuracy: "+acc);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-122

Explain Classification Decisions

You can visualize the anomaly score map predicted by the PaDiM model as a heatmap overlaid on the
image. You can use this localization of predicted anomalies to help explain why an image is classified
as normal or anomalous. This approach is useful for identifying patterns in false negatives and false
positives. You can use these patterns to identify strategies to improve the classifier performance.

Calculate Heatmap Display Range

Instead of scaling the heatmap for each image individually, visualize heatmap data using the same
display range for all images in a data set. Doing so yields uniformly cool heatmaps for normal images
and warm colors in anomalous regions for anomaly images.

Calculate a display range that reflects the range of anomaly score values observed in the calibration
set. Apply the display range for all heatmaps in this example. Set the minimum value of the
displayRange to 0. Set the maximum value of the display range by calculating the maximum score
for each of the 200 calibration images, then selecting the 80th percentile of the maximums. Calculate
the percentile value by using the prctile function.

maxScoresCal = mat2gray(maxScoresCal);
scoreMapRange = [0 prctile(maxScoresCal,80,"all")];

View Heatmap of Anomaly

Select an image of a correctly classified anomaly. This result is a true positive classification. Display
the image.

idxTruePositive = find(targetLabels & predictedLabels);
dsTruePositive = subset(tdsTest,idxTruePositive);
dataTruePositive = preview(dsTruePositive);
imgTruePositive = dataTruePositive{1};
imshow(imgTruePositive)
title("True Positive Test Image")

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

3-123

Obtain an anomaly score map of the true positive anomaly image. Normalize the anomaly scores to
the minimum and maximum values of the calibration data set to match the range used to pick the
threshold.

anomalyTestMapsRescaled = mat2gray(anomalyScoreMapsTest, [minScore maxScore]);
scoreMapTruePositive = anomalyTestMapsRescaled(:,:,1,idxTruePositive(1));

Display the heatmap as an overlay over the image by using the
anomalyMapOverlayForConcreteAnomalyDetector helper function. This function is attached to
the example as a supporting file.

imshow(anomalyMapOverlayForConcreteAnomalyDetector(imgTruePositive,scoreMapTruePositive,ScoreMapRange=scoreMapRange));
title("Heatmap Overlay of True Positive Result")

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-124

To quantitatively confirm the result, display the mean anomaly score of the true positive test image as
predicted by the classifier. The value is greater than the anomaly score threshold.

disp("Mean anomaly score of test image: "+scoresTest(idxTruePositive(1)))

Mean anomaly score of test image: 0.25415

View Heatmap of Normal Image

Select and display an image of a correctly classified normal image. This result is a true negative
classification.

idxTrueNegative = find(~(targetLabels | predictedLabels));
dsTrueNegative = subset(tdsTest,idxTrueNegative);
dataTrueNegative = preview(dsTrueNegative);
imgTrueNegative = dataTrueNegative{1};
imshow(imgTrueNegative)
title("True Negative Test Image")

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

3-125

Obtain a heatmap of the normal image. Display the heatmap as an overlay over the image by using
the anomalyMapOverlayForConcreteAnomalyDetector helper function. This function is attached
to the example as a supporting file. Many true negative test images, such as this test image, have
either small anomaly scores across the entire image or large anomaly scores in a localized portion of
the image.

scoreMapTrueNegative = anomalyTestMapsRescaled(:,:,1,idxTrueNegative(1));
imshow(anomalyMapOverlayForConcreteAnomalyDetector(imgTrueNegative,scoreMapTrueNegative,ScoreMapRange=scoreMapRange))
title("Heatmap Overlay of True Negative Result")

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-126

To quantitatively confirm the result, display the mean anomaly score of the true positive test image as
predicted by the classifier. The value is less than the anomaly score threshold.

disp("Mean anomaly score of test image: "+scoresTest(idxTrueNegative(1)))

Mean anomaly score of test image: 0.12314

View Heatmaps of False Positive Images

False positives are images without crack anomalies that the network classifies as anomalous. Use the
explanation from the PaDiM model to gain insight into the misclassifications.

Find false positive images from the test set. Display three false positive images as a montage.

idxFalsePositive = find(~targetLabels & predictedLabels);
dataFalsePositive = readall(subset(tdsTest,idxFalsePositive));
numelFalsePositive = length(idxFalsePositive);
numImages = min(numelFalsePositive,3);
if numelFalsePositive>0
 montage(dataFalsePositive(1:numImages,1),Size=[1,numImages],BorderSize=10);
 title("False Positives in Test Set")
end

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

3-127

Obtain heatmaps of the false positive images.

hmapOverlay = cell(1,numImages);
for idx = 1:numImages
 img = dataFalsePositive{idx,1};
 scoreMapFalsePositive = anomalyTestMapsRescaled(:,:,1,idxFalsePositive(idx));
 hmapOverlay{idx} = anomalyMapOverlayForConcreteAnomalyDetector(img,scoreMapFalsePositive,ScoreMapRange=scoreMapRange);
end

Display the heatmap overlays as a montage. The false positive images show features such as rocks
that have similar visual characteristics to cracks. The anomaly scores are high in these localized
regions. However, the training data set only labels images with cracks as anomalous, so the ground
truth label for these images is Negative. Training a classifier that recognizes rocks and other non-
crack defects as anomalous requires training data with non-crack defects labeled as anomalous.

if numelFalsePositive>0
 montage(hmapOverlay,Size=[1,numImages],BorderSize=10)
 title("Heatmap Overlays of False Positive Results")
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-128

Display the mean anomaly scores of the false positive test images as predicted by the PaDiM model.
The mean scores are greater than the anomaly score threshold, resulting in misclassifications.

disp("Mean anomaly scores:"); scoresTest(idxFalsePositive(1:numImages))

Mean anomaly scores:

ans = 3×1

 0.2125
 0.2395
 0.2651

View Heatmaps of False Negative Images

False negatives are images with crack anomalies that the network classifies as normal. Use the
explanation from the PaDiM model to gain insights into the misclassifications.

Find any false negative images from the test set. Display three false negative images as a montage.

idxFalseNegative = find(targetLabels & ~predictedLabels);
dataFalseNegative = readall(subset(tdsTest,idxFalseNegative));
numelFalseNegative = length(idxFalseNegative);
numImages = min(numelFalseNegative,3);
if numelFalseNegative>0
 montage(dataFalseNegative(1:numImages,1),Size=[1,numImages],BorderSize=10);
 title("False Negatives in Test Set")
end

Obtain heatmaps of the false negative images.

hmapOverlay = cell(1,numImages);
for idx = 1:numImages
 img = dataFalseNegative{idx,1};
 scoreMapFalseNegative = anomalyTestMapsRescaled(:,:,1,idxFalseNegative(idx));
 hmapOverlay{idx} = anomalyMapOverlayForConcreteAnomalyDetector(img,scoreMapFalseNegative,ScoreMapRange=scoreMapRange);
end

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

3-129

Display the heatmap overlays as a montage. The PaDiM model predicts large anomaly scores around
cracks, as expected.

if numelFalseNegative>0
 montage(hmapOverlay,Size=[1,numImages],BorderSize=10)
 title("Heatmap Overlays of False Negative Results")
end

Display the mean anomaly scores of the false negative test images as predicted by the PaDiM model.
The mean scores are less than the anomaly score threshold, resulting in misclassifications.

disp("Mean anomaly scores:"); scoresTest(idxFalsePositive(1:numImages))

Mean anomaly scores:

ans = 3×1

 0.2125
 0.2395
 0.2651

Supporting Functions

The concatenateEmbeddings helper function combines features extracted from three layers of
ResNet-18 into one feature embedding vector. The features from the second and third blocks of
ResNet-18 are resized to match the spatial resolution of the first block.

function XEmbeddings = concatenateEmbeddings(XFeatures1,XFeatures2,XFeatures3)
 XFeatures2Resize = imresize(XFeatures2,2,"nearest");
 XFeatures3Resize = imresize(XFeatures3,4,"nearest");
 XEmbeddings = cat(3,XFeatures1,XFeatures2Resize,XFeatures3Resize);
end

The calculateDistance helper function calculates the Mahalanobis distance between each
embedding feature vector specified by XEmbeddings and the learned Gaussian distribution for the
corresponding patch with mean specified by means and covariance matrix specified by covars.

function distances = calculateDistance(XEmbeddings,H,W,B,means,covars)
 distances = zeros([H*W 1 B]);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-130

 for dIdx = 1:H*W
 distances(dIdx,1,:) = pdist2((squeeze(means(dIdx,:))),(squeeze(XEmbeddings(dIdx,:,:))'),"mahal",(squeeze(covars(dIdx,:,:))));
 end
end

The createAnomalyScoreMap helper function creates an anomaly score map for each image with
embeddings vectors specified by XEmbeddings. The createAnomalyScoreMap function reshapes
and resizes the anomaly score map to match the size and resolution of the original input images.

function anomalyScoreMap = createAnomalyScoreMap(distances,H,W,B,targetImageSize)
 anomalyScoreMap = reshape(distances,[H W 1 B]);
 anomalyScoreMap = imresize(anomalyScoreMap,targetImageSize,"bilinear");
 for mIdx = 1:size(anomalyScoreMap,4)
 anomalyScoreMap(:,:,1,mIdx) = imgaussfilt(anomalyScoreMap(:,:,1,mIdx),4,FilterSize=33);
 end
end

References

[1] Defard, Thomas, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. “PaDiM: A Patch
Distribution Modeling Framework for Anomaly Detection and Localization.” In Pattern Recognition.
ICPR International Workshops and Challenges, 475–89. Lecture Notes in Computer Science. Cham,
Switzerland: Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-68799-1_35.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning for Image
Recognition.” In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–78.
Las Vegas, NV, USA: IEEE, 2016. https://doi.org/10.1109/CVPR.2016.90.

[3] ImageNet. https://www.image-net.org.

[4] Özgenel, Ç. F., and Arzu Gönenç Sorguç. “Performance Comparison of Pretrained Convolutional
Neural Networks on Crack Detection in Buildings.” Taipei, Taiwan, 2018. https://doi.org/10.22260/
ISARC2018/0094.

[5] Zhang, Lei, Fan Yang, Yimin Daniel Zhang, and Ying Julie Zhu. “Road Crack Detection Using Deep
Convolutional Neural Network.” In 2016 IEEE International Conference on Image Processing (ICIP),
3708–12. Phoenix, AZ, USA: IEEE, 2016. https://doi.org/10.1109/ICIP.2016.7533052.

See Also
imageDatastore | activations | resnet18 | perfcurve | confusionmat | confusionchart

Related Examples
• “Detect Image Anomalies Using Explainable FCDD Network” on page 3-99
• “Classify Defects on Wafer Maps Using Deep Learning” on page 3-83

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

3-131

https://doi.org/10.1007/978-3-030-68799-1_35
https://doi.org/10.1109/CVPR.2016.90
https://www.image-net.org
https://doi.org/10.22260/ISARC2018/0094
https://doi.org/10.22260/ISARC2018/0094
https://doi.org/10.1109/ICIP.2016.7533052

Detect Defects on Printed Circuit Boards Using YOLO v4
Network

This example shows how to detect, localize, and classify defects in printed circuit boards (PCBs) using
a you only look once version 4 (YOLO v4) deep neural network.

PCBs contain individual electronic devices and their connections. Defects in PCBs can result in poor
performance or product failures. By detecting defects in PCBs, production lines can remove faulty
PCBs and ensure that electronic devices are of high quality.

Download Pretrained YOLOv4 Detector

By default, this example downloads a pretrained version of the YOLOv4 object detector using the
helper function downloadTrainedNetwork. The helper function is attached to this example as a
supporting file. You can use the pretrained network to run the entire example without waiting for
training to complete.

trainedPCBDefectDetectorNet_url = "https://ssd.mathworks.com/supportfiles/"+ ...
 "vision/data/trainedPCBDefectDetectorYOLOv4.zip";
downloadTrainedNetwork(trainedPCBDefectDetectorNet_url,pwd);
load("trainedPCBDefectDetectorYOLOv4.mat");

List the classes that this network is trained to classify.

classNamesStr = ["missing hole","mouse bite","open circuit", ...
 "short","spur","spurious copper"];

Download PCB Defect Data Set

This example uses the PCB defect data set [1 on page 3-137] [2 on page 3-137]. The data set contains
1,386 images of PCB elements with synthesized defects. The data has six types of defect: missing
hole, mouse bite, open circuit, short, spur, and spurious copper. Each image contains multiple defects
of the same category in different locations. The data set contains bounding box and coordinate
information for every defect in every image. The size of the data set is 1.87 GB.

Specify dataDir as the desired location of the data set. Download the data set using the
downloadPCBDefectData helper function. This function is attached to the example as a supporting
file.

dataDir = fullfile(tempdir,"PCBDefects");
downloadPCBDefectData(dataDir)

Perform Object Detection

Read a sample image from the data set.

sampleImage = imread(fullfile(dataDir,"PCB-DATASET-master","images", ...
 "Missing_hole","01_missing_hole_01.jpg"));

Predict the bounding boxes, labels, and class-specific confidence scores for each bounding box by
using the detect function.

[bboxes,scores,labels] = detect(detector,sampleImage);

Display the results.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-132

imshow(sampleImage)
showShape("rectangle",bboxes,Label=labels);
title("Predicted Defects")

Prepare Data for Training

Create an image datastore that reads and manages the image data.

imageDir = fullfile(dataDir,"PCB-DATASET-master","images");
imds = imageDatastore(imageDir,FileExtensions=".jpg",IncludeSubfolders=true);

Create a file datastore that reads the annotation data from XML files. Specify a custom read function
that parses the XML files and extracts the bounding box information. The custom read function,
readPCBDefectAnnotations, is attached to the example as a supporting file.

annoDir = fullfile(dataDir,"PCB-DATASET-master","Annotations");
fds = fileDatastore(annoDir,ReadFcn=@readPCBDefectAnnotations, ...
 FileExtensions=".xml",IncludeSubfolders=true);

Save the labeled bounding box data as a box label datastore.

annotations = readall(fds);
tbl = struct2table(vertcat(annotations{:}));
blds = boxLabelDatastore(tbl);

Get the names of the object classes as a categorial vector.

classNames = categories(blds.LabelData{1,2})

classNames = 6×1 cell
 {'missing_hole' }
 {'mouse_bite' }

 Detect Defects on Printed Circuit Boards Using YOLO v4 Network

3-133

 {'open_circuit' }
 {'short' }
 {'spur' }
 {'spurious_copper'}

Combine the image and box label datastores.

ds = combine(imds,blds);

Analyze Object Class Distribution

Measure the distribution of class labels in the data set by using the countEachLabel function. The
classes in this data set are balanced.

countEachLabel(blds)

ans=6×3 table
 Label Count ImageCount
 _______________ _____ __________

 missing_hole 497 115
 mouse_bite 492 115
 open_circuit 482 116
 short 491 116
 spur 488 115
 spurious_copper 503 116

Partition Data

Split the data set into training, validation, and test sets. Because the total number of images is
relatively small, allocate a relatively large percentage (80%) of the data for training. Allocate 10% for
validation and the rest for testing.

numImages = ds.numpartitions;
numTrain = floor(0.8*numImages);
numVal = floor(0.1*numImages);

shuffledIndices = randperm(numImages);
dsTrain = subset(ds,shuffledIndices(1:numTrain));
dsVal = subset(ds,shuffledIndices(numTrain+1:numTrain+numVal));
dsTest = subset(ds,shuffledIndices(numTrain+numVal+1:end));

Preprocess Training Data

Specify the network input size.

inputSize = [800 960 3];

Resize the training data by using the transform function with custom resizing operations specified
by the preprocessPCBDefectData helper function. The helper function is attached to the example
as a supporting file. The preprocessPCBDefectData helper function resizes the images and the
bounding boxes to the size of the network input.

dsTrain = transform(dsTrain,@(data)preprocessPCBDefectData(data,inputSize));

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-134

Estimate Anchor Boxes

Estimate ten anchor boxes based on the size of objects in the preprocessed training data by using the
estimateAnchorBoxes function. This example uses a YOLO v4 deep learning network with two
output feature maps, so split the anchor boxes into two sets with five anchor boxes each.

anchorBoxes = estimateAnchorBoxes(dsTrain,10);
anchorBoxes = {anchorBoxes(1:5,:); anchorBoxes(6:end,:)};

Augment Training Data

Augment the training data by using the transform function with custom preprocessing operations
specified by the augmentDataForPCBDefectDetection helper function. The helper function is
attached to the example as a supporting file. The augmentDataForPCBDefectDetection function
applies these augmentations to the input data:

• Random horizontal flip
• Resizing by a random scale factor in the range [1, 1.1]

dsTrain = transform(dsTrain,@augmentDataForPCBDefectDetection);

Create YOLO v4 Object Detector Network

Create the YOLO v4 object detector by using the yolov4ObjectDetector function. Specify the
name of the pretrained YOLO v4 detection network trained on COCO data set [3 on page 3-137].
Specify the class names, the estimated anchor boxes, and the network input size.

detectorToTrain = yolov4ObjectDetector("tiny-yolov4-coco",classNames,anchorBoxes, ...
 InputSize=inputSize);

Specify Training Options

Specify network training options using the trainingOptions (Deep Learning Toolbox) function.
Train the object detector using the Adam solver for 500 epochs. Specify the ValidationData name-
value argument as the validation data.

options = trainingOptions("adam", ...
 MiniBatchSize=32, ...
 MaxEpochs=500, ...
 BatchNormalizationStatistics="moving", ...
 Shuffle="every-epoch", ...
 VerboseFrequency=250, ...
 ValidationFrequency=250, ...
 CheckpointPath=dataDir, ...
 ValidationData=dsVal, ...
 ResetInputNormalization=false, ...
 DispatchInBackground=true);

Train Detector

To train the detector, set the doTraining variable in the following code to true. Train the detector
by using the trainYOLOv4ObjectDetector function.

Train on one or more GPUs, if available. Using a GPU requires Parallel Computing Toolbox™ and a
CUDA® enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about 24 hours on an NVIDIA Titan RTX™ with 24 GB of memory.

 Detect Defects on Printed Circuit Boards Using YOLO v4 Network

3-135

doTraining = ;
if doTraining
 [detector,info] = trainYOLOv4ObjectDetector(dsTrain,detectorToTrain,options);
 modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
 save(tempdir+filesep+"trainedPCBDefectDetector-"+modelDateTime+".mat", ...
 "detector");
end

Evaluate Detector

Evaluate the trained object detector by measuring the average precision. Precision quantifies the
ability of the detector to correctly classify objects.

Detect the bounding boxes for all test images.

detectionResults = detect(detector,dsTest);

Calculate the average precision score for each class by using the evaluateDetectionPrecision
function. Also calculate the recall and precision values from each detected defect. Recall quantifies
the ability of the detector to detect all relevant objects for a class.

[averagePrecision,recall,precision] = evaluateDetectionPrecision(detectionResults,dsTest);

Display the average precision score for each class.

table(classNames,averagePrecision)

ans=6×2 table
 classNames averagePrecision
 ___________________ ________________

 {'missing_hole' } 0.93464
 {'mouse_bite' } 0.75237
 {'open_circuit' } 0.85178
 {'short' } 0.97002
 {'spur' } 0.96218
 {'spurious_copper'} 0.83631

A precision/recall (PR) curve highlights how the precision of a detector at varying levels of recall. The
ideal precision is 1 at all recall levels. Plot the PR curve for the test data.

class = ;
plot(recall{class},precision{class})
title("Average Precision for '"+classNamesStr(class)+ ...
 "' Defect: "+num2str(averagePrecision(class),"%0.2f"))
xlabel("Recall")
ylabel("Precision")
grid on

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-136

References

[1] Huang, Weibo, and Peng Wei. "A PCB Dataset for Defects Detection and Classification." arXiv,
January 23, 2019. https://arxiv.org/abs/1901.08204.

[2] PCB-DATASET. Accessed December 20, 2022. https://github.com/Ironbrotherstyle/PCB-DATASET.

[3] Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4: Optimal Speed and
Accuracy of Object Detection.” arXiv, April 22, 2020. https://arxiv.org/abs/2004.10934.

See Also
yolov4ObjectDetector | trainYOLOv4ObjectDetector | detect |
evaluateDetectionPrecision | trainingOptions | transform

More About
• “Getting Started with YOLO v4” on page 17-56
• “Anchor Boxes for Object Detection” on page 17-44
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

 Detect Defects on Printed Circuit Boards Using YOLO v4 Network

3-137

https://arxiv.org/abs/1901.08204
https://github.com/Ironbrotherstyle/PCB-DATASET
https://arxiv.org/abs/2004.10934

Train Object Detectors in Experiment Manager

This example shows how to use Experiment Manager app to find optimal training options for object
detectors by sweeping through a range of hyperparameter values.

Overview

The Experiment Manager app enables you to create deep learning experiments to train object
detectors under multiple initial conditions and compare the results. In this example, you will use the
Experiment Manager app to train a YOLO v2 object detector to detect vehicles from traffic images.
You will sweep over the number-of-anchors and different choices of feature extraction layer to obtain
the best performing object detector. Experiment Manager trains the object detector using every
combination of hyperparameter values specified in the hyperparameter table. Note that in this
experiment you will run trials over different values of numAnchors and featureLayer for simplicity.
To find the optimum object detector, specify experiment trials to sweep across additional
hyperparameters such as learning rate, mini-batch size, and image size.

For more information about the Experiment Manager see, Experiment Manager (Deep Learning
Toolbox).

Open Experiment

First, open the example. Experiment Manager loads the project with a custom object detector
experiment that you can inspect and run.

The Hyperparameter section allows you to set the hyperparameters you wish to sweep over.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-138

The Training Function section allows you to specify a custom training script to use for the
experiment. This example uses vehicleDetectorExperiment function which loads in the data,
model, and performs training. Details of the script are described in this section. The complete
function is listed under the Supporting Functions section.

Load in the data using the utility function splitVehicleData . This example uses a small vehicle
dataset that contains 295 images. Many of these images come from the Caltech Cars 1999 and 2001
data sets, available at the Caltech Computational Vision website, created by Pietro Perona, and used
with permission. Each image contains one or two labeled instances of a vehicle.

output.trainedNet = [];
output.ap = [];
output.executionEnvironment = "auto";
monitor.Info = "AveragePrecision";
[trainingData,validationData,testData] = splitVehicleData;

Apply augmentations and preprocessing on the training dataset. For the validation and test dataset
only preprocessing is needed.

inputSize = [224 224];
augmentedTrainingData = transform(trainingData, @augmentData);
preprocessedTrainingData = transform(augmentedTrainingData, @(data)preprocessData(data, inputSize));
preprocessedValidationData = transform(validationData, @(data)preprocessData(data, inputSize));
preprocessedTestData = transform(testData, @(data)preprocessData(data, inputSize));

For this example, you will sweep over the number of anchor boxes for training. “Anchor Boxes for
Object Detection” on page 17-44 are defined to capture the scale and aspect ratio of specific object
classes you want to detect and are typically chosen based on object sizes in your training datasets.
Multiple anchor boxes enable the object detector to detect objects of different sizes. The shape, scale,
and number of anchor boxes impact the efficiency and accuracy of the detectors. A large number of
anchor boxes decrease the runtime performance of the detector. The estimateAnchorBoxes
function uses the hyperparameter (params.numAnchors) passed by the Experiment Manager
during each trial. This changes the number of anchor boxes estimated during each trial. For more
information about the anchor box estimation see, “Estimate Anchor Boxes From Training Data” on
page 3-377.

aboxes = estimateAnchorBoxes(preprocessedTrainingData, params.numAnchors);

Set the training options.

opts = trainingOptions("rmsprop", ...
 InitialLearnRate=0.001, ...
 MiniBatchSize=16, ...
 MaxEpochs=20, ...
 LearnRateSchedule="piecewise", ...
 LearnRateDropPeriod=5, ...
 VerboseFrequency=30, ...
 L2Regularization=0.001, ...
 ValidationData=preprocessedValidationData, ...
 ValidationFrequency=50);

Create a YOLOv2 object detector using yolov2Layers with Resnet50 backbone. For this example,
you will also sweep over different feature extraction layers. Different feature extraction layers
correspond to different amounts of downsampling. There is a good trade-off between spatial
resolution and the strength of the extracted features, as features extracted further down the network
encode stronger image features at the cost of spatial resolution. Set featureLayer to

 Train Object Detectors in Experiment Manager

3-139

params.featureLayer to accept the input from Experiment Manager. You can visualize the
network to identify different feature layers using analyzeNetwork or D|eepNetworkDesigner| from
Deep Learning Toolbox&trade.

numClasses = 1;
inputSize = [224 224 3];
network = resnet50();
featureLayer = params.featureLayer;
lgraph = yolov2Layers(inputSize, numClasses, aboxes, network, featureLayer);

The network will be trained using the trainYOLOv2ObjectDetector function with the
ExperimentMonitor name-value pair set to monitor. Setting this name value-pair allows the trainer
to feed the training statistics back to Experiment Monitor at regular intervals.

detector = trainYOLOv2ObjectDetector(preprocessedTrainingData, lgraph,...
 opts, ExperimentMonitor=monitor);

Assess the trained object detector on the validation set by computing the average precision score.
Precision is a ratio of true positive instances to all positive instances of objects in the detector, based
on the ground truth.

results = detect(detector,preprocessedTestData, MiniBatchSize=4);
[ap, ~, ~] = evaluateDetectionPrecision(results, preprocessedTestData);

Update the average precision metric in Experiment Manager and package the trained detector and
average precision score into the output struct.

updateInfo(monitor, AveragePrecision=ap);
output.trainedNet = detector;
output.ap = ap;

Run Experiment

Click the Run button on the Experiment Manager toolstrip to start the training trials.

When you run the experiment, Experiment Manager trains the network defined by the training
function six times. Each trial uses a unique combination of numAnchors and featureLayer
specified in the hyperparameter table. By default, Experiment Manager runs one trial at a time. If you
have Parallel Computing Toolbox&trade, you can run multiple trials at the same time. For best
results, before you run your experiment, start a parallel pool with as many workers as GPUs.

A table of results displays the training loss for each trial.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-140

Export results

Export the best-trained detector to the workspace:

• Select the trial with the lowest loss score.
• On the Experiment Manager toolstrip, click Export.
• In the dialog window, enter the name of a workspace variable for the exported training output.

The default name is trainingOutput.

Visualize the results of the trained detector by calling the runDetectorOnTestImage function.

runDetectorOnTestImage(trainingOutput)

Appendix 1: Training Function

The vehicleDetectorExperiment function specifies the training data, network architecture,
training options, and training procedure used by the experiment.

This function takes in two arguments,

• params is a structure with fields from the Experiment Manager hyperparameter table.
• monitor is an experiments.Monitor (Deep Learning Toolbox) object that you can use to track

the progress of the training, update information fields in the results table, record values of the
metrics used by the training, and produce training plots.

The output of this function is a struct that contains the trained detector network, the execution
environment, and Average Precision metrics for the trained network. Experiment Manager saves this
output, so you can export it to the MATLAB workspace when the training is complete.

function output = trainObjectDetectorExpMgr(params,monitor)
 output.trainedNet = [];
 output.ap = [];
 output.executionEnvironment = "auto";

 % Add AveragePrecision field to the Experiment Manager.
 monitor.Info = "AveragePrecision";

 % Load data and split it into training, validation and test sets
 [trainingData,validationData,testData] = splitVehicleData;

 Train Object Detectors in Experiment Manager

3-141

 % Augment and preprocess the data
 inputSize = [224 224];
 augmentedTrainingData = transform(trainingData,@augmentData);
 preprocessedTrainingData = transform(augmentedTrainingData, @(data)preprocessData(data, inputSize));
 preprocessedValidationData = transform(validationData, @(data)preprocessData(data, inputSize));
 preprocessedTestData = transform(testData, @(data)preprocessData(data, inputSize));

 % Setup the training options
 opts = trainingOptions("rmsprop",...
 InitialLearnRate=0.001,...
 MiniBatchSize=16,...
 MaxEpochs=20,...
 LearnRateSchedule="piecewise",...
 LearnRateDropPeriod=5,...
 VerboseFrequency=30, ...
 L2Regularization=0.001,...
 ValidationData=preprocessedValidationData,...
 ValidationFrequency=50);

 % Construct the YOLO v2 detector
 numClasses = 1;
 inputSize = [224 224 3];
 network = resnet50();
 featureLayer = params.featureLayer;
 % Estimate anchor boxes by using numAnchors parameter from the Experiment Manager
 aboxes = estimateAnchorBoxes(preprocessedTrainingData, params.numAnchors);
 lgraph = yolov2Layers(inputSize,numClasses,aboxes,network, featureLayer);
 % Train YOLOv2 detector
 [detector, info] = trainYOLOv2ObjectDetector(preprocessedTrainingData, lgraph, opts, ExperimentMonitor=monitor);

 % Capture Average Precision result with the output
 results = detect(detector,preprocessedTestData, MiniBatchSize=4);
 [ap, ~, ~] = evaluateDetectionPrecision(results, preprocessedTestData);
 updateInfo(monitor, AveragePrecision=ap);

 output.trainedNet = detector;
 output.ap = ap;
 output.info = info;
end

Appendix 2: Data Preprocessing Functions

augmentData function

The augmentData function returns augmented images for training.

function B = augmentData(A)
% Apply random horizontal flipping, and random X/Y scaling. Boxes that get
% scaled outside the bounds are clipped if the overlap is above 0.25. Also,
% jitter image color.
 B = cell(size(A));
 I = A{1};
 sz = size(I);
 if numel(sz)==3 && sz(3) == 3
 I = jitterColorHSV(I,...

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-142

 Contrast=0.2,...
 Hue=0,...
 Saturation=0.1,...
 Brightness=0.2);
 end
 % Randomly flip and scale image.
 tform = randomAffine2d(XReflection=true, Scale=[1 1.1]);
 rout = affineOutputView(sz, tform, BoundsStyle="CenterOutput");
 B{1} = imwarp(I, tform, OutputView=rout);
 % Sanitize box data, if needed.
 A{2} = helperSanitizeBoxes(A{2}, sz);
 % Apply same transform to boxes.
 [B{2},indices] = bboxwarp(A{2}, tform, rout, OverlapThreshold=0.25);
 B{3} = A{3}(indices);
 % Return original data only when all boxes are removed by warping.
 if isempty(indices)
 B = A;
 end
end

preprocessData function

The preprocessData function rescales the images and the bounding boxes according to the target
size.

function data = preprocessData(data, targetSize)
 % Resize image and bounding boxes to the targetSize.
 sz = size(data{1}, [1 2]);
 scale = targetSize(1:2)./sz;
 data{1} = imresize(data{1}, targetSize(1:2));
 % Sanitize box data, if needed.
 data{2} = helperSanitizeBoxes(data{2}, sz);
 % Resize boxes to new image size.
 data{2} = bboxresize(data{2}, scale);
end

% helperSanitizeBoxes Sanitize box data.
% This example helper is used to clean up invalid bounding box data. Boxes
% with values <= 0 are removed.
%
% If none of the boxes are valid, this function passes the data through to
% enable downstream processing to issue proper errors.

function boxes = helperSanitizeBoxes(boxes, ~)
 persistent hasInvalidBoxes
 valid = all(boxes > 0, 2);
 if any(valid)
 if ~all(valid) && isempty(hasInvalidBoxes)
 % Issue one-time warning about removing invalid boxes.
 hasInvalidBoxes = true;
 warning('Removing ground truth bouding box data with values <= 0.')
 end
 boxes = boxes(valid,:);
 end

 Train Object Detectors in Experiment Manager

3-143

end

Appendix 3: Data Loading Function

The splitVehicleData function loads the data and splits it into training, validation, and test
datastores.

function [dsTrain,dsVal,dsTest] = splitVehicleData()
 outputDir = fullfile(tempdir,'vehicleImages');

 if ~exist(outputDir,'dir')
 % Unzip images and load the lables
 unzip('vehicleDatasetImages.zip', fullfile(tempdir));
 end
 data = load('vehicleDatasetGroundTruth.mat');
 vehicleDataset = data.vehicleDataset;

 % Load the list of image files
 vehicleDataset.imageFilename = fullfile(tempdir,vehicleDataset.imageFilename);
 rng(0);
 shuffledIndices = randperm(height(vehicleDataset));
 idx = floor(0.6 * length(shuffledIndices));

 % Create a training, validation and test indices
 trainingIdx = 1:idx;
 validationIdx = idx+1 : idx + 1 + floor(0.1 * length(shuffledIndices));
 testIdx = validationIdx(end)+1 : length(shuffledIndices);

 % Load data using imageDatastore and boxLabelDatastore
 imds = imageDatastore(vehicleDataset{:,'imageFilename'});
 blds = boxLabelDatastore(vehicleDataset(:,'vehicle'));
 allData = combine(imds,blds);
 dsTrain = subset(allData,trainingIdx);
 dsVal = subset(allData,validationIdx);
 dsTest = subset(allData,testIdx);
end

References

[1] Redmon, Joseph, and Ali Farhadi. "YOLO9000: Better, Faster, Stronger." In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 6517-25. Honolulu, HI: IEEE, 2017. https://
doi.org/10.1109/CVPR.2017.690.

Copyright 2021 The MathWorks, Inc.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-144

https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690

Activity Recognition Using R(2+1)D Video Classification

This example first shows how to perform activity recognition using a pretrained R(2+1)D [1] on page
3-166 convolutional neural network based video classifier and then shows how to use transfer
learning to train such a video classifier using video data.

Overview

Vision-based activity recognition involves predicting the action of an object, such as walking,
swimming, or sitting, using a set of video frames. Activity recognition from video has many
applications, such as human-computer interaction, robot learning, anomaly detection, surveillance,
and object detection. For example, online prediction of multiple actions for incoming videos from
multiple cameras can be important for robot learning. Compared to image classification, action
recognition using videos is challenging to model because of the inaccurate ground truth data for
video data sets, the variety of gestures that actors in a video can perform, the heavily class
imbalanced datasets, and the large amount of data required to train a robust classifier from scratch.
Deep learning techniques, such as R(2+1)D [1] on page 3-166 and SlowFast [2 on page 3-166] have
shown improved performance on smaller datasets using transfer learning with networks pretrained
on large video activity recognition datasets, such as Kinetics-400 [4 on page 3-166].

Note: This example requires the Computer Vision Toolbox™ Model for R(2+1)D Video Classification.
You can install the Computer Vision Toolbox Model for R(2+1)D Video Classification from Add-On
Explorer. For more information about installing add-ons, see “Get and Manage Add-Ons”.

Perform Activity Recognition Using a Pretrained R(2+1)D Video Classifier

Download the pretrained R(2+1)D video classifier along with a video file on which to perform activity
recognition. The size of the downloaded zip file is around 112 MB.

pretrainedFolder = fullfile(tempdir,"hmdb51","pretrained","r2plus1d");
if ~isfolder(pretrainedFolder)
 mkdir(pretrainedFolder);
end
zipFile = 'activityRecognition-R2Plus1D-HMDB51-21b.zip';

if ~isfile(fullfile(pretrainedFolder,zipFile))
 disp('Downloading the pretrained network...')
 downloadURL = ['https://ssd.mathworks.com/supportfiles/vision/data/' zipFile];
 zipFile = fullfile(pretrainedFolder,zipFile);
 websave(zipFile,downloadURL);
 unzip(zipFile,pretrainedFolder);
 disp('Downloaded.')
end

Load the pretrained R(2+1)D video classifier.

pretrainedDataFile = fullfile(pretrainedFolder,'r2plus1d-FiveClasses-hmdb51.mat');
pretrained = load(pretrainedDataFile);
r2plus1dPretrained = pretrained.data.r2plus1d;

Display the class label names of the pretrained video classifier.

classes = r2plus1dPretrained.Classes

classes = 5×1 categorical
 kiss

 Activity Recognition Using R(2+1)D Video Classification

3-145

 laugh
 pick
 pour
 pushup

Read and display the video pour.avi using VideoReader and vision.VideoPlayer.

videoFilename = fullfile(pretrainedFolder, "pour.avi");

videoReader = VideoReader(videoFilename);
videoPlayer = vision.VideoPlayer;
videoPlayer.Name = "pour";

while hasFrame(videoReader)
 frame = readFrame(videoReader);
 % Resize the frame for display.
 frame = imresize(frame, 1.5);
 step(videoPlayer,frame);
end
release(videoPlayer);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-146

Choose 10 randomly selected video sequences to classify the video, to uniformly cover the entirety of
the file to find the action class that is predominant in the video.

numSequences = 10;

Classify the video file using the classifyVideoFile function.

[actionLabel,score] = classifyVideoFile(r2plus1dPretrained, videoFilename, "NumSequences", numSequences)

actionLabel = categorical
 pour

 Activity Recognition Using R(2+1)D Video Classification

3-147

score = single
 0.9727

Train a Video Classifier for Gesture Recognition

This section of the example shows how the video classifier shown above is trained using transfer
learning. Set the doTraining variable to false to use the pretrained video classifier without having
to wait for training to complete. Alternatively, if you want to train the video classifier, set the
doTraining variable to true.

doTraining = false;

Download Training and Validation Data

This example trains an I3D network using the HMDB51 data set. Use the downloadHMDB51
supporting function, listed at the end of this example, to download the HMDB51 data set to a folder
named hmdb51.

downloadFolder = fullfile(tempdir,"hmdb51");
downloadHMDB51(downloadFolder);

After the download is complete, extract the RAR file hmdb51_org.rar to the hmdb51 folder. Next,
use the checkForHMDB51Folder supporting function, listed at the end of this example, to confirm
that the downloaded and extracted files are in place.

allClasses = checkForHMDB51Folder(downloadFolder);

The data set contains about 2 GB of video data for 7000 clips over 51 classes, such as drink, run, and
shake hands. Each video frame has a height of 240 pixels and a minimum width of 176 pixels. The
number of frames ranges from 18 to approximately 1000.

To reduce training time, this example trains an activity recognition network to classify 5 action
classes instead of all 51 classes in the data set. Set useAllData to true to train with all 51 classes.

useAllData = false;

if useAllData
 classes = allClasses;
else
 classes = string(classes);
end
dataFolder = fullfile(downloadFolder, "hmdb51_org");

Split the data set into a training set for training the classifier, and a test set for evaluating the
classifier. Use 80% of the data for the training set and the rest for the test set. Use folders2labels
and splitlabels to create label information from folders and split the data based on each label
into training and test data sets by randomly selecting a proportion of files from each label.

[labels,files] = folders2labels(fullfile(dataFolder,classes),...
 "IncludeSubfolders",true,...
 "FileExtensions",'.avi');

indices = splitlabels(labels,0.8,'randomized');

trainFilenames = files(indices{1});
testFilenames = files(indices{2});

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-148

https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/

Load Dataset

This example uses a datastore to read the videos sequences and the corresponding labels from the
video files.

Specify the number of video frames the datastore should be configured to output for each time data is
read from the datastore.

numFrames = 32;

A value of 32 is used here to balance memory usage and classification time. Common values to
consider are 8, 16, 32, 64, or 128. Using more frames helps capture additional temporal information,
but requires more memory. Empirical analysis is required to determine the optimal number of frames.
You might need to increase or decrease this value depending on your system resources.

Next, specify the height and width of the frames the datastore should be configured to output. The
datastore automatically resizes the raw video frames to the specified size to enable batch processing
of multiple video sequences.

frameSize = [112,112];

A value of [112 112] is used to capture longer temporal relationships in the video scene which help
classify gestures with long time durations. Common values for the size are [112 112], [224 224], or
[256 256]. Smaller sizes enable the use of more video frames at the cost of memory usage, processing
time, and spatial resolution. The minimum height and width of the video frames in the HMDB51 data
set are 240 and 176, respectively. Specify [112, 112] to capture a larger number of frames at the cost
of spatial information. If you want to specify a frame size for the datastore to read that is larger than
the minimum values, such as [256, 256], first resize the frames using imresize. As with the number
of frames, empirical analysis is required to determine the optimal values.

Specify the number of channels as 3 for the RGB input data.

numChannels = 3;

Use the helper function, createFileDatastore, to configure two FileDatastore objects for
loading the data, one for training and another for validation. The helper function is listed at the end
of this example.

isDataForTraining = true;
dsTrain = createFileDatastore(trainFilenames,numFrames,numChannels,classes,isDataForTraining);

isDataForTraining = false;
dsVal = createFileDatastore(testFilenames,numFrames,numChannels,classes,isDataForTraining);

Configure R(2+1)D Video Classifier for Transfer Learning

In this example, you create a R(2+1)D video classifier based on the ResNet-3D architecture with 18
Spatio-Temporal residual layers, a 3D Convolution Neural Network Video Classifier pretrained on the
Kinetics-400 dataset [4 on page 3-166].

Specify ResNet-3D with 18 Spatio-Temporal layers as the base network architecture for the R(2+1)D
classifier.

baseNetwork = "resnet-3d-18";

Specify the input size for the R(2+1)D Video Classifier.

 Activity Recognition Using R(2+1)D Video Classification

3-149

inputSize = [frameSize, numChannels, numFrames];

Create a R(2+1)D Video Classifier by specifying the classes for the HMDB51 dataset and the network
input size.

r2plus1d = r2plus1dVideoClassifier(baseNetwork,string(classes),"InputSize",inputSize);

Specify a model name for the video classifier.

r2plus1d.ModelName = "R(2+1)D Activity Recognizer";

Augment and Preprocess Training Data

Data augmentation provides a way to use limited data sets for training. Augmentation on video data
must be the same for a collection of frames based on the network input size. Minor changes, such as
translation, cropping, or transforming an image, provide, new, distinct, and unique images that you
can use to train a robust video classifier. Datastores are a convenient way to read and augment
collections of data. Augment the training video data by using the augmentVideo supporting function,
defined at the end of this example.

dsTrain = transform(dsTrain, @augmentVideo);

Preprocess the training video data to resize to the R(2+1)D Video Classifier input size, by using the
preprocessVideoClips, defined at the end of this example. Specify the
InputNormalizationStatistics property of the video classifier and input size to the
preprocessing function as field values in a struct, preprocessInfo. The
InputNormalizationStatistics property is used to rescale the video frames between 0 and 1,
and then normalize the rescaled data using mean and standard deviation. The input size is used to
resize the video frames using imresize based on the SizingOption value in the info struct.
Alternatively, you could use "randomcrop" or "centercrop" to random crop or center crop the
input data to the input size of the video classifier. Note that data augmentation is not applied to the
test and validation data. Ideally, test and validation data should be representative of the original data
and is left unmodified for unbiased evaluation.

preprocessInfo.Statistics = r2plus1d.InputNormalizationStatistics;
preprocessInfo.InputSize = inputSize;
preprocessInfo.SizingOption = "resize";
dsTrain = transform(dsTrain, @(data)preprocessVideoClips(data, preprocessInfo));
dsVal = transform(dsVal, @(data)preprocessVideoClips(data, preprocessInfo));

Define Model Loss Function

The modelLoss function, listed at the end of this example, takes as input the R(2+1)D Video
Classifier r2plus1d, a mini-batch of input data dlRGB, and a mini-batch of ground truth label data
dlT. The function returns the training loss value, the gradients of the loss with respect to the
learnable parameters of the classifier, and the mini-batch accuracy of the classifier.

The loss is calculated by computing the cross-entropy loss of the predictions from video classifier. The
output predictions of the network are probabilities between 0 and 1 for each of the classes.

predictions = f orward(r2plus1d, dlRGB);

loss = crossentropy(predictions)

The accuracy of the classifier is calculated by comparing the classifier predictions to the ground
truth label of the inputs, dlT.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-150

Specify Training Options

Train with a mini-batch size of 5 for 900 iterations. Specify the iteration after which to save the model
with the best validation accuracy by using the SaveBestAfterIteration parameter.

Specify the cosine-annealing learning rate schedule [3 on page 3-166] parameters:

• A minimum learning rate of 1e-4.
• A maximum learning rate of 1e-3.
• Cosine number of iterations of 200, 300, and 400, after which the learning rate schedule cycle

restarts. The option CosineNumIterations defines the width of each cosine cycle.

Specify the parameters for SGDM optimization. Initialize the SGDM optimization parameters at the
beginning of the training:

• A momentum of 0.9.
• An initial velocity parameter initialized as [].
• An L2 regularization factor of 0.0005.

Specify to dispatch the data in the background using a parallel pool. If DispatchInBackground is
set to true, open a parallel pool with the specified number of parallel workers, and create a
DispatchInBackgroundDatastore, provided as part of this example, that dispatches the data in
the background to speed up training using asynchronous data loading and preprocessing. By default,
this example uses a GPU if one is available. Otherwise, it uses a CPU. Using a GPU requires Parallel
Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU. For information about the supported
compute capabilities, see “GPU Computing Requirements” (Parallel Computing Toolbox).

params.Classes = classes;
params.MiniBatchSize = 5;
params.NumIterations = 900;
params.SaveBestAfterIteration = 600;
params.CosineNumIterations = [200, 300, 400];
params.MinLearningRate = 1e-4;
params.MaxLearningRate = 1e-3;
params.Momentum = 0.9;
params.Velocity = [];
params.L2Regularization = 0.0005;
params.ProgressPlot = false;
params.Verbose = true;
params.ValidationData = dsVal;
params.DispatchInBackground = false;
params.NumWorkers = 12;

Train R(2+1)D Video Classifier

Train the R(2+1)D video classifier using the video data.

For each epoch:

• Shuffle the data before looping over mini-batches of data.
• Use minibatchqueue to loop over the mini-batches. The supporting function

createMiniBatchQueue, listed at the end of this example, uses the given training datastore to
create a minibatchqueue.

 Activity Recognition Using R(2+1)D Video Classification

3-151

• Display the loss and accuracy results for each epoch using the supporting function
displayVerboseOutputEveryEpoch, listed at the end of this example.

For each mini-batch:

• Convert the video data and the labels to dlarray objects with the underlying type single.
• To enable processing the time dimension of the the video data using the R(2+1)D Video Classifier

specify the temporal sequence dimension, "T". Specify the dimension labels "SSCTB" (spatial,
spatial, channel, temporal, batch) for the video data, and "CB" for the label data.

The minibatchqueue object uses the supporting function batchVideo, listed at the end of this
example, to batch the RGB video data.

params.ModelFilename = "r2plus1d-FiveClasses-hmdb51.mat";
if doTraining
 epoch = 1;
 bestLoss = realmax;
 accTrain = [];
 lossTrain = [];

 iteration = 1;
 start = tic;
 trainTime = start;
 shuffled = shuffleTrainDs(dsTrain);

 % Number of outputs is two: One for RGB frames, and one for ground truth labels.
 numOutputs = 2;
 mbq = createMiniBatchQueue(shuffled, numOutputs, params);

 % Use the initializeTrainingProgressPlot and initializeVerboseOutput
 % supporting functions, listed at the end of the example, to initialize
 % the training progress plot and verbose output to display the training
 % loss, training accuracy, and validation accuracy.
 plotters = initializeTrainingProgressPlot(params);
 initializeVerboseOutput(params);

 while iteration <= params.NumIterations

 % Iterate through the data set.
 [dlVideo,dlT] = next(mbq);

 % Evaluate the model loss and gradients using dlfeval.
 [loss,gradients,acc,state] = ...
 dlfeval(@modelLoss,r2plus1d,dlVideo,dlT);

 % Accumulate the loss and accuracies.
 lossTrain = [lossTrain, loss];
 accTrain = [accTrain, acc];

 % Update the network state.
 r2plus1d.State = state;

 % Update the gradients and parameters for the classifier
 % using the SGDM optimizer.
 [r2plus1d,params.Velocity,learnRate] = ...
 updateLearnables(r2plus1d,gradients,params,params.Velocity,iteration);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-152

 if ~hasdata(mbq) || iteration == params.NumIterations
 % Current epoch is complete. Do validation and update progress.
 trainTime = toc(trainTime);

 [validationTime,cmat,lossValidation,accValidation] = ...
 doValidation(params, r2plus1d);

 accTrain = mean(accTrain);
 lossTrain = mean(lossTrain);

 % Update the training progress.
 displayVerboseOutputEveryEpoch(params,start,learnRate,epoch,iteration,...
 accTrain,accValidation,lossTrain,lossValidation,trainTime,validationTime);
 updateProgressPlot(params,plotters,epoch,iteration,start,lossTrain,accTrain,accValidation);

 % Save the trained video classifier and the parameters, that gave
 % the best validation loss so far. Use the saveData supporting function,
 % listed at the end of this example.
 bestLoss = saveData(r2plus1d,bestLoss,iteration,cmat,lossTrain,lossValidation,accTrain,accValidation,params);
 end

 if ~hasdata(mbq) && iteration < params.NumIterations
 % Current epoch is complete. Initialize the training loss, accuracy
 % values, and minibatchqueue for the next epoch.
 accTrain = [];
 lossTrain = [];

 epoch = epoch + 1;
 trainTime = tic;
 shuffled = shuffleTrainDs(dsTrain);
 mbq = createMiniBatchQueue(shuffled, numOutputs, params);
 end

 iteration = iteration + 1;
 end

 % Display a message when training is complete.
 endVerboseOutput(params);

 disp("Model saved to: " + params.ModelFilename);
end

Evaluate Trained Video Classifier

Use the test data set to evaluate the accuracy of the trained video classifier.

Load the best model saved during training or use the pretrained model.

if doTraining
 transferLearned = load(params.ModelFilename);
 r2plus1dPretrained = transferLearned.data.r2plus1d;
end

Create a minibatchqueue object to load batches of the test data.

numOutputs = 2;
mbq = createMiniBatchQueue(dsVal, numOutputs, params);

 Activity Recognition Using R(2+1)D Video Classification

3-153

For each batch of evaluation data, make predictions using the R(2+1)D Video Classifier, and compute
the prediction accuracy using a confusion matrix.

numClasses = numel(params.Classes);
cmat = sparse(numClasses,numClasses);

while hasdata(mbq)
 [dlVideo,dlT] = next(mbq);

 % Computer the predictions of the trained R(2+1)D
 % Video Classifier.
 dlYPred = predict(r2plus1dPretrained,dlVideo);
 dlYPred = squeezeIfNeeded(dlYPred, dlT);

 % Aggregate the confusion matrix by using the maximum
 % values of the prediction scores and the ground truth labels.
 [~,TTest] = max(dlT,[],1);
 [~,YPred] = max(dlYPred,[],1);
 cmat = aggregateConfusionMetric(cmat,TTest,YPred);
end

Compute the average clip classification accuracy for the trained R(2+1)D Video Classifier.

evalClipAccuracy = sum(diag(cmat))./sum(cmat,"all")

evalClipAccuracy = 0.9937

Display the confusion matrix.

figure
chart = confusionchart(cmat,classes);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-154

The R(2+1)D video classifier that is pretrained on the Kinetics-400 dataset, provides strong
performance for human activity recognition on transfer learning. The above training was run on 24GB
Titan-X GPU for about 30 minutes. When training from scratch on a small activity recognition video
dataset, the training time and convergence takes much longer than the pretrained video classifier.
Transer learning using the Kinetics-400 pretrained R(2+1)D video classifier also avoids overfitting
the classifier when ran for larger number of epochs. To learn more about video recognition using
deep learning, see “Getting Started with Video Classification Using Deep Learning” on page 17-14.

Supporting Functions

createFileDatastore

The createFileDatastore function creates a FileDatastore object using the given folder name.
The FileDatastore object reads the data in 'partialfile' mode, so every read can return
partially read frames from videos. This feature helps with reading large video files, if all of the frames
do not fit in memory.

function datastore = createFileDatastore(trainingFolder,numFrames,numChannels,classes,isDataForTraining)
 readFcn = @(f,u)readVideo(f,u,numFrames,numChannels,classes,isDataForTraining);
 datastore = fileDatastore(trainingFolder,...

 Activity Recognition Using R(2+1)D Video Classification

3-155

 'IncludeSubfolders',true,...
 'FileExtensions','.avi',...
 'ReadFcn',readFcn,...
 'ReadMode','partialfile');
end

shuffleTrainDs

The shuffleTrainDs function shuffles the files present in the training datastore, dsTrain.

function shuffled = shuffleTrainDs(dsTrain)
shuffled = copy(dsTrain);
transformed = isa(shuffled, 'matlab.io.datastore.TransformedDatastore');
if transformed
 files = shuffled.UnderlyingDatastores{1}.Files;
else
 files = shuffled.Files;
end
n = numel(files);
shuffledIndices = randperm(n);
if transformed
 shuffled.UnderlyingDatastores{1}.Files = files(shuffledIndices);
else
 shuffled.Files = files(shuffledIndices);
end

reset(shuffled);

end

readVideo

The readVideo function reads video frames, and the corresponding label values for a given video
file. During training, the read function reads the specific number of frames as per the network input
size, with a randomly chosen starting frame. During testing, all the frames are sequentially read. The
video frames are resized to the required classifier network input size for training, and for testing and
validation.

function [data,userdata,done] = readVideo(filename,userdata,numFrames,numChannels,classes,isDataForTraining)
 if isempty(userdata)
 userdata.reader = VideoReader(filename);
 userdata.batchesRead = 0;

 userdata.label = getLabel(filename,classes);

 totalFrames = floor(userdata.reader.Duration * userdata.reader.FrameRate);
 totalFrames = min(totalFrames, userdata.reader.NumFrames);
 userdata.totalFrames = totalFrames;
 userdata.datatype = class(read(userdata.reader,1));
 end
 reader = userdata.reader;
 totalFrames = userdata.totalFrames;
 label = userdata.label;
 batchesRead = userdata.batchesRead;

 if isDataForTraining
 video = readForTraining(reader, numFrames, totalFrames);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-156

 else
 video = readForValidation(reader, userdata.datatype, numChannels, numFrames, totalFrames);
 end

 data = {video, label};

 batchesRead = batchesRead + 1;

 userdata.batchesRead = batchesRead;

 if numFrames > totalFrames
 numBatches = 1;
 else
 numBatches = floor(totalFrames/numFrames);
 end
 % Set the done flag to true, if the reader has read all the frames or
 % if it is training.
 done = batchesRead == numBatches || isDataForTraining;
end

readForTraining

The readForTraining function reads the video frames for training the video classifier. The function
reads the specific number of frames as per the network input size, with a randomly chosen starting
frame. If there are not enough frames left over, the video sequence is repeated to pad the required
number of frames.

function video = readForTraining(reader, numFrames, totalFrames)
 if numFrames >= totalFrames
 startIdx = 1;
 endIdx = totalFrames;
 else
 startIdx = randperm(totalFrames - numFrames + 1);
 startIdx = startIdx(1);
 endIdx = startIdx + numFrames - 1;
 end
 video = read(reader,[startIdx,endIdx]);
 if numFrames > totalFrames
 % Add more frames to fill in the network input size.
 additional = ceil(numFrames/totalFrames);
 video = repmat(video,1,1,1,additional);
 video = video(:,:,:,1:numFrames);
 end
end

readForValidation

The readForValidation function reads the video frames for evaluating the trained video classifier.
The function reads the specific number of frames sequentially as per the network input size. If there
are not enough frames left over, the video sequence is repeated to pad the required number of
frames.

function video = readForValidation(reader, datatype, numChannels, numFrames, totalFrames)
 H = reader.Height;
 W = reader.Width;
 toRead = min([numFrames,totalFrames]);
 video = zeros([H,W,numChannels,toRead], datatype);
 frameIndex = 0;

 Activity Recognition Using R(2+1)D Video Classification

3-157

 while hasFrame(reader) && frameIndex < numFrames
 frame = readFrame(reader);
 frameIndex = frameIndex + 1;
 video(:,:,:,frameIndex) = frame;
 end

 if frameIndex < numFrames
 video = video(:,:,:,1:frameIndex);
 additional = ceil(numFrames/frameIndex);
 video = repmat(video,1,1,1,additional);
 video = video(:,:,:,1:numFrames);
 end
end

getLabel

The getLabel function obtains the label name from the full path of a filename. The label for a file is
the folder in which it exists. For example, for a file path such as "/path/to/dataset/clapping/
video_0001.avi", the label name is "clapping".

function label = getLabel(filename,classes)
 folder = fileparts(string(filename));
 [~,label] = fileparts(folder);
 label = categorical(string(label), string(classes));
end

augmentVideo

The augmentVideo function augments the video frames for training the video classifier. The function
augments a video sequence with the same augmentation technique provided by the
augmentTransform function.

function data = augmentVideo(data)
 numClips = size(data,1);
 for ii = 1:numClips
 video = data{ii,1};
 % HxWxC
 sz = size(video,[1,2,3]);
 % One augment fcn per clip
 augmentFcn = augmentTransform(sz);
 data{ii,1} = augmentFcn(video);
 end
end

augmentTransform

The augmentTransform function creates an augmentation method with random left-right flipping
and scaling factors.

function augmentFcn = augmentTransform(sz)
% Randomly flip and scale the image.
tform = randomAffine2d('XReflection',true,'Scale',[1 1.1]);
rout = affineOutputView(sz,tform,'BoundsStyle','CenterOutput');

augmentFcn = @(data)augmentData(data,tform,rout);

 function data = augmentData(data,tform,rout)
 data = imwarp(data,tform,'OutputView',rout);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-158

 end
end

preprocessVideoClips

The preprocessVideoClips function preprocesses the training video data to resize to the R(2+1)D
Video Classifier input size. It takes the InputNormalizationStatistics and the InputSize
properties of the video classifier in a struct, info. The InputNormalizationStatistics property
is used to rescale the video frames between 0 and 1, and then normalize the rescaled data using
mean and standard deviation. The input size is used to resize the video frames using imresize based
on the SizingOption value in the info struct. Alternatively, you could use "randomcrop" or
"centercrop" as values for SizingOption to random crop or center crop the input data to the
input size of the video classifier.

function data = preprocessVideoClips(data, info)
 inputSize = info.InputSize(1:2);
 sizingOption = info.SizingOption;
 switch sizingOption
 case "resize"
 sizingFcn = @(x)imresize(x,inputSize);
 case "randomcrop"
 sizingFcn = @(x)cropVideo(x,@randomCropWindow2d,inputSize);
 case "centercrop"
 sizingFcn = @(x)cropVideo(x,@centerCropWindow2d,inputSize);
 end
 numClips = size(data,1);

 minValue = info.Statistics.Min;
 maxValue = info.Statistics.Max;
 minValue = reshape(minValue, 1, 1, 3);
 maxValue = reshape(maxValue, 1, 1, 3);

 meanValue = info.Statistics.Mean;
 stdValue = info.Statistics.StandardDeviation;
 meanValue = reshape(meanValue, 1, 1, 3);
 stdValue = reshape(stdValue, 1, 1, 3);

 for ii = 1:numClips
 video = data{ii,1};
 resized = sizingFcn(video);

 % Cast the input to single.
 resized = single(resized);

 % Rescale the input between 0 and 1.
 resized = rescale(resized,0,1,"InputMin",minValue,"InputMax",maxValue);

 % Normalize using mean and standard deviation.
 resized = resized - meanValue;
 resized = resized ./ stdValue;
 data{ii,1} = resized;
 end

 function outData = cropVideo(data, cropFcn, inputSize)
 imsz = size(data,[1,2]);
 cropWindow = cropFcn(imsz, inputSize);
 numBatches = size(data,4);

 Activity Recognition Using R(2+1)D Video Classification

3-159

 sz = [inputSize, size(data,3), numBatches];
 outData = zeros(sz, 'like', data);
 for b = 1:numBatches
 outData(:,:,:,b) = imcrop(data(:,:,:,b), cropWindow);
 end
 end
end

createMiniBatchQueue

The createMiniBatchQueue function creates a minibatchqueue object that provides
miniBatchSize amount of data from the given datastore. It also creates a
DispatchInBackgroundDatastore if a parallel pool is open.

function mbq = createMiniBatchQueue(datastore, numOutputs, params)
if params.DispatchInBackground && isempty(gcp('nocreate'))
 % Start a parallel pool, if DispatchInBackground is true, to dispatch
 % data in the background using the parallel pool.
 c = parcluster('local');
 c.NumWorkers = params.NumWorkers;
 parpool('local',params.NumWorkers);
end
p = gcp('nocreate');
if ~isempty(p)
 datastore = DispatchInBackgroundDatastore(datastore, p.NumWorkers);
end

inputFormat(1:numOutputs-1) = "SSCTB";
outputFormat = "CB";
mbq = minibatchqueue(datastore, numOutputs, ...
 "MiniBatchSize", params.MiniBatchSize, ...
 "MiniBatchFcn", @batchVideo, ...
 "MiniBatchFormat", [inputFormat,outputFormat]);
end

batchVideo

The batchVideo function batches the video, and the label data from cell arrays. It uses
onehotencode function to encode ground truth categorical labels into one-hot arrays. The one-hot
encoded array contains a 1 in the position corresponding to the class of the label, and 0 in every
other position.

function [video,labels] = batchVideo(video, labels)
% Batch dimension: 5
video = cat(5,video{:});

% Batch dimension: 2
labels = cat(2,labels{:});

% Feature dimension: 1
labels = onehotencode(labels,1);
end

modelLoss

The modelLoss function takes as input a mini-batch of RGB data dlRGB, and the corresponding
target dlT, and returns the corresponding loss, the gradients of the loss with respect to the learnable

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-160

parameters, and the training accuracy. To compute the gradients, evaluate the modelLoss function
using the dlfeval function in the training loop.

function [loss,gradientsRGB,acc,stateRGB] = modelLoss(r2plus1d,dlRGB,dlT)
[dlYPredRGB,stateRGB] = forward(r2plus1d,dlRGB);
dlYPred = squeezeIfNeeded(dlYPredRGB, dlT);

loss = crossentropy(dlYPred,dlT);

gradientsRGB = dlgradient(loss,r2plus1d.Learnables);

% Calculate the accuracy of the predictions.
[~,TTest] = max(dlT,[],1);
[~,YPred] = max(dlYPred,[],1);

acc = gather(extractdata(sum(TTest == YPred)./numel(TTest)));
end

squeezeIfNeeded

function dlYPred = squeezeIfNeeded(dlYPred, T)
if ~isequal(size(T), size(dlYPred))
 dlYPred = squeeze(dlYPred);
 dlYPred = dlarray(dlYPred,dims(T));
end
end

updateLearnables

The updateLearnables function updates the provided dlnetwork object with gradients and other
parameters using SGDM optimization function sgdmupdate.

function [r2plus1d,velocity,learnRate] = updateLearnables(r2plus1d,gradients,params,velocity,iteration)
 % Determine the learning rate using the cosine-annealing learning rate schedule.
 learnRate = cosineAnnealingLearnRate(iteration, params);

 % Apply L2 regularization to the weights.
 learnables = r2plus1d.Learnables;
 idx = learnables.Parameter == "Weights";
 gradients(idx,:) = dlupdate(@(g,w) g + params.L2Regularization*w, gradients(idx,:), learnables(idx,:));

 % Update the network parameters using the SGDM optimizer.
 [r2plus1d, velocity] = sgdmupdate(r2plus1d, gradients, velocity, learnRate, params.Momentum);
end

cosineAnnealingLearnRate

The cosineAnnealingLearnRate function computes the learning rate based on the current
iteration number, minimum learning rate, maximum learning rate, and number of iterations for
annealing [3 on page 3-166].

function lr = cosineAnnealingLearnRate(iteration, params)
 if iteration == params.NumIterations
 lr = params.MinLearningRate;
 return;
 end
 cosineNumIter = [0, params.CosineNumIterations];
 csum = cumsum(cosineNumIter);

 Activity Recognition Using R(2+1)D Video Classification

3-161

 block = find(csum >= iteration, 1,'first');
 cosineIter = iteration - csum(block - 1);
 annealingIteration = mod(cosineIter, cosineNumIter(block));
 cosineIteration = cosineNumIter(block);
 minR = params.MinLearningRate;
 maxR = params.MaxLearningRate;
 cosMult = 1 + cos(pi * annealingIteration / cosineIteration);
 lr = minR + ((maxR - minR) * cosMult / 2);
end

aggregateConfusionMetric

The aggregateConfusionMetric function incrementally fills a confusion matrix based on the
predicted results YPred and the expected results TTest.

function cmat = aggregateConfusionMetric(cmat,TTest,YPred)
TTest = gather(extractdata(TTest));
YPred = gather(extractdata(YPred));
[m,n] = size(cmat);
cmat = cmat + full(sparse(TTest,YPred,1,m,n));
end

doValidation

The doValidation function validates the video classifier using the validation data.

function [validationTime, cmat, lossValidation, accValidation] = doValidation(params, r2plus1d)

 validationTime = tic;

 numOutputs = 2;
 mbq = createMiniBatchQueue(params.ValidationData, numOutputs, params);

 lossValidation = [];
 numClasses = numel(params.Classes);
 cmat = sparse(numClasses,numClasses);
 while hasdata(mbq)

 [dlVideo,T] = next(mbq);

 % Pass the video input through the R(2+1)D Video Classifier.
 dlT = predict(r2plus1d,dlVideo);
 dlT = squeezeIfNeeded(dlT, T);

 % Calculate the cross-entropy loss.
 loss = crossentropy(dlT,T);

 % Calculate the accuracy of the predictions.
 [~,TTest] = max(T,[],1);
 [~,YPred] = max(dlT,[],1);

 lossValidation = [lossValidation,loss];
 cmat = aggregateConfusionMetric(cmat,TTest,YPred);
 end
 lossValidation = mean(lossValidation);
 accValidation = sum(diag(cmat))./sum(cmat,"all");

 validationTime = toc(validationTime);
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-162

saveData

The saveData function saves the given R(2+1)D Video Classifier, accuracy, loss, and other training
parameters to a MAT-file.

function bestLoss = saveData(r2plus1d,bestLoss,iteration,cmat,lossTrain,lossValidation,accTrain,accValidation,params)
if iteration >= params.SaveBestAfterIteration
 lossValidtion = extractdata(gather(lossValidation));
 if lossValidtion < bestLoss
 params = rmfield(params, 'Velocity');
 bestLoss = lossValidtion;
 r2plus1d = gatherFromGPUToSave(r2plus1d);
 data.BestLoss = bestLoss;
 data.TrainingLoss = extractdata(gather(lossTrain));
 data.TrainingAccuracy = accTrain;
 data.ValidationAccuracy = accValidation;
 data.ValidationConfmat= cmat;
 data.r2plus1d = r2plus1d;
 data.Params = params;
 save(params.ModelFilename, 'data');
 end
end
end

gatherFromGPUToSave

The gatherFromGPUToSave function gathers data from the GPU in order to save the video classifier
to disk.

function r2plus1d = gatherFromGPUToSave(r2plus1d)
if ~canUseGPU
 return;
end
r2plus1d.Learnables = gatherValues(r2plus1d.Learnables);
r2plus1d.State = gatherValues(r2plus1d.State);
 function tbl = gatherValues(tbl)
 for ii = 1:height(tbl)
 tbl.Value{ii} = gather(tbl.Value{ii});
 end
 end
end

checkForHMDB51Folder

The checkForHMDB51Folder function checks for the downloaded data in the download folder.

function classes = checkForHMDB51Folder(dataLoc)
hmdbFolder = fullfile(dataLoc, "hmdb51_org");
if ~isfolder(hmdbFolder)
 error("Download 'hmdb51_org.rar' file using the supporting function 'downloadHMDB51' before running the example and extract the RAR file.");
end

classes = ["brush_hair","cartwheel","catch","chew","clap","climb","climb_stairs",...
 "dive","draw_sword","dribble","drink","eat","fall_floor","fencing",...
 "flic_flac","golf","handstand","hit","hug","jump","kick","kick_ball",...
 "kiss","laugh","pick","pour","pullup","punch","push","pushup","ride_bike",...
 "ride_horse","run","shake_hands","shoot_ball","shoot_bow","shoot_gun",...
 "sit","situp","smile","smoke","somersault","stand","swing_baseball","sword",...

 Activity Recognition Using R(2+1)D Video Classification

3-163

 "sword_exercise","talk","throw","turn","walk","wave"];
expectFolders = fullfile(hmdbFolder, classes);
if ~all(arrayfun(@(x)exist(x,'dir'),expectFolders))
 error("Download hmdb51_org.rar using the supporting function 'downloadHMDB51' before running the example and extract the RAR file.");
end
end

downloadHMDB51

The downloadHMDB51 function downloads the data set and saves it to a directory.

function downloadHMDB51(dataLoc)

if nargin == 0
 dataLoc = pwd;
end
dataLoc = string(dataLoc);

if ~isfolder(dataLoc)
 mkdir(dataLoc);
end

dataUrl = "http://serre-lab.clps.brown.edu/wp-content/uploads/2013/10/hmdb51_org.rar";
options = weboptions('Timeout', Inf);
rarFileName = fullfile(dataLoc, 'hmdb51_org.rar');

% Download the RAR file and save it to the download folder.
if ~isfile(rarFileName)
 disp("Downloading hmdb51_org.rar (2 GB) to the folder:")
 disp(dataLoc)
 disp("This download can take a few minutes...")
 websave(rarFileName, dataUrl, options);
 disp("Download complete.")
 disp("Extract the hmdb51_org.rar file contents to the folder: ")
 disp(dataLoc)
end
end

initializeTrainingProgressPlot

The initializeTrainingProgressPlot function configures two plots for displaying the training
loss, training accuracy, and validation accuracy.

function plotters = initializeTrainingProgressPlot(params)
if params.ProgressPlot
 % Plot the loss, training accuracy, and validation accuracy.
 figure

 % Loss plot
 subplot(2,1,1)
 plotters.LossPlotter = animatedline;
 xlabel("Iteration")
 ylabel("Loss")

 % Accuracy plot
 subplot(2,1,2)
 plotters.TrainAccPlotter = animatedline('Color','b');
 plotters.ValAccPlotter = animatedline('Color','g');

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-164

 legend('Training Accuracy','Validation Accuracy','Location','northwest');
 xlabel("Iteration")
 ylabel("Accuracy")
else
 plotters = [];
end
end

updateProgressPlot

The updateProgressPlot function updates the progress plot with loss and accuracy information
during training.

function updateProgressPlot(params,plotters,epoch,iteration,start,lossTrain,accuracyTrain,accuracyValidation)
if params.ProgressPlot

 % Update the training progress.
 D = duration(0,0,toc(start),"Format","hh:mm:ss");
 title(plotters.LossPlotter.Parent,"Epoch: " + epoch + ", Elapsed: " + string(D));
 addpoints(plotters.LossPlotter,iteration,double(gather(extractdata(lossTrain))));
 addpoints(plotters.TrainAccPlotter,iteration,accuracyTrain);
 addpoints(plotters.ValAccPlotter,iteration,accuracyValidation);
 drawnow
end
end

initializeVerboseOutput

function initializeVerboseOutput(params)
if params.Verbose
 disp(" ")
 if canUseGPU
 disp("Training on GPU.")
 else
 disp("Training on CPU.")
 end
 p = gcp('nocreate');
 if ~isempty(p)
 disp("Training on parallel cluster '" + p.Cluster.Profile + "'. ")
 end
 disp("NumIterations:" + string(params.NumIterations));
 disp("MiniBatchSize:" + string(params.MiniBatchSize));
 disp("Classes:" + join(string(params.Classes), ","));
 disp("|===|")
 disp("| Epoch | Iteration | Time Elapsed | Mini-Batch | Validation | Mini-Batch | Validation | Base Learning | Train Time | Validation Time |")
 disp("| | | (hh:mm:ss) | Accuracy | Accuracy | Loss | Loss | Rate | (hh:mm:ss) | (hh:mm:ss) |")
 disp("|===|")
end
end

displayVerboseOutputEveryEpoch

function displayVerboseOutputEveryEpoch(params,start,learnRate,epoch,iteration,...
 accTrain,accValidation,lossTrain,lossValidation,trainTime,validationTime)
 if params.Verbose
 D = duration(0,0,toc(start),'Format','hh:mm:ss');
 trainTime = duration(0,0,trainTime,'Format','hh:mm:ss');
 validationTime = duration(0,0,validationTime,'Format','hh:mm:ss');

 Activity Recognition Using R(2+1)D Video Classification

3-165

 lossValidation = gather(extractdata(lossValidation));
 lossValidation = compose('%.4f',lossValidation);

 accValidation = composePadAccuracy(accValidation);

 lossTrain = gather(extractdata(lossTrain));
 lossTrain = compose('%.4f',lossTrain);

 accTrain = composePadAccuracy(accTrain);
 learnRate = compose('%.13f',learnRate);

 disp("| " + ...
 pad(string(epoch),5,'both') + " | " + ...
 pad(string(iteration),9,'both') + " | " + ...
 pad(string(D),12,'both') + " | " + ...
 pad(string(accTrain),10,'both') + " | " + ...
 pad(string(accValidation),10,'both') + " | " + ...
 pad(string(lossTrain),10,'both') + " | " + ...
 pad(string(lossValidation),10,'both') + " | " + ...
 pad(string(learnRate),13,'both') + " | " + ...
 pad(string(trainTime),10,'both') + " | " + ...
 pad(string(validationTime),15,'both') + " |")
 end
 function acc = composePadAccuracy(acc)
 acc = compose('%.2f',acc*100) + "%";
 acc = pad(string(acc),6,'left');
 end
end

endVerboseOutput

The endVerboseOutput function displays the end of verbose output during training.

function endVerboseOutput(params)
if params.Verbose
 disp("|===|")
end
end

References

[1] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, Manohar Paluri. "A Closer Look
at Spatiotemporal Convolutions for Action Recognition". Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018, pp. 6450-6459.

[2] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. "SlowFast Networks for
Video Recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[3] Loshchilov, Ilya, and Frank Hutter. "SGDR: Stochastic Gradient Descent with Warm Restarts."
International Conferencee on Learning Representations 2017. Toulon, France: ICLR, 2017.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-166

[4] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra
Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, Andrew
Zisserman. "The Kinetics Human Action Video Dataset." arXiv preprint arXiv:1705.06950, 2017.

 Activity Recognition Using R(2+1)D Video Classification

3-167

Activity Recognition from Video and Optical Flow Data Using
Deep Learning

This example first shows how to perform activity recognition using a pretrained Inflated 3-D (I3D)
two-stream convolutional neural network based video classifier and then shows how to use transfer
learning to train such a video classifier using RGB and optical flow data from videos [1] on page 3-
194.

Overview

Vision-based activity recognition involves predicting the action of an object, such as walking,
swimming, or sitting, using a set of video frames. Activity recognition from video has many
applications, such as human-computer interaction, robot learning, anomaly detection, surveillance,
and object detection. For example, online prediction of multiple actions for incoming videos from
multiple cameras can be important for robot learning. Compared to image classification, action
recognition using videos is challenging to model because of the inaccurate ground truth data for
video data sets, the variety of gestures that actors in a video can perform, the heavily class
imbalanced datasets, and the large amount of data required to train a robust classifier from scratch.
Deep learning techniques, such as I3D two-stream convolutional networks [1] on page 3-194,
R(2+1)D [4 on page 3-195], and SlowFast [5 on page 3-195] have shown improved performance on
smaller datasets using transfer learning with networks pretrained on large video activity recognition
datasets, such as Kinetics-400 [6 on page 3-195].

Note: This example requires the Computer Vision Toolbox™ Model for Inflated-3D Video
Classification. You can install the Computer Vision Toolbox Model for Inflated-3D Video Classification
from Add-On Explorer. For more information about installing add-ons, see “Get and Manage Add-
Ons”.

Perform Activity Recognition Using a Pretrained Inflated-3D Video Classifier

Download the pretrained Inflated-3D video classifier along with a video file on which to perform
activity recognition. The size of the downloaded zip file is around 89 MB.

downloadFolder = fullfile(tempdir,"hmdb51","pretrained","I3D");
if ~isfolder(downloadFolder)
 mkdir(downloadFolder);
end

filename = "activityRecognition-I3D-HMDB51-21b.zip";

zipFile = fullfile(downloadFolder,filename);
if ~isfile(zipFile)
 disp('Downloading the pretrained network...');
 downloadURL = "https://ssd.mathworks.com/supportfiles/vision/data/" + filename;
 websave(zipFile,downloadURL);
 unzip(zipFile,downloadFolder);
end

Load the pretrained Inflated-3D video classifier.

pretrainedDataFile = fullfile(downloadFolder,"inflated3d-FiveClasses-hmdb51.mat");
pretrained = load(pretrainedDataFile);
inflated3dPretrained = pretrained.data.inflated3d;

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-168

Display the class label names of the pretrained video classifier.

classes = inflated3dPretrained.Classes

classes = 5×1 categorical
 kiss
 laugh
 pick
 pour
 pushup

Read and display the video pour.avi using VideoReader and vision.VideoPlayer.

videoFilename = fullfile(downloadFolder, "pour.avi");

videoReader = VideoReader(videoFilename);
videoPlayer = vision.VideoPlayer;
videoPlayer.Name = "pour";

while hasFrame(videoReader)
 frame = readFrame(videoReader);
 % Resize the frame for display.
 frame = imresize(frame, 1.5);
 step(videoPlayer,frame);
end
release(videoPlayer);

Choose 10 randomly selected video sequences to classify the video, to uniformly cover the entirety of
the file to find the action class that is predominant in the video.

numSequences = 10;

Classify the video file using the classifyVideoFile function.

[actionLabel,score] = classifyVideoFile(inflated3dPretrained, videoFilename, "NumSequences", numSequences)

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

3-169

actionLabel = categorical
 pour

score = single
 0.4482

Train a Video Classifier for Gesture Recognition

This section of the example shows how the video classifier shown above is trained using transfer
learning. Set the doTraining variable to false to use the pretrained video classifier without having

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-170

to wait for training to complete. Alternatively, if you want to train the video classifier, set the
doTraining variable to true.

doTraining = false;

Download Training and Validation Data

This example trains an Inflated-3D (I3D) Video Classifier using the HMDB51 data set. Use the
downloadHMDB51 supporting function, listed at the end of this example, to download the HMDB51
data set to a folder named hmdb51.

downloadFolder = fullfile(tempdir,"hmdb51");
downloadHMDB51(downloadFolder);

After the download is complete, extract the RAR file hmdb51_org.rar to the hmdb51 folder. Next,
use the checkForHMDB51Folder supporting function, listed at the end of this example, to confirm
that the downloaded and extracted files are in place.

allClasses = checkForHMDB51Folder(downloadFolder);

The data set contains about 2 GB of video data for 7000 clips over 51 classes, such as drink, run, and
shake hands. Each video frame has a height of 240 pixels and a minimum width of 176 pixels. The
number of frames ranges from 18 to approximately 1000.

To reduce training time, this example trains an activity recognition network to classify 5 action
classes instead of all 51 classes in the data set. Set useAllData to true to train with all 51 classes.

useAllData = false;

if useAllData
 classes = allClasses;
end
dataFolder = fullfile(downloadFolder, "hmdb51_org");

Split the data set into a training set for training the classifier, and a test set for evaluating the
classifier. Use 80% of the data for the training set and the rest for the test set. Use folders2labels
and splitlabels to create label information from folders and split the data based on each label
into training and test data sets by randomly selecting a proportion of files from each label.

[labels,files] = folders2labels(fullfile(dataFolder,string(classes)),...
 "IncludeSubfolders",true,...
 "FileExtensions",'.avi');

indices = splitlabels(labels,0.8,'randomized');

trainFilenames = files(indices{1});
testFilenames = files(indices{2});

To normalize the input data for the network, the minimum and maximum values for the data set are
provided in the MAT file inputStatistics.mat, attached to this example. To find the minimum and
maximum values for a different data set, use the inputStatistics supporting function, listed at the
end of this example.

inputStatsFilename = 'inputStatistics.mat';
if ~exist(inputStatsFilename, 'file')
 disp("Reading all the training data for input statistics...")
 inputStats = inputStatistics(dataFolder);

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

3-171

https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/

else
 d = load(inputStatsFilename);
 inputStats = d.inputStats;
end

Load Dataset

This example uses a datastore to read the videos scenes, the corresponding optical flow data, and the
corresponding labels from the video files.

Specify the number of video frames the datastore should be configured to output for each time data is
read from the datastore.

numFrames = 64;

A value of 64 is used here to balance memory usage and classification time. Common values to
consider are 16, 32, 64, or 128. Using more frames helps capture additional temporal information,
but requires more memory. You might need to lower this value depending on your system resources.
Empirical analysis is required to determine the optimal number of frames.

Next, specify the height and width of the frames the datastore should be configured to output. The
datastore automatically resizes the raw video frames to the specified size to enable batch processing
of multiple video sequences.

frameSize = [112,112];

A value of [112 112] is used to capture longer temporal relationships in the video scene which help
classify activities with long time durations. Common values for the size are [112 112], [224 224], or
[256 256]. Smaller sizes enable the use of more video frames at the cost of memory usage, processing
time, and spatial resolution. The minimum height and width of the video frames in the HMDB51 data
set are 240 and 176, respectively. If you want to specify a frame size for the datastore to read that is
larger than the minimum values, such as [256, 256], first resize the frames using imresize. As with
the number of frames, empirical analysis is required to determine the optimal values.

Specify the number of channels as 3 for the RGB video subnetwork, and 2 for the optical flow
subnetwork of the I3D video classifier. The two channels for optical flow data are the x and y
components of velocity, Vx and Vy, respectively.

rgbChannels = 3;
flowChannels = 2;

Use the helper function, createFileDatastore, to configure two FileDatastore objects for
loading the data, one for training and another for validation. The helper function is listed at the end
of this example. Each datastore reads a video file to provide RGB data and the corresponding label
information.

isDataForTraining = true;
dsTrain = createFileDatastore(trainFilenames,numFrames,rgbChannels,classes,isDataForTraining);

isDataForTraining = false;
dsVal = createFileDatastore(testFilenames,numFrames,rgbChannels,classes,isDataForTraining);

Define Network Architecture

I3D network

Using a 3-D CNN is a natural approach to extracting spatio-temporal features from videos. You can
create an I3D network from a pretrained 2-D image classification network such as Inception v1 or

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-172

ResNet-50 by expanding 2-D filters and pooling kernels into 3-D. This procedure reuses the weights
learned from the image classification task to bootstrap the video recognition task.

The following figure is a sample showing how to inflate a 2-D convolution layer to a 3-D convolution
layer. The inflation involves expanding the filter size, weights, and bias by adding a third dimension
(the temporal dimension).

Two-Stream I3D Network

Video data can be considered to have two parts: a spatial component and a temporal component.

• The spatial component comprises information about the shape, texture, and color of objects in
video. RGB data contains this information.

• The temporal component comprises information about the motion of objects across the frames and
depicts important movements between the camera and the objects in a scene. Computing optical
flow is a common technique for extracting temporal information from video.

A two-stream CNN incorporates a spatial subnetwork and a temporal subnetwork [2] on page 3-194.
A convolutional neural network trained on dense optical flow and a video data stream can achieve
better performance with limited training data than with raw stacked RGB frames. The following
illustration shows a typical two-stream I3D network.

Configure Inflated-3D (I3D) Video Classifier for Transfer Learning

In this example, you create an I3D video classifier based on the GoogLeNet architecture, a 3D
Convolution Neural Network Video Classifier pretrained on the Kinetics-400 dataset.

Specify GoogLeNet as the backbone convolution neural network architecture for the I3D video
classifier that contains two subnetworks, one for video data and another for optical flow data.

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

3-173

baseNetwork = "googlenet-video-flow";

Specify the input size for the Inflated-3D Video Classifier.

inputSize = [frameSize, rgbChannels, numFrames];

Obtain the minimum and maximum values for the RGB and optical flow data from the inputStats
structure loaded from the inputStatistics.mat file. These values are needed to normalize the
input data.

oflowMin = squeeze(inputStats.oflowMin)';
oflowMax = squeeze(inputStats.oflowMax)';
rgbMin = squeeze(inputStats.rgbMin)';
rgbMax = squeeze(inputStats.rgbMax)';

stats.Video.Min = rgbMin;
stats.Video.Max = rgbMax;
stats.Video.Mean = [];
stats.Video.StandardDeviation = [];

stats.OpticalFlow.Min = oflowMin(1:flowChannels);
stats.OpticalFlow.Max = oflowMax(1:flowChannels);
stats.OpticalFlow.Mean = [];
stats.OpticalFlow.StandardDeviation = [];

Create the I3D Video Classifier by using the inflated3dVideoClassifier function.

i3d = inflated3dVideoClassifier(baseNetwork,string(classes),...
 "InputSize",inputSize,...
 "InputNormalizationStatistics",stats);

Specify a model name for the video classifier.

i3d.ModelName = "Inflated-3D Activity Recognizer Using Video and Optical Flow";

Augment and Preprocess Training Data

Data augmentation provides a way to use limited data sets for training. Augmentation on video data
must be the same for a collection of frames, i.e. a video sequence, based on the network input size.
Minor changes, such as translation, cropping, or transforming an image, provide, new, distinct, and
unique images that you can use to train a robust video classifier. Datastores are a convenient way to
read and augment collections of data. Augment the training video data by using the augmentVideo
supporting function, defined at the end of this example.

dsTrain = transform(dsTrain, @augmentVideo);

Preprocess the training video data to resize to the Inflated-3D Video Classifier input size, by using the
preprocessVideoClips, defined at the end of this example. Specify the
InputNormalizationStatistics property of the video classifier and input size to the
preprocessing function as field values in a struct, preprocessInfo. The
InputNormalizationStatistics property is used to rescale the video frames and optical flow
data between -1 and 1. The input size is used to resize the video frames using imresize based on the
SizingOption value in the info struct. Alternatively, you could use "randomcrop" or
"centercrop" to random crop or center crop the input data to the input size of the video classifier.
Note that data augmentation is not applied to the test and validation data. Ideally, test and validation
data should be representative of the original data and is left unmodified for unbiased evaluation.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-174

preprocessInfo.Statistics = i3d.InputNormalizationStatistics;
preprocessInfo.InputSize = inputSize;
preprocessInfo.SizingOption = "resize";
dsTrain = transform(dsTrain, @(data)preprocessVideoClips(data, preprocessInfo));
dsVal = transform(dsVal, @(data)preprocessVideoClips(data, preprocessInfo));

Define Model Gradients Function

Create the supporting function modelGradients, listed at the end of this example. The
modelGradients function takes as input the I3D video classifier i3d, a mini-batch of input data
dlRGB and dlFlow, and a mini-batch of ground truth label data dlY. The function returns the
training loss value, the gradients of the loss with respect to the learnable parameters of the classifier,
and the mini-batch accuracy of the classifier.

The loss is calculated by computing the average of the cross-entropy losses of the predictions from
each of the subnetworks. The output predictions of the network are probabilities between 0 and 1 for
each of the classes.

rgbLoss = crossentropy(rgbPrediction)

f lowLoss = crossentropy(f lowPrediction)

loss = mean([rgbLoss, f lowLoss])

The accuracy of each of the classifier is calculated by taking the average of the RGB and optical flow
predictions, and comparing it to the ground truth label of the inputs.

Specify Training Options

Train with a mini-batch size of 20 for 600 iterations. Specify the iteration after which to save the
video classifier with the best validation accuracy by using the SaveBestAfterIteration
parameter.

Specify the cosine-annealing learning rate schedule [3 on page 3-195] parameters:

• A minimum learning rate of 1e-4.
• A maximum learning rate of 1e-3.
• Cosine number of iterations of 100, 200, and 300, after which the learning rate schedule cycle

restarts. The option CosineNumIterations defines the width of each cosine cycle.

Specify the parameters for SGDM optimization. Initialize the SGDM optimization parameters at the
beginning of the training:

• A momentum of 0.9.
• An initial velocity parameter initialized as [].
• An L2 regularization factor of 0.0005.

Specify to dispatch the data in the background using a parallel pool. If DispatchInBackground is
set to true, open a parallel pool with the specified number of parallel workers, and create a
DispatchInBackgroundDatastore, provided as part of this example, that dispatches the data in
the background to speed up training using asynchronous data loading and preprocessing. By default,
this example uses a GPU if one is available. Otherwise, it uses a CPU. Using a GPU requires Parallel
Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU. For information about the supported
compute capabilities, see “GPU Computing Requirements” (Parallel Computing Toolbox).

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

3-175

params.Classes = classes;
params.MiniBatchSize = 20;
params.NumIterations = 600;
params.SaveBestAfterIteration = 400;
params.CosineNumIterations = [100, 200, 300];
params.MinLearningRate = 1e-4;
params.MaxLearningRate = 1e-3;
params.Momentum = 0.9;
params.VelocityRGB = [];
params.VelocityFlow = [];
params.L2Regularization = 0.0005;
params.ProgressPlot = true;
params.Verbose = true;
params.ValidationData = dsVal;
params.DispatchInBackground = false;
params.NumWorkers = 4;

Train I3D Video Classifier

Train the I3D video classifier using the RGB video data and optical flow data.

For each epoch:

• Shuffle the data before looping over mini-batches of data.
• Use minibatchqueue to loop over the mini-batches. The supporting function

createMiniBatchQueue, listed at the end of this example, uses the given training datastore to
create a minibatchqueue.

• Use the validation data dsVal to validate the networks.
• Display the loss and accuracy results for each epoch using the supporting function

displayVerboseOutputEveryEpoch, listed at the end of this example.

For each mini-batch:

• Convert the video data or optical flow data and the labels to dlarray objects with the underlying
type single.

• To enable processing the time dimension of the the video data using the I3D Video Classifier
specify the temporal sequence dimension, "T". Specify the dimension labels "SSCTB" (spatial,
spatial, channel, temporal, batch) for the video data, and "CB" for the label data.

The minibatchqueue object uses the supporting function batchVideoAndFlow, listed at the end of
this example, to batch the RGB video and optical flow data.

params.ModelFilename = "inflated3d-FiveClasses-hmdb51.mat";
if doTraining
 epoch = 1;
 bestLoss = realmax;

 accTrain = [];
 accTrainRGB = [];
 accTrainFlow = [];
 lossTrain = [];

 iteration = 1;
 start = tic;
 trainTime = start;

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-176

 shuffled = shuffleTrainDs(dsTrain);

 % Number of outputs is three: One for RGB frames, one for optical flow
 % data, and one for ground truth labels.
 numOutputs = 3;
 mbq = createMiniBatchQueue(shuffled, numOutputs, params);

 % Use the initializeTrainingProgressPlot and initializeVerboseOutput
 % supporting functions, listed at the end of the example, to initialize
 % the training progress plot and verbose output to display the training
 % loss, training accuracy, and validation accuracy.
 plotters = initializeTrainingProgressPlot(params);
 initializeVerboseOutput(params);

 while iteration <= params.NumIterations

 % Iterate through the data set.
 [dlVideo,dlFlow,dlY] = next(mbq);

 % Evaluate the model gradients and loss using dlfeval.
 [gradRGB,gradFlow,loss,acc,accRGB,accFlow,stateRGB,stateFlow] = ...
 dlfeval(@modelGradients,i3d,dlVideo,dlFlow,dlY);

 % Accumulate the loss and accuracies.
 lossTrain = [lossTrain, loss];
 accTrain = [accTrain, acc];
 accTrainRGB = [accTrainRGB, accRGB];
 accTrainFlow = [accTrainFlow, accFlow];

 % Update the network state.
 i3d.VideoState = stateRGB;
 i3d.OpticalFlowState = stateFlow;

 % Update the gradients and parameters for the RGB and optical flow
 % subnetworks using the SGDM optimizer.
 [i3d.VideoLearnables,params.VelocityRGB] = ...
 updateLearnables(i3d.VideoLearnables,gradRGB,params,params.VelocityRGB,iteration);
 [i3d.OpticalFlowLearnables,params.VelocityFlow,learnRate] = ...
 updateLearnables(i3d.OpticalFlowLearnables,gradFlow,params,params.VelocityFlow,iteration);

 if ~hasdata(mbq) || iteration == params.NumIterations
 % Current epoch is complete. Do validation and update progress.
 trainTime = toc(trainTime);

 [validationTime,cmat,lossValidation,accValidation,accValidationRGB,accValidationFlow] = ...
 doValidation(params, i3d);

 accTrain = mean(accTrain);
 accTrainRGB = mean(accTrainRGB);
 accTrainFlow = mean(accTrainFlow);
 lossTrain = mean(lossTrain);

 % Update the training progress.
 displayVerboseOutputEveryEpoch(params,start,learnRate,epoch,iteration,...
 accTrain,accTrainRGB,accTrainFlow,...
 accValidation,accValidationRGB,accValidationFlow,...
 lossTrain,lossValidation,trainTime,validationTime);
 updateProgressPlot(params,plotters,epoch,iteration,start,lossTrain,accTrain,accValidation);

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

3-177

 % Save the trained video classifier and the parameters, that gave
 % the best validation loss so far. Use the saveData supporting function,
 % listed at the end of this example.
 bestLoss = saveData(i3d,bestLoss,iteration,cmat,lossTrain,lossValidation,...
 accTrain,accValidation,params);
 end

 if ~hasdata(mbq) && iteration < params.NumIterations
 % Current epoch is complete. Initialize the training loss, accuracy
 % values, and minibatchqueue for the next epoch.
 accTrain = [];
 accTrainRGB = [];
 accTrainFlow = [];
 lossTrain = [];

 trainTime = tic;
 epoch = epoch + 1;
 shuffled = shuffleTrainDs(dsTrain);
 numOutputs = 3;
 mbq = createMiniBatchQueue(shuffled, numOutputs, params);

 end

 iteration = iteration + 1;
 end

 % Display a message when training is complete.
 endVerboseOutput(params);

 disp("Model saved to: " + params.ModelFilename);
end

Evaluate Trained Network

Use the test data set to evaluate the accuracy of the trained video classifier.

Load the best model saved during training or use the pretrained model.

if doTraining
 transferLearned = load(params.ModelFilename);
 inflated3dPretrained = transferLearned.data.inflated3d;
end

Create a minibatchqueue object to load batches of the test data.

numOutputs = 3;
mbq = createMiniBatchQueue(params.ValidationData, numOutputs, params);

For each batch of test data, make predictions using the RGB and optical flow networks, take the
average of the predictions, and compute the prediction accuracy using a confusion matrix.

numClasses = numel(classes);
cmat = sparse(numClasses,numClasses);
while hasdata(mbq)
 [dlRGB, dlFlow, dlY] = next(mbq);

 % Pass the video input as RGB and optical flow data through the

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-178

 % two-stream I3D Video Classifier to get the separate predictions.
 [dlYPredRGB,dlYPredFlow] = predict(inflated3dPretrained,dlRGB,dlFlow);

 % Fuse the predictions by calculating the average of the predictions.
 dlYPred = (dlYPredRGB + dlYPredFlow)/2;

 % Calculate the accuracy of the predictions.
 [~,YTest] = max(dlY,[],1);
 [~,YPred] = max(dlYPred,[],1);

 cmat = aggregateConfusionMetric(cmat,YTest,YPred);
end

Compute the average classification accuracy for the trained networks.

accuracyEval = sum(diag(cmat))./sum(cmat,"all")

accuracyEval = 0.8850

Display the confusion matrix.

figure
chart = confusionchart(cmat,classes);

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

3-179

The Inflated-3D video classifier that is pretrained on the Kinetics-400 dataset, provides better
performance for human activity recognition on transfer learning. The above training was run on 24GB
Titan-X GPU for about 100 minutes. When training from scratch on a small activity recognition video
dataset, the training time and convergence takes much longer than the pretrained video classifier.
Transer learning using the Kinetics-400 pretrained Inflated-3D video classifier also avoids overfitting
the classifier when ran for larger number of epochs. However, the SlowFast Video Classifier and
R(2+1)D Video Classifier that are pretrained on the Kinetics-400 dataset provide better performance
and faster convergence during training compared to the Inflated-3D Video Classifier. To learn more
about video recognition using deep learning, see “Getting Started with Video Classification Using
Deep Learning” on page 17-14.

Supporting Functions

inputStatistics

The inputStatistics function takes as input the name of the folder containing the HMDB51 data,
and calculates the minimum and maximum values for the RGB data and the optical flow data. The
minimum and maximum values are used as normalization inputs to the input layer of the networks.
This function also obtains the number of frames in each of the video files to use later during training

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-180

and testing the network. In order to find the minimum and maximum values for a different data set,
use this function with a folder name containing the data set.

function inputStats = inputStatistics(dataFolder)
 ds = createDatastore(dataFolder);
 ds.ReadFcn = @getMinMax;

 tic;
 tt = tall(ds);
 varnames = {'rgbMax','rgbMin','oflowMax','oflowMin'};
 stats = gather(groupsummary(tt,[],{'max','min'}, varnames));
 inputStats.Filename = gather(tt.Filename);
 inputStats.NumFrames = gather(tt.NumFrames);
 inputStats.rgbMax = stats.max_rgbMax;
 inputStats.rgbMin = stats.min_rgbMin;
 inputStats.oflowMax = stats.max_oflowMax;
 inputStats.oflowMin = stats.min_oflowMin;
 save('inputStatistics.mat','inputStats');
 toc;
end

function data = getMinMax(filename)
 reader = VideoReader(filename);
 opticFlow = opticalFlowFarneback;
 data = [];
 while hasFrame(reader)
 frame = readFrame(reader);
 [rgb,oflow] = findMinMax(frame,opticFlow);
 data = assignMinMax(data, rgb, oflow);
 end

 totalFrames = floor(reader.Duration * reader.FrameRate);
 totalFrames = min(totalFrames, reader.NumFrames);

 [labelName, filename] = getLabelFilename(filename);
 data.Filename = fullfile(labelName, filename);
 data.NumFrames = totalFrames;

 data = struct2table(data,'AsArray',true);
end

function [labelName, filename] = getLabelFilename(filename)
 fileNameSplit = split(filename,'/');
 labelName = fileNameSplit{end-1};
 filename = fileNameSplit{end};
end

function data = assignMinMax(data, rgb, oflow)
 if isempty(data)
 data.rgbMax = rgb.Max;
 data.rgbMin = rgb.Min;
 data.oflowMax = oflow.Max;
 data.oflowMin = oflow.Min;
 return;
 end
 data.rgbMax = max(data.rgbMax, rgb.Max);
 data.rgbMin = min(data.rgbMin, rgb.Min);

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

3-181

 data.oflowMax = max(data.oflowMax, oflow.Max);
 data.oflowMin = min(data.oflowMin, oflow.Min);
end

function [rgbMinMax,oflowMinMax] = findMinMax(rgb, opticFlow)
 rgbMinMax.Max = max(rgb,[],[1,2]);
 rgbMinMax.Min = min(rgb,[],[1,2]);

 gray = rgb2gray(rgb);
 flow = estimateFlow(opticFlow,gray);
 oflow = cat(3,flow.Vx,flow.Vy,flow.Magnitude);

 oflowMinMax.Max = max(oflow,[],[1,2]);
 oflowMinMax.Min = min(oflow,[],[1,2]);
end

function ds = createDatastore(folder)
 ds = fileDatastore(folder,...
 'IncludeSubfolders', true,...
 'FileExtensions', '.avi',...
 'UniformRead', true,...
 'ReadFcn', @getMinMax);
 disp("NumFiles: " + numel(ds.Files));
end

createFileDatastore

The createFileDatastore function creates a FileDatastore object using the given file names.
The FileDatastore object reads the data in 'partialfile' mode, so every read can return
partially read frames from videos. This feature helps with reading large video files, if all of the frames
do not fit in memory.

function datastore = createFileDatastore(trainingFolder,numFrames,numChannels,classes,isDataForTraining)
 readFcn = @(f,u)readVideo(f,u,numFrames,numChannels,classes,isDataForTraining);
 datastore = fileDatastore(trainingFolder,...
 'IncludeSubfolders',true,...
 'FileExtensions','.avi',...
 'ReadFcn',readFcn,...
 'ReadMode','partialfile');
end

shuffleTrainDs

The shuffleTrainDs function shuffles the files present in the training datastore dsTrain.

function shuffled = shuffleTrainDs(dsTrain)
shuffled = copy(dsTrain);
transformed = isa(shuffled, 'matlab.io.datastore.TransformedDatastore');
if transformed
 files = shuffled.UnderlyingDatastores{1}.Files;
else
 files = shuffled.Files;
end
n = numel(files);
shuffledIndices = randperm(n);
if transformed
 shuffled.UnderlyingDatastores{1}.Files = files(shuffledIndices);
else

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-182

 shuffled.Files = files(shuffledIndices);
end

reset(shuffled);
end

readVideo

The readVideo function reads video frames, and the corresponding label values for a given video
file. During training, the read function reads the specific number of frames as per the network input
size, with a randomly chosen starting frame. During testing, all the frames are sequentially read. The
video frames are resized to the required classifier network input size for training, and for testing and
validation.

function [data,userdata,done] = readVideo(filename,userdata,numFrames,numChannels,classes,isDataForTraining)
 if isempty(userdata)
 userdata.reader = VideoReader(filename);
 userdata.batchesRead = 0;

 userdata.label = getLabel(filename,classes);

 totalFrames = floor(userdata.reader.Duration * userdata.reader.FrameRate);
 totalFrames = min(totalFrames, userdata.reader.NumFrames);
 userdata.totalFrames = totalFrames;
 userdata.datatype = class(read(userdata.reader,1));
 end
 reader = userdata.reader;
 totalFrames = userdata.totalFrames;
 label = userdata.label;
 batchesRead = userdata.batchesRead;

 if isDataForTraining
 video = readForTraining(reader, numFrames, totalFrames);
 else
 video = readForValidation(reader, userdata.datatype, numChannels, numFrames, totalFrames);
 end

 data = {video, label};

 batchesRead = batchesRead + 1;

 userdata.batchesRead = batchesRead;

 if numFrames > totalFrames
 numBatches = 1;
 else
 numBatches = floor(totalFrames/numFrames);
 end
 % Set the done flag to true, if the reader has read all the frames or
 % if it is training.
 done = batchesRead == numBatches || isDataForTraining;
end

readForTraining

The readForTraining function reads the video frames for training the video classifier. The function
reads the specific number of frames as per the network input size, with a randomly chosen starting

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

3-183

frame. If there are not enough frames left over, the video sequence is repeated to pad the required
number of frames.

function video = readForTraining(reader, numFrames, totalFrames)
 if numFrames >= totalFrames
 startIdx = 1;
 endIdx = totalFrames;
 else
 startIdx = randperm(totalFrames - numFrames + 1);
 startIdx = startIdx(1);
 endIdx = startIdx + numFrames - 1;
 end
 video = read(reader,[startIdx,endIdx]);
 if numFrames > totalFrames
 % Add more frames to fill in the network input size.
 additional = ceil(numFrames/totalFrames);
 video = repmat(video,1,1,1,additional);
 video = video(:,:,:,1:numFrames);
 end
end

readForValidation

The readForValidation function reads the video frames for evaluating the trained video classifier.
The function reads the specific number of frames sequentially as per the network input size. If there
are not enough frames left over, the video sequence is repeated to pad the required number of
frames.

function video = readForValidation(reader, datatype, numChannels, numFrames, totalFrames)
 H = reader.Height;
 W = reader.Width;
 toRead = min([numFrames,totalFrames]);
 video = zeros([H,W,numChannels,toRead], datatype);
 frameIndex = 0;
 while hasFrame(reader) && frameIndex < numFrames
 frame = readFrame(reader);
 frameIndex = frameIndex + 1;
 video(:,:,:,frameIndex) = frame;
 end

 if frameIndex < numFrames
 video = video(:,:,:,1:frameIndex);
 additional = ceil(numFrames/frameIndex);
 video = repmat(video,1,1,1,additional);
 video = video(:,:,:,1:numFrames);
 end
end

getLabel

The getLabel function obtains the label name from the full path of a filename. The label for a file is
the folder in which it exists. For example, for a file path such as "/path/to/dataset/clapping/
video_0001.avi", the label name is "clapping".

function label = getLabel(filename,classes)
 folder = fileparts(string(filename));
 [~,label] = fileparts(folder);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-184

 label = categorical(string(label), string(classes));
end

augmentVideo

The augmentVideo function uses the augment transform function provided by the
augmentTransform supporting function to apply the same augmentation across a video sequence.

function data = augmentVideo(data)
 numSequences = size(data,1);
 for ii = 1:numSequences
 video = data{ii,1};
 % HxWxC
 sz = size(video,[1,2,3]);
 % One augmentation per sequence
 augmentFcn = augmentTransform(sz);
 data{ii,1} = augmentFcn(video);
 end
end

augmentTransform

The augmentTransform function creates an augmentation method with random left-right flipping
and scaling factors.

function augmentFcn = augmentTransform(sz)
% Randomly flip and scale the image.
tform = randomAffine2d('XReflection',true,'Scale',[1 1.1]);
rout = affineOutputView(sz,tform,'BoundsStyle','CenterOutput');

augmentFcn = @(data)augmentData(data,tform,rout);

 function data = augmentData(data,tform,rout)
 data = imwarp(data,tform,'OutputView',rout);
 end
end

preprocessVideoClips

The preprocessVideoClips function preprocesses the training video data to resize to the
Inflated-3D Video Classifier input size. It takes the InputNormalizationStatistics and the
InputSize properties of the video classifier in a struct, info. The
InputNormalizationStatistics property is used to rescale the video frames and optical flow
data between -1 and 1. The input size is used to resize the video frames using imresize based on the
SizingOption value in the info struct. Alternatively, you could use "randomcrop" or
"centercrop" as values for SizingOption to random crop or center crop the input data to the
input size of the video classifier.

function preprocessed = preprocessVideoClips(data, info)
inputSize = info.InputSize(1:2);
sizingOption = info.SizingOption;
switch sizingOption
 case "resize"
 sizingFcn = @(x)imresize(x,inputSize);
 case "randomcrop"
 sizingFcn = @(x)cropVideo(x,@randomCropWindow2d,inputSize);
 case "centercrop"
 sizingFcn = @(x)cropVideo(x,@centerCropWindow2d,inputSize);

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

3-185

end
numClips = size(data,1);

rgbMin = info.Statistics.Video.Min;
rgbMax = info.Statistics.Video.Max;
oflowMin = info.Statistics.OpticalFlow.Min;
oflowMax = info.Statistics.OpticalFlow.Max;

numChannels = length(rgbMin);
rgbMin = reshape(rgbMin, 1, 1, numChannels);
rgbMax = reshape(rgbMax, 1, 1, numChannels);

numChannels = length(oflowMin);
oflowMin = reshape(oflowMin, 1, 1, numChannels);
oflowMax = reshape(oflowMax, 1, 1, numChannels);

preprocessed = cell(numClips, 3);
for ii = 1:numClips
 video = data{ii,1};
 resized = sizingFcn(video);
 oflow = computeFlow(resized,inputSize);

 % Cast the input to single.
 resized = single(resized);
 oflow = single(oflow);

 % Rescale the input between -1 and 1.
 resized = rescale(resized,-1,1,"InputMin",rgbMin,"InputMax",rgbMax);
 oflow = rescale(oflow,-1,1,"InputMin",oflowMin,"InputMax",oflowMax);

 preprocessed{ii,1} = resized;
 preprocessed{ii,2} = oflow;
 preprocessed{ii,3} = data{ii,2};
end
end

function outData = cropVideo(data, cropFcn, inputSize)
imsz = size(data,[1,2]);
cropWindow = cropFcn(imsz, inputSize);
numFrames = size(data,4);
sz = [inputSize, size(data,3), numFrames];
outData = zeros(sz, 'like', data);
for f = 1:numFrames
 outData(:,:,:,f) = imcrop(data(:,:,:,f), cropWindow);
end
end

computeFlow

The computeFlow function takes as input a video sequence, videoFrames, and computes the the
corresponding optical flow data opticalFlowData using opticalFlowFarneback. The optical flow
data contains two channels, which correspond to the x- and y- components of velocity.

function opticalFlowData = computeFlow(videoFrames, inputSize)
opticalFlow = opticalFlowFarneback;
numFrames = size(videoFrames,4);
sz = [inputSize, 2, numFrames];
opticalFlowData = zeros(sz, 'like', videoFrames);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-186

for f = 1:numFrames
 gray = rgb2gray(videoFrames(:,:,:,f));
 flow = estimateFlow(opticalFlow,gray);

 opticalFlowData(:,:,:,f) = cat(3,flow.Vx,flow.Vy);
end
end

createMiniBatchQueue

The createMiniBatchQueue function creates a minibatchqueue object that provides
miniBatchSize amount of data from the given datastore. It also creates a
DispatchInBackgroundDatastore if a parallel pool is open.

function mbq = createMiniBatchQueue(datastore, numOutputs, params)
if params.DispatchInBackground && isempty(gcp('nocreate'))
 % Start a parallel pool, if DispatchInBackground is true, to dispatch
 % data in the background using the parallel pool.
 c = parcluster('local');
 c.NumWorkers = params.NumWorkers;
 parpool('local',params.NumWorkers);
end
p = gcp('nocreate');
if ~isempty(p)
 datastore = DispatchInBackgroundDatastore(datastore, p.NumWorkers);
end
inputFormat(1:numOutputs-1) = "SSCTB";
outputFormat = "CB";
mbq = minibatchqueue(datastore, numOutputs, ...
 "MiniBatchSize", params.MiniBatchSize, ...
 "MiniBatchFcn", @batchVideoAndFlow, ...
 "MiniBatchFormat", [inputFormat,outputFormat]);
end

batchVideoAndFlow

The batchVideoAndFlow function batches the video, optical flow, and label data from cell arrays. It
uses onehotencode function to encode ground truth categorical labels into one-hot arrays. The one-
hot encoded array contains a 1 in the position corresponding to the class of the label, and 0 in every
other position.

function [video,flow,labels] = batchVideoAndFlow(video, flow, labels)
% Batch dimension: 5
video = cat(5,video{:});
flow = cat(5,flow{:});

% Batch dimension: 2
labels = cat(2,labels{:});

% Feature dimension: 1
labels = onehotencode(labels,1);
end

modelGradients

The modelGradients function takes as input a mini-batch of RGB data dlRGB, the corresponding
optical flow data dlFlow, and the corresponding target dlY, and returns the corresponding loss, the
gradients of the loss with respect to the learnable parameters, and the training accuracy. To compute

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

3-187

the gradients, evaluate the modelGradients function using the dlfeval function in the training
loop.

function [gradientsRGB,gradientsFlow,loss,acc,accRGB,accFlow,stateRGB,stateFlow] = modelGradients(i3d,dlRGB,dlFlow,Y)

% Pass video input as RGB and optical flow data through the two-stream
% network.
[dlYPredRGB,dlYPredFlow,stateRGB,stateFlow] = forward(i3d,dlRGB,dlFlow);

% Calculate fused loss, gradients, and accuracy for the two-stream
% predictions.
rgbLoss = crossentropy(dlYPredRGB,Y);
flowLoss = crossentropy(dlYPredFlow,Y);
% Fuse the losses.
loss = mean([rgbLoss,flowLoss]);

gradientsRGB = dlgradient(rgbLoss,i3d.VideoLearnables);
gradientsFlow = dlgradient(flowLoss,i3d.OpticalFlowLearnables);

% Fuse the predictions by calculating the average of the predictions.
dlYPred = (dlYPredRGB + dlYPredFlow)/2;

% Calculate the accuracy of the predictions.
[~,YTest] = max(Y,[],1);
[~,YPred] = max(dlYPred,[],1);

acc = gather(extractdata(sum(YTest == YPred)./numel(YTest)));

% Calculate the accuracy of the RGB and flow predictions.
[~,YTest] = max(Y,[],1);
[~,YPredRGB] = max(dlYPredRGB,[],1);
[~,YPredFlow] = max(dlYPredFlow,[],1);

accRGB = gather(extractdata(sum(YTest == YPredRGB)./numel(YTest)));
accFlow = gather(extractdata(sum(YTest == YPredFlow)./numel(YTest)));
end

updateLearnables

The updateLearnables function updates the provided learnables with gradients and other
parameters using SGDM optimization function sgdmupdate.

function [learnables,velocity,learnRate] = updateLearnables(learnables,gradients,params,velocity,iteration)
 % Determine the learning rate using the cosine-annealing learning rate schedule.
 learnRate = cosineAnnealingLearnRate(iteration, params);

 % Apply L2 regularization to the weights.
 idx = learnables.Parameter == "Weights";
 gradients(idx,:) = dlupdate(@(g,w) g + params.L2Regularization*w, gradients(idx,:), learnables(idx,:));

 % Update the network parameters using the SGDM optimizer.
 [learnables, velocity] = sgdmupdate(learnables, gradients, velocity, learnRate, params.Momentum);
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-188

cosineAnnealingLearnRate

The cosineAnnealingLearnRate function computes the learning rate based on the current
iteration number, minimum learning rate, maximum learning rate, and number of iterations for
annealing [3 on page 3-195].

function lr = cosineAnnealingLearnRate(iteration, params)
 if iteration == params.NumIterations
 lr = params.MinLearningRate;
 return;
 end
 cosineNumIter = [0, params.CosineNumIterations];
 csum = cumsum(cosineNumIter);
 block = find(csum >= iteration, 1,'first');
 cosineIter = iteration - csum(block - 1);
 annealingIteration = mod(cosineIter, cosineNumIter(block));
 cosineIteration = cosineNumIter(block);
 minR = params.MinLearningRate;
 maxR = params.MaxLearningRate;
 cosMult = 1 + cos(pi * annealingIteration / cosineIteration);
 lr = minR + ((maxR - minR) * cosMult / 2);
end

aggregateConfusionMetric

The aggregateConfusionMetric function incrementally fills a confusion matrix based on the
predicted results YPred and the expected results YTest.

function cmat = aggregateConfusionMetric(cmat,YTest,YPred)
YTest = gather(extractdata(YTest));
YPred = gather(extractdata(YPred));
[m,n] = size(cmat);
cmat = cmat + full(sparse(YTest,YPred,1,m,n));
end

doValidation

The doValidation function validates the video classifier using the validation data.

function [validationTime, cmat, lossValidation, accValidation, accValidationRGB, accValidationFlow] = doValidation(params, i3d)

validationTime = tic;

numOutputs = 3;
mbq = createMiniBatchQueue(params.ValidationData, numOutputs, params);

lossValidation = [];
numClasses = numel(params.Classes);
cmat = sparse(numClasses,numClasses);
cmatRGB = sparse(numClasses,numClasses);
cmatFlow = sparse(numClasses,numClasses);
while hasdata(mbq)

 [dlX1,dlX2,dlY] = next(mbq);

 [loss,YTest,YPred,YPredRGB,YPredFlow] = predictValidation(i3d,dlX1,dlX2,dlY);

 lossValidation = [lossValidation,loss];

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

3-189

 cmat = aggregateConfusionMetric(cmat,YTest,YPred);
 cmatRGB = aggregateConfusionMetric(cmatRGB,YTest,YPredRGB);
 cmatFlow = aggregateConfusionMetric(cmatFlow,YTest,YPredFlow);
end
lossValidation = mean(lossValidation);
accValidation = sum(diag(cmat))./sum(cmat,"all");
accValidationRGB = sum(diag(cmatRGB))./sum(cmatRGB,"all");
accValidationFlow = sum(diag(cmatFlow))./sum(cmatFlow,"all");

validationTime = toc(validationTime);
end

predictValidation

The predictValidation function calculates the loss and prediction values using the provided video
classifier for RGB and optical flow data.

function [loss,YTest,YPred,YPredRGB,YPredFlow] = predictValidation(i3d,dlRGB,dlFlow,Y)

% Pass the video input through the two-stream Inflated-3D video classifier.
[dlYPredRGB,dlYPredFlow] = predict(i3d,dlRGB,dlFlow);

% Calculate the cross-entropy separately for the two-stream outputs.
rgbLoss = crossentropy(dlYPredRGB,Y);
flowLoss = crossentropy(dlYPredFlow,Y);

% Fuse the losses.
loss = mean([rgbLoss,flowLoss]);

% Fuse the predictions by calculating the average of the predictions.
dlYPred = (dlYPredRGB + dlYPredFlow)/2;

% Calculate the accuracy of the predictions.
[~,YTest] = max(Y,[],1);
[~,YPred] = max(dlYPred,[],1);

[~,YPredRGB] = max(dlYPredRGB,[],1);
[~,YPredFlow] = max(dlYPredFlow,[],1);

end

saveData

The saveData function saves the given Inflated-3d Video Classifier, accuracy, loss, and other training
parameters to a MAT-file.

function bestLoss = saveData(inflated3d,bestLoss,iteration,cmat,lossTrain,lossValidation,...
 accTrain,accValidation,params)
if iteration >= params.SaveBestAfterIteration
 lossValidtion = extractdata(gather(lossValidation));
 if lossValidtion < bestLoss
 params = rmfield(params, 'VelocityRGB');
 params = rmfield(params, 'VelocityFlow');
 bestLoss = lossValidtion;
 inflated3d = gatherFromGPUToSave(inflated3d);
 data.BestLoss = bestLoss;
 data.TrainingLoss = extractdata(gather(lossTrain));
 data.TrainingAccuracy = accTrain;

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-190

 data.ValidationAccuracy = accValidation;
 data.ValidationConfmat= cmat;
 data.inflated3d = inflated3d;
 data.Params = params;
 save(params.ModelFilename, 'data');
 end
end
end

gatherFromGPUToSave

The gatherFromGPUToSave function gathers data from the GPU in order to save the video classifier
to disk.

function classifier = gatherFromGPUToSave(classifier)
if ~canUseGPU
 return;
end
p = string(properties(classifier));
p = p(endsWith(p, ["Learnables","State"]));
for jj = 1:numel(p)
 prop = p(jj);
 classifier.(prop) = gatherValues(classifier.(prop));
end
 function tbl = gatherValues(tbl)
 for ii = 1:height(tbl)
 tbl.Value{ii} = gather(tbl.Value{ii});
 end
 end
end

checkForHMDB51Folder

The checkForHMDB51Folder function checks for the downloaded data in the download folder.

function classes = checkForHMDB51Folder(dataLoc)
hmdbFolder = fullfile(dataLoc, "hmdb51_org");
if ~isfolder(hmdbFolder)
 error("Download 'hmdb51_org.rar' file using the supporting function 'downloadHMDB51' before running the example and extract the RAR file.");
end

classes = ["brush_hair","cartwheel","catch","chew","clap","climb","climb_stairs",...
 "dive","draw_sword","dribble","drink","eat","fall_floor","fencing",...
 "flic_flac","golf","handstand","hit","hug","jump","kick","kick_ball",...
 "kiss","laugh","pick","pour","pullup","punch","push","pushup","ride_bike",...
 "ride_horse","run","shake_hands","shoot_ball","shoot_bow","shoot_gun",...
 "sit","situp","smile","smoke","somersault","stand","swing_baseball","sword",...
 "sword_exercise","talk","throw","turn","walk","wave"];
expectFolders = fullfile(hmdbFolder, classes);
if ~all(arrayfun(@(x)exist(x,'dir'),expectFolders))
 error("Download hmdb51_org.rar using the supporting function 'downloadHMDB51' before running the example and extract the RAR file.");
end
end

downloadHMDB51

The downloadHMDB51 function downloads the data set and saves it to a directory.

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

3-191

function downloadHMDB51(dataLoc)

if nargin == 0
 dataLoc = pwd;
end
dataLoc = string(dataLoc);

if ~isfolder(dataLoc)
 mkdir(dataLoc);
end

dataUrl = "http://serre-lab.clps.brown.edu/wp-content/uploads/2013/10/hmdb51_org.rar";
options = weboptions('Timeout', Inf);
rarFileName = fullfile(dataLoc, 'hmdb51_org.rar');

% Download the RAR file and save it to the download folder.
if ~isfile(rarFileName)
 disp("Downloading hmdb51_org.rar (2 GB) to the folder:")
 disp(dataLoc)
 disp("This download can take a few minutes...")
 websave(rarFileName, dataUrl, options);
 disp("Download complete.")
 disp("Extract the hmdb51_org.rar file contents to the folder: ")
 disp(dataLoc)
end
end

initializeTrainingProgressPlot

The initializeTrainingProgressPlot function configures two plots for displaying the training
loss, training accuracy, and validation accuracy.

function plotters = initializeTrainingProgressPlot(params)
if params.ProgressPlot
 % Plot the loss, training accuracy, and validation accuracy.
 figure

 % Loss plot
 subplot(2,1,1)
 plotters.LossPlotter = animatedline;
 xlabel("Iteration")
 ylabel("Loss")

 % Accuracy plot
 subplot(2,1,2)
 plotters.TrainAccPlotter = animatedline('Color','b');
 plotters.ValAccPlotter = animatedline('Color','g');
 legend('Training Accuracy','Validation Accuracy','Location','northwest');
 xlabel("Iteration")
 ylabel("Accuracy")
else
 plotters = [];
end
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-192

updateProgressPlot

The updateProgressPlot function updates the progress plot with loss and accuracy information
during training.

function updateProgressPlot(params,plotters,epoch,iteration,start,lossTrain,accuracyTrain,accuracyValidation)
if params.ProgressPlot

 % Update the training progress.
 D = duration(0,0,toc(start),"Format","hh:mm:ss");
 title(plotters.LossPlotter.Parent,"Epoch: " + epoch + ", Elapsed: " + string(D));
 addpoints(plotters.LossPlotter,iteration,double(gather(extractdata(lossTrain))));
 addpoints(plotters.TrainAccPlotter,iteration,accuracyTrain);
 addpoints(plotters.ValAccPlotter,iteration,accuracyValidation);
 drawnow
end
end

initializeVerboseOutput

The initializeVerboseOutput function displays the column headings for the table of training
values, which shows the epoch, mini-batch accuracy, and other training values.

function initializeVerboseOutput(params)
if params.Verbose
 disp(" ")
 if canUseGPU
 disp("Training on GPU.")
 else
 disp("Training on CPU.")
 end
 p = gcp('nocreate');
 if ~isempty(p)
 disp("Training on parallel cluster '" + p.Cluster.Profile + "'. ")
 end
 disp("NumIterations:" + string(params.NumIterations));
 disp("MiniBatchSize:" + string(params.MiniBatchSize));
 disp("Classes:" + join(string(params.Classes), ","));
 disp("|===|")
 disp("| Epoch | Iteration | Time Elapsed | Mini-Batch Accuracy | Validation Accuracy | Mini-Batch | Validation | Base Learning | Train Time | Validation Time |")
 disp("| | | (hh:mm:ss) | (Avg:RGB:Flow) | (Avg:RGB:Flow) | Loss | Loss | Rate | (hh:mm:ss) | (hh:mm:ss) |")
 disp("|===|")
end
end

displayVerboseOutputEveryEpoch

The displayVerboseOutputEveryEpoch function displays the verbose output of the training
values, such as the epoch, mini-batch accuracy, validation accuracy, and mini-batch loss.

function displayVerboseOutputEveryEpoch(params,start,learnRate,epoch,iteration,...
 accTrain,accTrainRGB,accTrainFlow,accValidation,accValidationRGB,accValidationFlow,lossTrain,lossValidation,trainTime,validationTime)
if params.Verbose
 D = duration(0,0,toc(start),'Format','hh:mm:ss');
 trainTime = duration(0,0,trainTime,'Format','hh:mm:ss');
 validationTime = duration(0,0,validationTime,'Format','hh:mm:ss');

 lossValidation = gather(extractdata(lossValidation));

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

3-193

 lossValidation = compose('%.4f',lossValidation);

 accValidation = composePadAccuracy(accValidation);
 accValidationRGB = composePadAccuracy(accValidationRGB);
 accValidationFlow = composePadAccuracy(accValidationFlow);

 accVal = join([accValidation,accValidationRGB,accValidationFlow], " : ");

 lossTrain = gather(extractdata(lossTrain));
 lossTrain = compose('%.4f',lossTrain);

 accTrain = composePadAccuracy(accTrain);
 accTrainRGB = composePadAccuracy(accTrainRGB);
 accTrainFlow = composePadAccuracy(accTrainFlow);

 accTrain = join([accTrain,accTrainRGB,accTrainFlow], " : ");
 learnRate = compose('%.13f',learnRate);

 disp("| " + ...
 pad(string(epoch),5,'both') + " | " + ...
 pad(string(iteration),9,'both') + " | " + ...
 pad(string(D),12,'both') + " | " + ...
 pad(string(accTrain),26,'both') + " | " + ...
 pad(string(accVal),26,'both') + " | " + ...
 pad(string(lossTrain),10,'both') + " | " + ...
 pad(string(lossValidation),10,'both') + " | " + ...
 pad(string(learnRate),13,'both') + " | " + ...
 pad(string(trainTime),10,'both') + " | " + ...
 pad(string(validationTime),15,'both') + " |")
end

 function acc = composePadAccuracy(acc)
 acc = compose('%.2f',acc*100) + "%";
 acc = pad(string(acc),6,'left');
 end

end

endVerboseOutput

The endVerboseOutput function displays the end of verbose output during training.

function endVerboseOutput(params)
if params.Verbose
 disp("|===|")
end
end

References

[1] Carreira, Joao, and Andrew Zisserman. "Quo Vadis, Action Recognition? A New Model and the
Kinetics Dataset." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR): 6299??6308. Honolulu, HI: IEEE, 2017.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-194

[2] Simonyan, Karen, and Andrew Zisserman. "Two-Stream Convolutional Networks for Action
Recognition in Videos." Advances in Neural Information Processing Systems 27, Long Beach, CA:
NIPS, 2017.

[3] Loshchilov, Ilya, and Frank Hutter. "SGDR: Stochastic Gradient Descent with Warm Restarts."
International Conferencee on Learning Representations 2017. Toulon, France: ICLR, 2017.

[4] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, Manohar Paluri. "A Closer Look
at Spatiotemporal Convolutions for Action Recognition". Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018, pp. 6450-6459.

[5] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. "SlowFast Networks for
Video Recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[6] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra
Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, Andrew
Zisserman. "The Kinetics Human Action Video Dataset." arXiv preprint arXiv:1705.06950, 2017.

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

3-195

Evaluate a Video Classifier

This example shows how to evaluate a pretrained SlowFast Video Classifier using a collection of
videos. To learn more about how to train a video classifier network for your dataset, see “Gesture
Recognition using Videos and Deep Learning” on page 3-207.

Download Pretrained Video Classifier

Download the pretrained SlowFast video classifier. The size of the downloaded zip file is around 245
MB.

downloadFolder = fullfile(tempdir,"gesture");
zipFile = "slowFastPretrained_fourClasses.zip";

if ~isfile(fullfile(downloadFolder,zipFile))
 disp("Downloading the pretrained network...");
 downloadURL = "https://ssd.mathworks.com/supportfiles/vision/data/" + zipFile;
 zipFile = fullfile(downloadFolder,zipFile);
 websave(zipFile,downloadURL);
 unzip(zipFile,downloadFolder);
 disp('Downloaded.');
end

Load the pretrained SlowFast video classifier.

pretrainedDataFile = fullfile(downloadFolder,"slowFastPretrained_fourClasses.mat");
pretrained = load(pretrainedDataFile);
slowFastClassifier = pretrained.data.slowFast;

Display the class label names of the pretrained video classifier.

classes = slowFastClassifier.Classes

classes = 4×1 categorical
 clapping
 noAction
 somethingElse
 wavingHello

Load Videos For Evaluation

This examples uses videos stored in folders with names that correspond to their labels. Extract video
sequences of specific scene labels and store them in a folder named "videoScenes". To learn how
to extract video sequences from a collection of videos and the corresponding ground truth scene label
information, see “Extract Training Data for Video Classification” on page 3-200.

Use the supporting function downloadGroundTruthData, defined at the end of this example, to
download the video scenes and the corresponding ground truth scene label information.

groundTruthFolder = fullfile(downloadFolder,"groundTruthFolder");
trainingFolder = fullfile(downloadFolder,"videoScenes");
groundTruthAlreadyExtracted = downloadGroundTruthData(groundTruthFolder,trainingFolder,classes);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-196

Use the supporting function extractVideoScenes, defined at the end of this example, to extract
the video scenes from ground truth scene label information. Extract the video scene data only when
the ground truth data was not extracted before.

if ~groundTruthAlreadyExtracted
 extractVideoScenes(groundTruthFolder,trainingFolder,classes);
end

Classify Video Files

Use folders2labels to create label information from folders and to list all the files in the
"videoScenes" folder.

[trueLabels, filenames] = folders2labels(trainingFolder,...
 "FileExtensions",".avi", ...
 "IncludeSubfolders",true);

Pre-allocate categorical label values with empty label names.

numFiles = numel(filenames);
emptyLabelNames = repmat("",numFiles,1);
predictedLabels = categorical(emptyLabelNames,string(classes));

Choose 5 randomly selected video sequences to classify the video, to uniformly cover the entirety of a
file to find the action class that is predominant in the video.

numSequences = 5;

In order to classify and assign a label to each of the video files in the collection, use
classifyVideoFile function.

for ii = 1:numFiles
 filename = filenames(ii);
 predictedLabels(ii) = classifyVideoFile(slowFastClassifier, filename,...
 "NumSequences", numSequences);
end

Compute Video Accuracy

Compute the average video accuracy for the video classifier.

videoAccuracy = sum(trueLabels == predictedLabels)/numel(trueLabels)

videoAccuracy = 1

Display the confusion matrix.

figure
chart = confusionchart(trueLabels,predictedLabels);

 Evaluate a Video Classifier

3-197

Supporting Functions

downloadGroundTruthData

The downloadGroundTruthData function downloads ground truth video data and its corresponding
collection of scene labels.

function groundTruthAlreadyExtracted = downloadGroundTruthData(groundTruthFolder,trainingFolder,classes)

% If the video scenes are already extracted, no need to download
% the dataset and extract video scenes.
if isfolder(trainingFolder)
 classFolders = fullfile(trainingFolder, string(classes));
 groundTruthAlreadyExtracted = true;
 for ii = 1:numel(classFolders)
 if ~isfolder(classFolders(ii))
 groundTruthAlreadyExtracted = false;
 break;
 end
 end
 if groundTruthAlreadyExtracted
 return;
 end
end
if ~isfolder(groundTruthFolder)
 mkdir(groundTruthFolder);
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-198

downloadURL = "https://ssd.mathworks.com/supportfiles/vision/data/videoClipsAndSceneLabels.zip";
filename = fullfile(groundTruthFolder,"videoClipsAndSceneLabels.zip");
if ~isfile(filename)
 disp("Downloading the video clips and the corresponding scene labels to " + groundTruthFolder);
 websave(filename,downloadURL);
end

% Unzip the contents to the download folder.
unzip(filename,groundTruthFolder);
end

extractVideoScenes

The extractVideoScenes function extracts training video data from a collection of videos and its
corresponding collection of scene labels, by using the functions sceneTimeRanges and
writeVideoScenes.

function extractVideoScenes(groundTruthFolder,trainingFolder)
labelDataFiles = dir(fullfile(groundTruthFolder,"*_labelData.mat"));
labelDataFiles = fullfile(groundTruthFolder,{labelDataFiles.name}');
numGtruth = numel(labelDataFiles);

% Load the label data information and create ground truth objects.
gTruth = groundTruth.empty(numGtruth,0);
for ii = 1:numGtruth
 ld = load(labelDataFiles{ii});
 videoFilename = fullfile(groundTruthFolder,ld.videoFilename);
 gds = groundTruthDataSource(videoFilename);
 gTruth(ii) = groundTruth(gds,ld.labelDefs,ld.labelData);
end

% Gather all the scene time ranges and the corresponding scene labels
% using the sceneTimeRanges function.
[timeRanges, sceneLabels] = sceneTimeRanges(gTruth);

% Specify the subfolder names for each duration as the scene label names.
foldernames = sceneLabels;

% Delete the folder if it already exists.
if isfolder(trainingFolder)
 rmdir(trainingFolder, 's');
end
% Video files are written to the folders specified by the folderNames input.
writeVideoScenes(gTruth,timeRanges,trainingFolder,foldernames);
end

 Evaluate a Video Classifier

3-199

Extract Training Data for Video Classification

This example shows how to extract labeled scenes from a collection of videos where each video
contains multiple scene labels. The extracted scenes and their associated labels can be used for
training or validating a video classifier. For more information on scene labels, see “Get Started with
the Video Labeler” on page 9-48.

Download Training Videos and Scene Labels

This example uses a small collection of video files that were labeled using the Video Labeler app.
Specify a location to store the videos and scene label data.

downloadFolder = fullfile(tempdir,'sceneLabels');
if ~isfolder(downloadFolder)
 mkdir(downloadFolder);
end

Download the training data using websave and unzip the contents to the downloadFolder.

downloadURL = "https://ssd.mathworks.com/supportfiles/vision/data/videoClipsAndSceneLabels.zip";

filename = fullfile(downloadFolder,"videoClipsAndSceneLabels.zip");
if ~exist(filename,'file')
 disp("Downloading the video clips and the corresponding scene labels to " + downloadFolder);
 websave(filename,downloadURL);
end

% Unzip the contents to the download folder.
unzip(filename,downloadFolder);

Create a groundTruth objects to represent the labeled video files using the supporting function,
createGroundTruthForVideoCollection, listed at the end of this example.

gTruth = createGroundTruthForVideoCollection(downloadFolder);

Gather Video Scene Time Ranges and Labels

Gather all the scene time ranges and the corresponding scene labels using the sceneTimeRanges
function.

[timeRanges, sceneLabels] = sceneTimeRanges(gTruth);

Here timeRanges and sceneLabels are M-by-1 cell arrays, where M is the number of ground truth
objects. Each time range is a T-by-2 duration matrix, where T is the number of time ranges. Each row
of the matrix corresponds to a time range in the ground truth data where a scene label was applied,
specified in the form [rangeStart, rangeEnd]. For example, the first ground truth object
corresponding to video file video_0001.avi, contains 4 scenes with labels "noAction",
"wavingHello", "clapping", and "somethingElse".

[~,name,ext] = fileparts(string(gTruth(1).DataSource.Source));
firstVideoFilename = name + ext

firstVideoFilename =
"video_0001.avi"

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-200

firstTimeRange = timeRanges{1}

firstTimeRange = 4×2 duration
 15 sec 28.033 sec
 7.3 sec 15.033 sec
 0 sec 7.3333 sec
 28 sec 37.033 sec

firstSceneLabel = sceneLabels{1}

firstSceneLabel = 4×1 categorical
 noAction
 wavingHello
 clapping
 somethingElse

Write Extracted Video Scenes

Use writeVideoScenes to write the extracted video scenes to disk and organize the written files
based on the labels. Saving video files to folders with scene labels as names helps with obtaining the
label information easily when training a video classifier. To learn more about training a video
classifier using the extracted video data, see “Gesture Recognition using Videos and Deep Learning”
on page 3-207.

Select a folder in the download folder to write video scenes.

rootFolder = fullfile(downloadFolder,"videoScenes");

Video files are written to the folders specified by the folderNames input. Use the scene label names
as folder names.

folderNames = sceneLabels;

Write video scenes to the "videoScenes" folder.

filenames = writeVideoScenes(gTruth,timeRanges,rootFolder,folderNames);

[==] 100%
Elapsed time: 00:01:47
Estimated time remaining: 00:00:00

The output filenames is an M-by-1 cell array of character strings that specifies the full path to the
saved video scenes in each groundTruth object.

Note that the video files corresponding to a scene label are written to folders named by the scene
label. For example, video scenes corresponding to the scene label "clapping" are written to the
folder "videoScenes/clapping", and video scenes corresponding to the scene label
"wavingHello" are written to the folder "videoScenes/wavingHello".

 Extract Training Data for Video Classification

3-201

The extracted video scenes can now be used for training and validating a video classifier. For more
information about using the extracted data for training a video classifier, see “Gesture Recognition
using Videos and Deep Learning” on page 3-207. For more information about using the extracted data
for evaluating a video classifier, see “Evaluate a Video Classifier” on page 3-196.

Supporting Functions

createGroundTruthForVideoCollection

The createGroundTruthForVideoCollection function creates ground truth data for a given
collection of videos and the corresponding label information.

function gTruth = createGroundTruthForVideoCollection(downloadFolder)
labelDataFiles = dir(fullfile(downloadFolder,"*_labelData.mat"));

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-202

labelDataFiles = fullfile(downloadFolder,{labelDataFiles.name}');
numGtruth = numel(labelDataFiles);

%Load the label data information and create ground truth objects.
gTruth = groundTruth.empty(numGtruth,0);
for ii = 1:numGtruth
 ld = load(labelDataFiles{ii});
 videoFilename = fullfile(downloadFolder,ld.videoFilename);
 gds = groundTruthDataSource(videoFilename);
 gTruth(ii) = groundTruth(gds,ld.labelDefs,ld.labelData);
end
end

 Extract Training Data for Video Classification

3-203

Classify Streaming Webcam Video Using SlowFast Video
Classifier

This example shows how to classify a streaming video from a webcam using a pretrained SlowFast
Video Classifier. To learn more about how to train a video classifier network for your dataset, see
“Gesture Recognition using Videos and Deep Learning” on page 3-207.

Download Pretrained Video Classifier

Download the pretrained SlowFast video classifier.

downloadFolder = fullfile(tempdir,"gesture");
zipFile = "slowFastPretrained_fourClasses.zip";
if ~isfile(fullfile(downloadFolder,zipFile))
 disp("Downloading the pretrained network...");
 downloadURL = "https://ssd.mathworks.com/supportfiles/vision/data/" + zipFile;
 zipFile = fullfile(downloadFolder,zipFile);
 websave(zipFile,downloadURL);
 unzip(zipFile,downloadFolder);
end

Load the pretrained SlowFast video classifier.

pretrainedDataFile = fullfile(downloadFolder,"slowFastPretrained_fourClasses.mat");
pretrained = load(pretrainedDataFile);
slowFastClassifier = pretrained.data.slowFast;

Display the class label names of the pretrained video classifier. Any gesture such as "clapping" and
"wavingHello" on to the webcam will be recognized by the SlowFast Video Classifier.

classes = slowFastClassifier.Classes

classes = 4×1 categorical
 clapping
 noAction
 somethingElse
 wavingHello

Setup the Webcam and the Video Player

In this example, a webcam object is used to capture streaming video. A Video Player is used to display
the streaming video along with the predicted class.

Create a webcam object using the webcam function.

cam = webcam;

Create a Video Player using vision.VideoPlayer function. Make sure to place the Video Player in
a position where you can clearly see the streaming video when running the classification.

player = vision.VideoPlayer;

Classify the Webcam Streaming Video

Specify how frequently the classifier should be applied to incoming video frames.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-204

classifyInterval = 10;

A value of 10 balances runtime performance against classification performance. Increase this value to
improve runtime performance at the cost of missing gestures from the live video stream.

Obtain the sequence length of the SlowFast Video Classifier. Classify only after capturing at least
sequenceLength number of frames from the webcam.

sequenceLength = slowFastClassifier.InputSize(4);

Specify the maximum number of frames to capture in a loop using the maxNumFrames variable. Make
sure you wave one of your hands to recognize "wavingHello" label, and clap using both your hands
for the classifier to recognize "clapping" label.

maxNumFrames = 280;

Capture the webcam snapshot in a loop. Update the streaming video sequence of the classifier using
the updateSequence method, and classify the streaming sequence using the classifySequence
method.

numFrames = 0;
text = "";

while numFrames <= maxNumFrames
 frame = snapshot(cam);

 numFrames = numFrames + 1;
 slowFastClassifier = updateSequence(slowFastClassifier,frame);
 if mod(numFrames, classifyInterval) == 0 && numFrames >= sequenceLength
 [label,scores] = classifySequence(slowFastClassifier);
 if ~isempty(label)
 text = string(label) + "; " + num2str(max(scores), "%0.2f");
 end
 end
 frame = insertText(frame,[30,30],text,'FontSize',18);
 step(player,frame);
end

 Classify Streaming Webcam Video Using SlowFast Video Classifier

3-205

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-206

Gesture Recognition using Videos and Deep Learning

This example first shows how to perform gesture recognition using a pretrained SlowFast [1] on page
3-227 video classifier and then shows how to use transfer learning to train a classifier on a custom
gesture recognition data set.

Overview

Vision-based human gesture recognition involves predicting a gesture, such as waving hello, sign
language gestures, or clapping, using a set of video frames. One of the appealing features of gesture
recognition is that they make it possible for humans to communicate with computers and devices
without the need for an external input equipment such as a mouse or a remote control. Gesture
recognition from videos has many applications, such as control of consumer electronics and
mechanical systems, robot learning, and computer games. For example, online prediction of multiple
actions for incoming videos from multiple cameras can be important for robot learning. Compared to
image classification, human gesture recognition using videos is challenging to model because of the
inaccurate ground truth data for video data sets, the variety of gestures that actors in a video can
perform, the heavily class imbalanced data sets, and the large amount of data required to train a
robust classifier from scratch. Deep learning techniques, such as SlowFast two pathway convolutional
networks [1] on page 3-227, have shown improved performance on smaller data sets using transfer
learning with networks pretrained on large video activity recognition data sets.

Note: This example requires the Computer Vision Toolbox™ Model for SlowFast Video Classification.
You can install the Computer Vision Toolbox Model for SlowFast Video Classification from Add-On
Explorer. For more information about installing add-ons, see “Get and Manage Add-Ons”.

Perform Gesture Recognition Using a Pretrained Video Classifier

Download the pretrained SlowFast video classifier along with a video file on which to perform gesture
recognition. The size of the downloaded zip file is around 245 MB.

downloadFolder = fullfile(tempdir,"gesture");
if ~isfolder(downloadFolder)
 mkdir(downloadFolder);
end

zipFile = "slowFastPretrained_fourClasses.zip";

if ~isfile(fullfile(downloadFolder,zipFile))
 disp('Downloading the pretrained network...');
 downloadURL = "https://ssd.mathworks.com/supportfiles/vision/data/" + zipFile;
 zipFile = fullfile(downloadFolder,zipFile);
 websave(zipFile,downloadURL);
 unzip(zipFile,downloadFolder);
 disp("Downloaded.")
end

Downloading the pretrained network...

Downloaded.

Load the pretrained SlowFast video classifier.

 Gesture Recognition using Videos and Deep Learning

3-207

pretrainedDataFile = fullfile(downloadFolder,"slowFastPretrained_fourClasses.mat");
pretrained = load(pretrainedDataFile);
slowFastClassifier = pretrained.data.slowFast;

Display the class label names of the pretrained video classifier.

classes = slowFastClassifier.Classes

classes = 4×1 categorical
 clapping
 noAction
 somethingElse
 wavingHello

Read and display the video waving-hello.avi using VideoReader and vision.VideoPlayer.

videoFilename = fullfile(downloadFolder,"waving-hello.avi");

videoReader = VideoReader(videoFilename);
videoPlayer = vision.VideoPlayer;
videoPlayer.Name = "waving-hello";

while hasFrame(videoReader)
 frame = readFrame(videoReader);
 step(videoPlayer,frame);
end
release(videoPlayer);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-208

Choose 10 randomly selected video sequences to classify the video, to uniformly cover the entirety of
the file to find the action class that is predominant in the video.

numSequences = 10;

Classify the video file using the classifyVideoFile function.

[gestureLabel,score] = classifyVideoFile(slowFastClassifier,videoFilename,NumSequences=numSequences)

gestureLabel = categorical
 wavingHello

 Gesture Recognition using Videos and Deep Learning

3-209

score = single
 0.4753

The classification can also be applied to a streaming video. To learn how to classify a streaming
webcam video, see “Classify Streaming Webcam Video Using SlowFast Video Classifier” on page 3-
204.

Train a Video Classifier for Gesture Recognition

This section of the example shows how the video classifier shown above is trained using transfer
learning. Set the doTraining variable to false to use the pretrained video classifier without having
to wait for training to complete. Alternatively, if you want to train the video classifier, set the
doTraining variable to true.

doTraining = false;

Download Ground Truth Training Data

This example trains a SlowFast video classification network using downloadable gesture data set that
contains four gestures: "clapping","wavingHello","somethingElse", and "noAction".
The data set contains videos that are labeled using a Video Labeler and the corresponding ground
truth data.

Create directories to store the ground truth training data.

groundTruthFolder = fullfile(downloadFolder,"groundTruthFolder");
if ~isfolder(groundTruthFolder)
 mkdir(groundTruthFolder);
end

Download the data set and extract the zip archive into the downloadFolder.

zipFile = 'videoClipsAndSceneLabels.zip';

if ~isfile(fullfile(groundTruthFolder,zipFile))
 disp('Downloading the ground truth training data...');
 downloadURL = "https://ssd.mathworks.com/supportfiles/vision/data/" + zipFile;
 zipFile = fullfile(groundTruthFolder,zipFile);
 websave(zipFile,downloadURL);
 unzip(zipFile,groundTruthFolder);
end

Extract Training Video Sequences

To train a video classifier, you need a collection of videos and its corresponding collection of scene
labels. Use the helper function extractVideoScenes, defined at the end of this example, to extract
labeled video scenes from the ground truth data and write them to disk as separate video files. To
learn more about extracting training data from videos, see “Extract Training Data for Video
Classification” on page 3-200.

groundTruthFolder = fullfile(downloadFolder,"groundTruthFolder");
trainingFolder = fullfile(downloadFolder,"videoScenes");

extractVideoScenes(groundTruthFolder,trainingFolder,classes);

A total of 40 video scenes are extracted from the downloaded ground truth data.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-210

Load data set

This example uses a datastore to read the videos scenes and labels extracted from the ground truth
data.

Specify the number of video frames the datastore should be configured to output for each time data is
read from the datastore.

numFrames = 16;

A value of 16 is used here to balance memory usage and classification time. Common values to
consider are 8, 16, 32, 64, or 128. Using more frames helps capture additional temporal information,
but requires more memory. Empirical analysis is required to determine the optimal number of frames.

Next, specify the height and width of the frames the datastore should be configured to output. The
datastore automatically resizes the raw video frames to the specified size to enable batch processing
of multiple video sequences.

frameSize = [112,112];

A value of [112 112] is used to capture longer temporal relationships in the video scene which help
classify gestures with long time durations. Common values for the size are [112 112], [224 224], or
[256 256]. Smaller sizes enable the use of more video frames at the cost of memory usage, processing
time, and spatial resolution. As with the number of frames, empirical analysis is required to
determine the optimal values.

Specify the number of channels as 3, as the videos are RGB.

numChannels = 3;

Use the helper function, createFileDatastore, to configure a FileDatastore for loading the
data. The helper function is listed at the end of this example.

isDataForTraining = true;
dsTrain = createFileDatastore(trainingFolder,numFrames,numChannels,classes,isDataForTraining);

Configure SlowFast Video Classifier for Transfer Learning

Create a SlowFast video classifier for transfer learning by using the slowFastVideoClassifier
function. The slowFastVideoClassifier function creates a SlowFast video classifier object that is
pretrained on the Kinetics-400 data set [2 on page 3-227].

Specify ResNet-50 as the base network convolution neural network 3D architecture for the SlowFast
classifier.

baseNetwork = "resnet50-3d";

Specify the input size for the SlowFast video classifier.

inputSize = [frameSize,numChannels,numFrames];

Create a SlowFast video classifier by specifying the classes for the gesture data set and the network
input size.

slowFast = slowFastVideoClassifier(baseNetwork,string(classes),InputSize=inputSize);

Specify a model name for the video classifier.

 Gesture Recognition using Videos and Deep Learning

3-211

slowFast.ModelName = "Gesture Recognizer Using Deep Learning";

Augment and Preprocess Training Data

Data augmentation provides a way to use limited data sets for training. Augmentation on video data
must be the same for a collection of frames based on the network input size. Minor changes, such as
translation, cropping, or transforming an image, provide, new, distinct, and unique images that you
can use to train a robust video classifier. Datastores are a convenient way to read and augment
collections of data. Augment the training video data by using the augmentVideo supporting function,
defined at the end of this example.

dsTrain = transform(dsTrain,@augmentVideo);

Preprocess the training video data to resize to the SlowFast video classifier input size, by using the
preprocessVideoClips, defined at the end of this example. Specify the
InputNormalizationStatistics property of the video classifier and input size to the
preprocessing function as field values in a struct, preprocessInfo. The
InputNormalizationStatistics property is used to rescale the video frames between 0 and 1,
and then normalize the rescaled data using mean and standard deviation. The input size is used to
resize the video frames using imresize based on the SizingOption value in the info struct.
Alternatively, you could use "randomcrop" or "centercrop" as values for SizingOption to
random crop or center crop the input data to the input size of the video classifier.

preprocessInfo.Statistics = slowFast.InputNormalizationStatistics;
preprocessInfo.InputSize = inputSize;
preprocessInfo.SizingOption = "resize";

dsTrain = transform(dsTrain,@(data)preprocessVideoClips(data,preprocessInfo));

Define Model Gradients Function

The modelGradients function, listed at the end of this example, takes as input the SlowFast video
classifier slowFast, a mini-batch of input data dlRGB, and a mini-batch of ground truth label data
dlY. The function returns the training loss value, the gradients of the loss with respect to the
learnable parameters of the classifier, and the mini-batch accuracy of the classifier.

The loss is calculated by computing the cross-entropy loss of the predictions from video classifier. The
output predictions of the network are probabilities between 0 and 1 for each of the classes.

predictions = f orward(slowFast, dlRGB);

loss = crossentropy(predictions)

The accuracy of the classifier is calculated by comparing the classifier predictions to the ground
truth label of the inputs, dlY.

Specify Training Options

Train with a mini-batch size of 5 for 600 iterations. Specify the iteration after which to save the model
with the best mini-batch loss by using the SaveBestAfterIteration parameter.

Specify the cosine-annealing learning rate schedule [3 on page 3-227] parameters:

• A minimum learning rate of 1e-4.
• A maximum learning rate of 1e-3.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-212

• Cosine number of iterations of 200, 300, and 400, after which the learning rate schedule cycle
restarts. The option CosineNumIterations defines the width of each cosine cycle.

Specify the parameters for SGDM optimization. Initialize the SGDM optimization parameters at the
beginning of the training:

• A momentum of 0.9.
• An initial velocity parameter initialized as [].
• An L2 regularization factor of 0.0005.

Specify to dispatch the data in the background using a parallel pool. If DispatchInBackground is
set to true, open a parallel pool with the specified number of parallel workers, and create a
DispatchInBackgroundDatastore, provided as part of this example, that dispatches the data in
the background to speed up training using asynchronous data loading and preprocessing. By default,
this example uses a GPU if one is available. Otherwise, it uses a CPU. Using a GPU requires Parallel
Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU. For information about the supported
compute capabilities, see “GPU Computing Requirements” (Parallel Computing Toolbox).

params.Classes = classes;
params.MiniBatchSize = 5;
params.NumIterations = 600;
params.CosineNumIterations = [100 200 300];
params.SaveBestAfterIteration = 400;
params.MinLearningRate = 1e-4;
params.MaxLearningRate = 1e-3;
params.Momentum = 0.9;
params.Velocity = [];
params.L2Regularization = 0.0005;
params.ProgressPlot = false;
params.Verbose = true;
params.DispatchInBackground = true;
params.NumWorkers = 12;

Train Video Classifier

Train the SlowFast video classifier using the video data.

For each epoch:

• Shuffle the data before looping over mini-batches of data.
• Use minibatchqueue to loop over the mini-batches. The supporting function

createMiniBatchQueue, listed at the end of this example, uses the given training datastore to
create a minibatchqueue.

• Display the loss and accuracy results for each epoch using the supporting function
displayVerboseOutputEveryEpoch, listed at the end of this example.

For each mini-batch:

• Convert the video data and the labels to dlarray objects with the underlying type single.
• To enable processing the time dimension of the the video data using the SlowFast video classifier

specify the temporal sequence dimension, "T". Specify the dimension labels "SSCTB" (spatial,
spatial, channel, temporal, batch) for the video data, and "CB" for the label data.

The minibatchqueue object uses the supporting function batchVideo, listed at the end of this
example, to batch the RGB video data.

 Gesture Recognition using Videos and Deep Learning

3-213

params.ModelFilename = "slowFastPretrained_fourClasses.mat";
if doTraining
 epoch = 1;
 bestLoss = realmax;
 accTrain = [];
 lossTrain = [];

 iteration = 1;
 start = tic;
 trainTime = start;
 shuffled = shuffleTrainDs(dsTrain);

 % Number of outputs is two: One for RGB frames, and one for ground truth labels.
 numOutputs = 2;
 mbq = createMiniBatchQueue(shuffled, numOutputs, params);

 % Use the initializeTrainingProgressPlot and initializeVerboseOutput
 % supporting functions, listed at the end of the example, to initialize
 % the training progress plot and verbose output to display the training
 % loss, training accuracy, and validation accuracy.
 plotters = initializeTrainingProgressPlot(params);
 initializeVerboseOutput(params);

 while iteration <= params.NumIterations

 % Iterate through the data set.
 [dlX1,dlY] = next(mbq);

 % Evaluate the model gradients and loss using dlfeval.
 [gradients,loss,acc,state] = ...
 dlfeval(@modelGradients,slowFast,dlX1,dlY);

 % Accumulate the loss and accuracies.
 lossTrain = [lossTrain, loss];
 accTrain = [accTrain, acc];

 % Update the network state.
 slowFast.State = state;

 % Update the gradients and parameters for the video classifier
 % using the SGDM optimizer.
 [slowFast,params.Velocity,learnRate] = ...
 updateLearnables(slowFast,gradients,params,params.Velocity,iteration);

 if ~hasdata(mbq) || iteration == params.NumIterations
 % Current epoch is complete. Do validation and update progress.
 trainTime = toc(trainTime);

 accTrain = mean(accTrain);
 lossTrain = mean(lossTrain);

 % Update the training progress.
 displayVerboseOutputEveryEpoch(params,start,learnRate,epoch,iteration,...
 accTrain,lossTrain,trainTime);
 updateProgressPlot(params,plotters,epoch,iteration,start,lossTrain,accTrain);

 % Save the trained video classifier and the parameters, that gave
 % the best training loss so far. Use the saveData supporting function,

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-214

 % listed at the end of this example.
 bestLoss = saveData(slowFast,bestLoss,iteration,lossTrain,params);
 end

 if ~hasdata(mbq) && iteration < params.NumIterations
 % Current epoch is complete. Initialize the training loss, accuracy
 % values, and minibatchqueue for the next epoch.
 accTrain = [];
 lossTrain = [];

 epoch = epoch + 1;
 trainTime = tic;
 shuffled = shuffleTrainDs(dsTrain);
 mbq = createMiniBatchQueue(shuffled, numOutputs, params);
 end

 iteration = iteration + 1;
 end

 % Display a message when training is complete.
 endVerboseOutput(params);

 disp("Model saved to: " + params.ModelFilename);
end

Evaluate the Trained Video Classifier

To evaluate the accuracy of the trained SlowFast video classifier, set the isDataForTraining
variable to false and create a fileDatastore. Note that data augmentation is not applied to the
evaluation data. Ideally, test and evaluation data should be representative of the original data and is
left unmodified for unbiased evaluation.

isDataForTraining = false;
dsEval = createFileDatastore(trainingFolder,numFrames,numChannels,classes,isDataForTraining);
dsEval = transform(dsEval,@(data)preprocessVideoClips(data,preprocessInfo));

Load the best model saved during training or use the pretrained model.

if doTraining
 transferLearned = load(params.ModelFilename);
 slowFastClassifier = transferLearned.data.slowFast;
end

Create a minibatchqueue object to load batches of the test data.

numOutputs = 2;
mbq = createMiniBatchQueue(dsEval,numOutputs,params);

For each batch of evaluation data, make predictions using the SlowFast video classifier, and compute
the prediction accuracy using a confusion matrix.

numClasses = numel(params.Classes);
cmat = sparse(numClasses,numClasses);

while hasdata(mbq)
 [dlVideo,dlY] = next(mbq);

 % Computer the predictions of the trained SlowFast

 Gesture Recognition using Videos and Deep Learning

3-215

 % video classifier.
 dlYPred = predict(slowFastClassifier,dlVideo);
 dlYPred = squeezeIfNeeded(dlYPred,dlY);

 % Aggregate the confusion matrix by using the maximum
 % values of the prediction scores and the ground truth labels.
 [~,YTest] = max(dlY,[],1);
 [~,YPred] = max(dlYPred,[],1);
 cmat = aggregateConfusionMetric(cmat,YTest,YPred);
end

Compute the average clip classification accuracy for the trained SlowFast video classifier.

evalClipAccuracy = sum(diag(cmat))./sum(cmat,"all")

evalClipAccuracy = 0.9847

Display the confusion matrix.

figure
chart = confusionchart(cmat,classes);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-216

The SlowFast video classifier that is pretrained on the Kinetics-400 data set [2 on page 3-227],
provides strong performance for human gesture recognition on transfer learning. The above training
was run on 24GB Titan-X GPU for about 60 minutes. When training from scratch on a small gesture
recognition video data set, the training time and convergence takes much longer than the pretrained
video classifier. Transer learning using the Kinetics-400 pretrained SlowFast video classifier also
avoids overfitting the classifier when ran for larger number of epochs on such a small gesture
recognition video data set. To learn more about video recognition using deep learning, see “Getting
Started with Video Classification Using Deep Learning” on page 17-14.

Supporting Functions

createFileDatastore

The createFileDatastore function creates a FileDatastore object using the given folder name.
The FileDatastore object reads the data in 'partialfile' mode, so every read can return
partially read frames from videos. This feature helps with reading large video files, if all of the frames
do not fit in memory.

function datastore = createFileDatastore(trainingFolder,numFrames,numChannels,classes,isDataForTraining)
 readFcn = @(f,u)readVideo(f,u,numFrames,numChannels,classes,isDataForTraining);
 datastore = fileDatastore(trainingFolder,...
 'IncludeSubfolders',true,...
 'FileExtensions','.avi',...
 'ReadFcn',readFcn,...
 'ReadMode','partialfile');
end

shuffleTrainDs

The shuffleTrainDs function shuffles the files present in the training datastore, dsTrain.

function shuffled = shuffleTrainDs(dsTrain)
shuffled = copy(dsTrain);
transformed = isa(shuffled, 'matlab.io.datastore.TransformedDatastore');
if transformed
 files = shuffled.UnderlyingDatastores{1}.Files;
else
 files = shuffled.Files;
end
n = numel(files);
shuffledIndices = randperm(n);
if transformed
 shuffled.UnderlyingDatastores{1}.Files = files(shuffledIndices);
else
 shuffled.Files = files(shuffledIndices);
end

reset(shuffled);

end

readVideo

The readVideo function reads video frames, and the corresponding label values for a given video
file. During training, the read function reads the specific number of frames as per the network input
size, with a randomly chosen starting frame. During testing, all the frames are sequentially read. The

 Gesture Recognition using Videos and Deep Learning

3-217

video frames are resized to the required classifier network input size for training, and for testing and
validation.

function [data,userdata,done] = readVideo(filename,userdata,numFrames,numChannels,classes,isDataForTraining)
 if isempty(userdata)
 userdata.reader = VideoReader(filename);
 userdata.batchesRead = 0;

 userdata.label = getLabel(filename,classes);

 totalFrames = floor(userdata.reader.Duration * userdata.reader.FrameRate);
 totalFrames = min(totalFrames, userdata.reader.NumFrames);
 userdata.totalFrames = totalFrames;
 userdata.datatype = class(read(userdata.reader,1));
 end
 reader = userdata.reader;
 totalFrames = userdata.totalFrames;
 label = userdata.label;
 batchesRead = userdata.batchesRead;

 if isDataForTraining
 video = readForTraining(reader,numFrames,totalFrames);
 else
 video = readForEvaluation(reader,userdata.datatype,numChannels,numFrames,totalFrames);
 end

 data = {video, label};

 batchesRead = batchesRead + 1;

 userdata.batchesRead = batchesRead;

 if numFrames > totalFrames
 numBatches = 1;
 else
 numBatches = floor(totalFrames/numFrames);
 end
 % Set the done flag to true, if the reader has read all the frames or
 % if it is training.
 done = batchesRead == numBatches || isDataForTraining;
end

readForTraining

The readForTraining function reads the video frames for training the video classifier. The function
reads the specific number of frames as per the network input size, with a randomly chosen starting
frame. If there are not enough frames left over, the video sequence is repeated to pad the required
number of frames.

function video = readForTraining(reader,numFrames,totalFrames)
 if numFrames >= totalFrames
 startIdx = 1;
 endIdx = totalFrames;
 else
 startIdx = randperm(totalFrames - numFrames + 1);
 startIdx = startIdx(1);
 endIdx = startIdx + numFrames - 1;
 end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-218

 video = read(reader,[startIdx,endIdx]);
 if numFrames > totalFrames
 % Add more frames to fill in the network input size.
 additional = ceil(numFrames/totalFrames);
 video = repmat(video,1,1,1,additional);
 video = video(:,:,:,1:numFrames);
 end
end

readForEvaluation

The readForEvaluation function reads the video frames for evaluating the trained video classifier.
The function reads the specific number of frames sequentially as per the network input size. If there
are not enough frames left over, the video sequence is repeated to pad the required number of
frames.

function video = readForEvaluation(reader,datatype,numChannels,numFrames,totalFrames)
 H = reader.Height;
 W = reader.Width;
 toRead = min([numFrames,totalFrames]);
 video = zeros([H,W,numChannels,toRead],datatype);
 frameIndex = 0;
 while hasFrame(reader) && frameIndex < numFrames
 frame = readFrame(reader);
 frameIndex = frameIndex + 1;
 video(:,:,:,frameIndex) = frame;
 end

 if frameIndex < numFrames
 video = video(:,:,:,1:frameIndex);
 additional = ceil(numFrames/frameIndex);
 video = repmat(video,1,1,1,additional);
 video = video(:,:,:,1:numFrames);
 end
end

getLabel

The getLabel function obtains the label name from the full path of a filename. The label for a file is
the folder in which it exists. For example, for a file path such as "/path/to/data set/clapping/
video_0001.avi", the label name is "clapping".

function label = getLabel(filename,classes)
 folder = fileparts(string(filename));
 [~,label] = fileparts(folder);
 label = categorical(string(label),string(classes));
end

augmentVideo

The augmentVideo function augments the video frames for training the video classifier. The function
augments a video sequence with the same augmentation technique provided by the
augmentTransform function.

function data = augmentVideo(data)
 numClips = size(data,1);
 for ii = 1:numClips
 video = data{ii,1};

 Gesture Recognition using Videos and Deep Learning

3-219

 % HxWxC
 sz = size(video,[1,2,3]);
 % One augment fcn per clip
 augmentFcn = augmentTransform(sz);
 data{ii,1} = augmentFcn(video);
 end
end

augmentTransform

The augmentTransform function creates an augmentation method with random left-right flipping
and scaling factors.

function augmentFcn = augmentTransform(sz)
% Randomly flip and scale the image.
tform = randomAffine2d('XReflection',true,'Scale',[1 1.1]);
rout = affineOutputView(sz,tform,'BoundsStyle','CenterOutput');

augmentFcn = @(data)augmentData(data,tform,rout);

 function data = augmentData(data,tform,rout)
 data = imwarp(data,tform,'OutputView',rout);
 end
end

preprocessVideoClips

The preprocessVideoClips function preprocesses the training video data to resize to the SlowFast
video classifier input size. It takes the InputNormalizationStatistics and the InputSize
properties of the video classifier in a struct, info. The InputNormalizationStatistics property
is used to rescale the video frames between 0 and 1, and then normalize the rescaled data using
mean and standard deviation. The input size is used to resize the video frames using imresize based
on the SizingOption value in the info struct. Alternatively, you could use "randomcrop" or
"centercrop" as values for SizingOption to random crop or center crop the input data to the
input size of the video classifier.

function data = preprocessVideoClips(data, info)
 inputSize = info.InputSize(1:2);
 sizingOption = info.SizingOption;
 switch sizingOption
 case "resize"
 sizingFcn = @(x)imresize(x,inputSize);
 case "randomcrop"
 sizingFcn = @(x)cropVideo(x,@randomCropWindow2d,inputSize);
 case "centercrop"
 sizingFcn = @(x)cropVideo(x,@centerCropWindow2d,inputSize);
 end
 numClips = size(data,1);

 minValue = info.Statistics.Min;
 maxValue = info.Statistics.Max;
 meanValue = info.Statistics.Mean;
 stdValue = info.Statistics.StandardDeviation;

 minValue = reshape(minValue,1,1,3);
 maxValue = reshape(maxValue,1,1,3);
 meanValue = reshape(meanValue,1,1,3);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-220

 stdValue = reshape(stdValue,1,1,3);

 for ii = 1:numClips
 video = data{ii,1};
 resized = sizingFcn(video);

 % Cast the input to single.
 resized = single(resized);

 % Rescale the input between 0 and 1.
 resized = rescale(resized,0,1,InputMin=minValue,InputMax=maxValue);

 % Normalize using mean and standard deviation.
 resized = resized - meanValue;
 resized = resized./stdValue;
 data{ii,1} = resized;
 end

 function outData = cropVideo(data,cropFcn,inputSize)
 imsz = size(data,[1,2]);
 cropWindow = cropFcn(imsz,inputSize);
 numBatches = size(data,4);
 sz = [inputSize, size(data,3),numBatches];
 outData = zeros(sz,'like',data);
 for b = 1:numBatches
 outData(:,:,:,b) = imcrop(data(:,:,:,b),cropWindow);
 end
 end
end

createMiniBatchQueue

The createMiniBatchQueue function creates a minibatchqueue object that provides
miniBatchSize amount of data from the given datastore. It also creates a
DispatchInBackgroundDatastore if a parallel pool is open.

function mbq = createMiniBatchQueue(datastore, numOutputs, params)
if params.DispatchInBackground && isempty(gcp('nocreate'))
 % Start a parallel pool, if DispatchInBackground is true, to dispatch
 % data in the background using the parallel pool.
 c = parcluster('local');
 c.NumWorkers = params.NumWorkers;
 parpool('local',params.NumWorkers);
end
p = gcp('nocreate');
if ~isempty(p)
 datastore = DispatchInBackgroundDatastore(datastore, p.NumWorkers);
end

inputFormat(1:numOutputs-1) = "SSCTB";
outputFormat = "CB";
mbq = minibatchqueue(datastore, numOutputs, ...
 "MiniBatchSize", params.MiniBatchSize, ...
 "MiniBatchFcn", @batchVideo, ...
 "MiniBatchFormat", [inputFormat,outputFormat]);
end

 Gesture Recognition using Videos and Deep Learning

3-221

batchVideo

The batchVideo function batches the video, and the label data from cell arrays. It uses
onehotencode function to encode ground truth categorical labels into one-hot arrays. The one-hot
encoded array contains a 1 in the position corresponding to the class of the label, and 0 in every
other position.

function [video,labels] = batchVideo(video,labels)
% Batch dimension: 5
video = cat(5,video{:});

% Batch dimension: 2
labels = cat(2,labels{:});

% Feature dimension: 1
labels = onehotencode(labels,1);
end

modelGradients

The modelGradients function takes as input a mini-batch of RGB data dlRGB, and the
corresponding target dlY, and returns the corresponding loss, the gradients of the loss with respect
to the learnable parameters, and the training accuracy. To compute the gradients, evaluate the
modelGradients function using the dlfeval function in the training loop.

function [gradientsRGB,loss,acc,stateRGB] = modelGradients(slowFast,dlRGB,dlY)
[dlYPredRGB,stateRGB] = forward(slowFast,dlRGB);
dlYPred = squeezeIfNeeded(dlYPredRGB,dlY);

loss = crossentropy(dlYPred,dlY);

gradientsRGB = dlgradient(loss,slowFast.Learnables);

% Calculate the accuracy of the predictions.
[~,YTest] = max(dlY,[],1);
[~,YPred] = max(dlYPred,[],1);

acc = gather(extractdata(sum(YTest == YPred)./numel(YTest)));
end

squeezeIfNeeded

The squeezeIfNeeded function takes as the predicted scores, dlYPred and corresponding target Y,
and returns the predicted scores dlYPred, after squeezing the singleton dimensions, if there are any.

function dlYPred = squeezeIfNeeded(dlYPred,Y)
if ~isequal(size(Y),size(dlYPred))
 dlYPred = squeeze(dlYPred);
 dlYPred = dlarray(dlYPred,dims(Y));
end
end

updateLearnables

The updateLearnables function updates the learnable parameters of the SlowFast video classifier
with gradients and other parameters using SGDM optimization function sgdmupdate.

function [slowFast,velocity,learnRate] = updateLearnables(slowFast,gradients,params,velocity,iteration)
 % Determine the learning rate using the cosine-annealing learning rate schedule.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-222

 learnRate = cosineAnnealingLearnRate(iteration, params);

 % Apply L2 regularization to the weights.
 learnables = slowFast.Learnables;
 idx = learnables.Parameter == "Weights";
 gradients(idx,:) = dlupdate(@(g,w) g + params.L2Regularization*w,gradients(idx,:),learnables(idx,:));

 % Update the network parameters using the SGDM optimizer.
 [slowFast, velocity] = sgdmupdate(slowFast,gradients,velocity,learnRate,params.Momentum);
end

cosineAnnealingLearnRate

The cosineAnnealingLearnRate function computes the learning rate based on the current
iteration number, minimum learning rate, maximum learning rate, and number of iterations for
annealing [3 on page 3-227].

function lr = cosineAnnealingLearnRate(iteration,params)
 if iteration == params.NumIterations
 lr = params.MinLearningRate;
 return;
 end
 cosineNumIter = [0, params.CosineNumIterations];
 csum = cumsum(cosineNumIter);
 block = find(csum >= iteration, 1,'first');
 cosineIter = iteration - csum(block - 1);
 annealingIteration = mod(cosineIter,cosineNumIter(block));
 cosineIteration = cosineNumIter(block);
 minR = params.MinLearningRate;
 maxR = params.MaxLearningRate;
 cosMult = 1 + cos(pi * annealingIteration / cosineIteration);
 lr = minR + ((maxR - minR) * cosMult / 2);
end

aggregateConfusionMetric

The aggregateConfusionMetric function incrementally fills a confusion matrix based on the
predicted results YPred and the expected results YTest.

function cmat = aggregateConfusionMetric(cmat,YTest,YPred)
YTest = gather(extractdata(YTest));
YPred = gather(extractdata(YPred));
[m,n] = size(cmat);
cmat = cmat + full(sparse(YTest,YPred,1,m,n));
end

saveData

The saveData function saves the given SlowFast video classifier, loss, and other training parameters
to a MAT-file.

function bestLoss = saveData(slowFast,bestLoss,iteration,lossTrain,params)
if iteration >= params.SaveBestAfterIteration
 trainingLoss = extractdata(gather(lossTrain));
 if trainingLoss < bestLoss
 bestLoss = trainingLoss;
 slowFast = gatherFromGPUToSave(slowFast);
 data.BestLoss = bestLoss;

 Gesture Recognition using Videos and Deep Learning

3-223

 data.slowFast = slowFast;
 data.Params = params;
 save(params.ModelFilename,'data');
 end
end
end

gatherFromGPUToSave

The gatherFromGPUToSave function gathers data from the GPU in order to save the model to disk.

function slowfast = gatherFromGPUToSave(slowfast)
if ~canUseGPU
 return;
end
slowfast.Learnables = gatherValues(slowfast.Learnables);
slowfast.State = gatherValues(slowfast.State);
 function tbl = gatherValues(tbl)
 for ii = 1:height(tbl)
 tbl.Value{ii} = gather(tbl.Value{ii});
 end
 end
end

extractVideoScenes

The extractVideoScenes function extracts training video data from a collection of videos and its
corresponding collection of scene labels, by using the functions sceneTimeRanges and
writeVideoScenes.

function extractVideoScenes(groundTruthFolder,trainingFolder,classes)
% If the video scenes are already extracted, no need to download
% the data set and extract video scenes.
if isfolder(trainingFolder)
 classFolders = fullfile(trainingFolder,string(classes));
 allClassFoldersFound = true;
 for ii = 1:numel(classFolders)
 if ~isfolder(classFolders(ii))
 allClassFoldersFound = false;
 break;
 end
 end
 if allClassFoldersFound
 return;
 end
end
if ~isfolder(groundTruthFolder)
 mkdir(groundTruthFolder);
end
downloadURL = "https://ssd.mathworks.com/supportfiles/vision/data/videoClipsAndSceneLabels.zip";

filename = fullfile(groundTruthFolder,"videoClipsAndSceneLabels.zip");
if ~exist(filename,'file')
 disp("Downloading the video clips and the corresponding scene labels to " + groundTruthFolder);
 websave(filename,downloadURL);
end
% Unzip the contents to the download folder.
unzip(filename,groundTruthFolder);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-224

labelDataFiles = dir(fullfile(groundTruthFolder,"*_labelData.mat"));
labelDataFiles = fullfile(groundTruthFolder,{labelDataFiles.name}');
numGtruth = numel(labelDataFiles);
% Load the label data information and create ground truth objects.
gTruth = groundTruth.empty(numGtruth,0);
for ii = 1:numGtruth
 ld = load(labelDataFiles{ii});
 videoFilename = fullfile(groundTruthFolder,ld.videoFilename);
 gds = groundTruthDataSource(videoFilename);
 gTruth(ii) = groundTruth(gds,ld.labelDefs,ld.labelData);
end
% Gather all the scene time ranges and the corresponding scene labels
% using the sceneTimeRanges function.
[timeRanges, sceneLabels] = sceneTimeRanges(gTruth);
% Specify the subfolder names for each duration as the scene label names.
foldernames = sceneLabels;
% Delete the folder if it already exists.
if isfolder(trainingFolder)
 rmdir(trainingFolder,'s');
end
% Video files are written to the folders specified by the folderNames input.
writeVideoScenes(gTruth,timeRanges,trainingFolder,foldernames);
end

initializeTrainingProgressPlot

The initializeTrainingProgressPlot function configures two plots for displaying the training
loss, and the training accuracy.

function plotters = initializeTrainingProgressPlot(params)
if params.ProgressPlot
 % Plot the loss, training accuracy, and validation accuracy.
 figure

 % Loss plot
 subplot(2,1,1)
 plotters.LossPlotter = animatedline;
 xlabel("Iteration")
 ylabel("Loss")

 % Accuracy plot
 subplot(2,1,2)
 plotters.TrainAccPlotter = animatedline('Color','b');
 legend('Training Accuracy','Location','northwest');
 xlabel("Iteration")
 ylabel("Accuracy")
else
 plotters = [];
end
end

updateProgressPlot

The updateProgressPlot function updates the progress plot with loss and accuracy information
during training.

function updateProgressPlot(params,plotters,epoch,iteration,start,lossTrain,accuracyTrain)
if params.ProgressPlot

 Gesture Recognition using Videos and Deep Learning

3-225

 % Update the training progress.
 D = duration(0,0,toc(start),"Format","hh:mm:ss");
 title(plotters.LossPlotter.Parent,"Epoch: " + epoch + ", Elapsed: " + string(D));
 addpoints(plotters.LossPlotter,iteration,double(gather(extractdata(lossTrain))));
 addpoints(plotters.TrainAccPlotter,iteration,accuracyTrain);
 drawnow
end
end

initializeVerboseOutput

The initializeVerboseOutput function displays the column headings for the table of training
values, which shows the epoch, mini-batch accuracy, and other training values.

function initializeVerboseOutput(params)
if params.Verbose
 disp(" ")
 if canUseGPU
 disp("Training on GPU.")
 else
 disp("Training on CPU.")
 end
 p = gcp('nocreate');
 if ~isempty(p)
 disp("Training on parallel cluster '" + p.Cluster.Profile + "'. ")
 end
 disp("NumIterations:" + string(params.NumIterations));
 disp("MiniBatchSize:" + string(params.MiniBatchSize));
 disp("Classes:" + join(string(params.Classes),","));
 disp("|===|")
 disp("| Epoch | Iteration | Time Elapsed | Mini-Batch | Mini-Batch | Base Learning | Train Time |")
 disp("| | | (hh:mm:ss) | Accuracy | Loss | Rate | (hh:mm:ss) |")
 disp("|===|")
end
end

displayVerboseOutputEveryEpoch

The displayVerboseOutputEveryEpoch function displays the verbose output of the training
values, such as the epoch, mini-batch accuracy, and mini-batch loss.

function displayVerboseOutputEveryEpoch(params,start,learnRate,epoch,iteration,...
 accTrain,lossTrain,trainTime)
 if params.Verbose
 D = duration(0,0,toc(start),'Format','hh:mm:ss');
 trainTime = duration(0,0,trainTime,'Format','hh:mm:ss');

 lossTrain = gather(extractdata(lossTrain));
 lossTrain = compose('%.4f',lossTrain);

 accTrain = composePadAccuracy(accTrain);

 learnRate = compose('%.13f',learnRate);

 disp("| " + ...
 pad(string(epoch),5,'both') + " | " + ...
 pad(string(iteration),9,'both') + " | " + ...

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-226

 pad(string(D),12,'both') + " | " + ...
 pad(string(accTrain),10,'both') + " | " + ...
 pad(string(lossTrain),10,'both') + " | " + ...
 pad(string(learnRate),13,'both') + " | " + ...
 pad(string(trainTime),10,'both') + " |")
 end

 function acc = composePadAccuracy(acc)
 acc = compose('%.2f',acc*100) + "%";
 acc = pad(string(acc),6,'left');
 end

end

endVerboseOutput

The endVerboseOutput function displays the end of verbose output during training.

function endVerboseOutput(params)
if params.Verbose
 disp("|===|")
end
end

References

[1] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. "SlowFast Networks for
Video Recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[2] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra
Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, Andrew
Zisserman. "The Kinetics Human Action Video data set." arXiv preprint arXiv:1705.06950, 2017.

[3] Loshchilov, Ilya, and Frank Hutter. "SGDR: Stochastic Gradient Descent with Warm Restarts."
International Conferencee on Learning Representations 2017. Toulon, France: ICLR, 2017.

 Gesture Recognition using Videos and Deep Learning

3-227

Explore Semantic Segmentation Network Using Grad-CAM

This example shows how to explore the predictions of a pretrained semantic segmentation network
using Grad-CAM.

A semantic segmentation network classifies every pixel in an image, resulting in an image that is
segmented by class. You can use Grad-CAM, a deep learning visualization technique, to see which
regions of the image are important for the pixel classification decision.

Download Pretrained Network

Download a semantic segmentation network trained on the CamVid data set [1] from the University of
Cambridge. For more information on building and training a semantic segmentation network, see
“Semantic Segmentation Using Deep Learning” (Deep Learning Toolbox).

pretrainedURL = "https://www.mathworks.com/supportfiles/vision/data/deeplabv3plusResnet18CamVid.mat";
pretrainedFolder = fullfile(tempdir,"pretrainedNetwork");
pretrainedNetwork = fullfile(pretrainedFolder,"deeplabv3plusResnet18CamVid.mat");

if ~exist(pretrainedNetwork,"file")
 mkdir(pretrainedFolder);
 disp("Downloading pretrained network (58 MB)...");
 websave(pretrainedNetwork,pretrainedURL);
end
pretrainedNet = load(pretrainedNetwork);
net = pretrainedNet.net;

Perform Semantic Segmentation

Before analyzing the network predictions using Grad-CAM, use the pretrained network to segment a
test image.

Load a test image and resize it to match the size required by the network.

img = imread('highway.png');
inputSize = net.Layers(1).InputSize(1:2);
img = imresize(img,inputSize);

Use the semanticseg function to predict the pixel labels of the image.

predLabels = semanticseg(img,net);

Overlay the segmentation results on the original image and display the results.

cmap = camvidColorMap;
segImg = labeloverlay(img,predLabels,Colormap=cmap,Transparency=0.4);

figure
imshow(segImg,InitialMagnification=40)
classes = camvidClasses();
pixelLabelColorbar(cmap,classes)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-228

http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/

The network does misclassify some areas, for example, the road near the tires is misclassified as car.
Next, you will explore the network predictions with Grad-CAM to gain insight into why the network
misclassified certain regions.

Explore Network Predictions

Deep networks are complex, so understanding how a network determines a particular prediction is
difficult. You can use Grad-CAM to see which areas of the test image the semantic segmentation
network is using to make its pixel classifications.

Grad-CAM computes the gradient of a differentiable output, such as class score, with respect to the
convolutional features in a chosen layer. Grad-CAM is typically used for image classification tasks [2];
however, it can also be extended to semantic segmentation problems [3].

In semantic segmentation tasks, the softmax layer of the network outputs a score for each class for
every pixel in the original image. This contrasts with standard image classification problems, where
the softmax layer outputs a score for each class for the entire image. The Grad-CAM map for class c
is

Mc = ReLU(∑
k

αc
kAk) where αc

k = 1/N∑
i, j

dyc

dAi, j
k

N is the number of pixels, Ak is the feature map of interest, and yc corresponds to a scalar class
score. For a simple image classification problem, yc is the softmax score for the class of interest. For
semantic segmentation, you can obtainyc by reducing the pixel-wise class scores for the class of
interest to a scalar. For example, sum over the spatial dimensions of the softmax layer:
yc = ∑

(i, j) ∈ P
yi, j

c , where P is the pixels in the output layer of a semantic segmentation network [3]. In

this example, the output layer is the softmax layer before the pixel classification layer. The map Mc

highlights areas that influence the decision for class c. Higher values indicate regions of the image
that are important for the pixel classification decision.

 Explore Semantic Segmentation Network Using Grad-CAM

3-229

To use Grad-CAM, you must select a feature layer to extract the feature map from and a reduction
layer to extract the output activations from. Use analyzeNetwork to find the layers to use with
Grad-CAM.

analyzeNetwork(net)

Specify a feature layer. Typically this is a ReLU layer which takes the output of a convolutional layer
at the end of the network.

featureLayer = "dec_relu4";

Specify a reduction layer. The gradCAM function sums the spatial dimensions of the reduction layer,
for the specified classes, to produce a scalar value. This scalar value is then differentiated with
respect to each feature in the feature layer. For semantic segmentation problems, the reduction layer
is usually the softmax layer.

reductionLayer = "softmax-out";

Compute the Grad-CAM map for the road and pavement classes.

classes = ["Road" "Car"];

gradCAMMap = gradCAM(net,img,classes, ...
 ReductionLayer=reductionLayer, ...
 FeatureLayer=featureLayer);

Compare the Grad-CAM map for the two classes to pixel labels predicted by the network.

figure
subplot(2,2,1)
imshow(img)
title("Test Image")
subplot(2,2,2)
imshow(segImg)
title("Semantic Segmentation")
subplot(2,2,3)
imshow(img)
hold on
imagesc(gradCAMMap(:,:,1),AlphaData=0.5)
title("Grad-CAM: " + classes(1))
colormap jet
subplot(2,2,4)
imshow(img)
hold on
imagesc(gradCAMMap(:,:,2),AlphaData=0.5)
title("Grad-CAM: " + classes(2))
colormap jet

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-230

The Grad-CAM maps and semantic segmentation map show similar highlighting. The Grad-CAM map
for the road class shows that the center of the scene is more important for the classification decision
of the network. The network possibly misclassifies road areas near the bottom of the cars because of
the poor resolution between the tire and road boundary.

Explore Intermediate Layers

The Grad-CAM map resembles the semantic segmentation map when you use a layer near the end of
the network for the computation. You can also use Grad-CAM to investigate intermediate layers in the
trained network. Earlier layers have a small receptive field size and learn small, low-level features
compared to the layers at the end of the network.

Compute the Grad-CAM map for layers that are successively deeper in the network.

layers = ["res5b_relu","catAspp","dec_relu1"];
numLayers = length(layers);

The res5b_relu layer is near the middle of the network, whereas dec_relu1 is near the end of the
network.

Investigate the network classification decisions for the car and road classes. For each layer and class,
compute the Grad-CAM map.

classes = ["Car" "Road"];
numClasses = length(classes);

gradCAMMaps = [];
for i = 1:numLayers
 gradCAMMaps(:,:,:,i) = gradCAM(net,img,classes, ...
 ReductionLayer=reductionLayer, ...
 FeatureLayer=layers(i));
end

Display the Grad-CAM maps for each layer and each class. The rows represent the map for each
layer, with the layers ordered from those early in the network to those at the end of the network.

 Explore Semantic Segmentation Network Using Grad-CAM

3-231

figure;
idx = 1;
for i=1:numLayers
 for j=1:numClasses
 subplot(numLayers,numClasses,idx)
 imshow(img)
 hold on
 imagesc(gradCAMMaps(:,:,j,i),AlphaData=0.5)
 title(sprintf("%s (%s)",classes(j),layers(i)), ...
 Interpreter="none")
 colormap jet
 idx = idx + 1;
 end
end

The later layers produce maps very similar to the segmentation map. However, the layers earlier in
the network produce more abstract results and are typically more concerned with lower level
features like edges, with less awareness of semantic classes. For example, in the maps for earlier
layers, you can see that for both car and road classes, the sky is highlighted. This suggests that the
earlier layers focus on areas of the image that are related to the class but do not necessarily belong
to it.

References

[1] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. “Semantic Object Classes in Video: A
High-Definition Ground Truth Database.” Pattern Recognition Letters 30, no. 2 (January 2009): 88–97.
https://doi.org/10.1016/j.patrec.2008.04.005.

[2] Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. "Grad-CAM: Visual
Explanations from Deep Networks via Gradient-Based Localization." In IEEE International

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-232

Conference on Computer Vision (ICCV), 2017, pp. 618–626. Available at Grad-CAM on the Computer
Vision Foundation Open Access website.

[3] Vinogradova, Kira, Alexandr Dibrov, and Gene Myers. “Towards Interpretable Semantic
Segmentation via Gradient-Weighted Class Activation Mapping (Student Abstract).” Proceedings of
the AAAI Conference on Artificial Intelligence 34, no. 10 (April 3, 2020): 13943–44. https://doi.org/
10.1609/aaai.v34i10.7244.

Supporting Functions
function classes = camvidClasses()
% Return the CamVid class names used during network training.
%
% The CamVid data set has 32 classes. Group them into 11 classes following
% the original SegNet training methodology [1].
%
% The 11 classes are:
% "Sky", "Building", "Pole", "Road", "Pavement", "Tree", "SignSymbol",
% "Fence", "Car", "Pedestrian", and "Bicyclist".
%
classes = [
 "Sky"
 "Building"
 "Pole"
 "Road"
 "Pavement"
 "Tree"
 "SignSymbol"
 "Fence"
 "Car"
 "Pedestrian"
 "Bicyclist"
];
end

function pixelLabelColorbar(cmap, classNames)
% Add a colorbar to the current axis. The colorbar is formatted
% to display the class names with the color.

colormap(gca,cmap)

% Add a colorbar to the current figure.
c = colorbar("peer",gca);

% Use class names for tick marks.
c.TickLabels = classNames;
numClasses = size(cmap,1);

% Center tick labels.
c.Ticks = 1/(numClasses*2):1/numClasses:1;

% Remove tick marks.
c.TickLength = 0;
end

function cmap = camvidColorMap

 Explore Semantic Segmentation Network Using Grad-CAM

3-233

http://openaccess.thecvf.com/content_ICCV_2017/papers/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.pdf
https://doi.org/10.1609/aaai.v34i10.7244
https://doi.org/10.1609/aaai.v34i10.7244

% Define the colormap used by the CamVid data set.

cmap = [
 128 128 128 % Sky
 128 0 0 % Building
 192 192 192 % Pole
 128 64 128 % Road
 60 40 222 % Pavement
 128 128 0 % Tree
 192 128 128 % SignSymbol
 64 64 128 % Fence
 64 0 128 % Car
 64 64 0 % Pedestrian
 0 128 192 % Bicyclist
];

% Normalize between [0 1].
cmap = cmap ./ 255;
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-234

Point Cloud Classification Using PointNet Deep Learning

This example shows how to train a PointNet network for point cloud classification.

Point cloud data is acquired by a variety of sensors, such as lidar, radar, and depth cameras. These
sensors capture 3-D position information about objects in a scene, which is useful for many
applications in autonomous driving and augmented reality. For example, discriminating vehicles from
pedestrians is critical for planning the path of an autonomous vehicle. However, training robust
classifiers with point cloud data is challenging because of the sparsity of data per object, object
occlusions, and sensor noise. Deep learning techniques have been shown to address many of these
challenges by learning robust feature representations directly from point cloud data. One of the
seminal deep learning techniques for point cloud classification is PointNet [1 on page 3-256].

This example trains a PointNet classifier on the Sydney Urban Objects data set created by the
University of Sydney [2 on page 3-256]. This data set provides a collection of point cloud data
acquired from an urban environment using a lidar sensor. The data set has 100 labeled objects from
14 different categories, such as car, pedestrian, and bus.

Load data set

Download and extract the Sydney Urban Objects data set to a temporary directory.

downloadDirectory = tempdir;
datapath = downloadSydneyUrbanObjects(downloadDirectory);

Load the downloaded training and validation data set using the loadSydneyUrbanObjectsData
helper function listed at the end of this example. Use the first three data folds for training and the
fourth for validation.

foldsTrain = 1:3;
foldsVal = 4;
dsTrain = loadSydneyUrbanObjectsData(datapath,foldsTrain);
dsVal = loadSydneyUrbanObjectsData(datapath,foldsVal);

Read one of the training samples and visualize it using pcshow.

data = read(dsTrain);
ptCloud = data{1,1};
label = data{1,2};

figure
pcshow(ptCloud.Location,[0 1 0],"MarkerSize",40,"VerticalAxisDir","down")
xlabel("X")
ylabel("Y")
zlabel("Z")
title(label)

 Point Cloud Classification Using PointNet Deep Learning

3-235

Read the labels and count the number of points assigned to each label to better understand the
distribution of labels within the data set.

dsLabelCounts = transform(dsTrain,@(data){data{2} data{1}.Count});
labelCounts = readall(dsLabelCounts);
labels = vertcat(labelCounts{:,1});
counts = vertcat(labelCounts{:,2});

Next, use a histogram to visualize the class distribution.

figure
histogram(labels)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-236

The label histogram shows that the data set is imbalanced and biased towards cars and pedestrians,
which can prevent the training of a robust classifier. You can address class imbalance by
oversampling the infrequent classes. For the Sydney Urban Objects data set, duplicating files
corresponding to the infrequent classes is a simple method to address the class imbalance.

Group the files by label, count the number of observations per class, and use the
randReplicateFiles helper function, listed at the end of this example, to randomly oversample the
files to the desired number of observations per class.

rng(0)
[G,classes] = findgroups(labels);
numObservations = splitapply(@numel,labels,G);
desiredNumObservationsPerClass = max(numObservations);
files = splitapply(@(x){randReplicateFiles(x,desiredNumObservationsPerClass)},dsTrain.Files,G);
files = vertcat(files{:});
dsTrain.Files = files;

Data Augmentation

Duplicating the files to address class imbalance increases the likelihood of overfitting the network
because much of the training data is identical. To offset this effect, apply data augmentation to the
training data using the transform and augmentPointCloud helper function, which randomly
rotates the point cloud, randomly removes points, and randomly jitters points with Gaussian noise.

dsTrain = transform(dsTrain,@augmentPointCloud);

Preview one of the augmented training samples.

 Point Cloud Classification Using PointNet Deep Learning

3-237

data = preview(dsTrain);
ptCloud = data{1,1};
label = data{1,2};

figure
pcshow(ptCloud.Location,[0 1 0],"MarkerSize",40,"VerticalAxisDir","down")
xlabel("X")
ylabel("Y")
zlabel("Z")
title(label)

Note that because the data for measuring the performance of the trained network must be
representative of the original data set, data augmentation is not applied to validation or test data.

Data Preprocessing

Two preprocessing steps are required to prepare the point cloud data for training and prediction.

First, to enable batch processing during training, select a fixed number of points from each point
cloud. The optimal number of points depends on the data set and the number of points required to
accurately capture the shape of the object. To help select the appropriate number of points, compute
the minimum, maximum, and mean number of points per class.

minPointCount = splitapply(@min,counts,G);
maxPointCount = splitapply(@max,counts,G);
meanPointCount = splitapply(@(x)round(mean(x)),counts,G);

stats = table(classes,numObservations,minPointCount,maxPointCount,meanPointCount)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-238

stats=14×5 table
 classes numObservations minPointCount maxPointCount meanPointCount
 ______________ _______________ _____________ _____________ ______________

 4wd 15 140 1955 751
 building 15 193 8455 2708
 bus 11 126 11767 2190
 car 64 52 2377 528
 pedestrian 107 20 297 110
 pillar 15 80 751 357
 pole 15 13 253 90
 traffic lights 36 38 352 161
 traffic sign 40 18 736 126
 tree 24 53 2953 470
 truck 9 445 3013 1376
 trunk 42 32 766 241
 ute 12 90 1380 580
 van 28 91 5809 1125

Because of the large amount of intra-class and inter-class variability in the number of points per
class, choosing a value that fits all classes is difficult. One heuristic is to choose enough points to
adequately capture the shape of the objects while not increasing the computational cost by
processing too many points. A value of 1024 provides a good tradeoff between these two facets. You
can also select the optimal number of points based on empirical analysis. However, that is beyond the
scope of this example. Use the transform function to select 1024 points in the training and
validation sets.

numPoints = 1024;
dsTrain = transform(dsTrain,@(data)selectPoints(data,numPoints));
dsVal = transform(dsVal,@(data)selectPoints(data,numPoints));

The last preprocessing step is to normalize the point cloud data between 0 and 1 to account for large
differences in the range of data values. For example, objects closer to the lidar sensor have smaller
values compared to objects that are further away. These differences can hinder the convergence of
the network during training. Use transform to normalize the point cloud data in the training and
validation sets.

dsTrain = transform(dsTrain,@preprocessPointCloud);
dsVal = transform(dsVal,@preprocessPointCloud);

Preview the augmented and preprocessed training data.

data = preview(dsTrain);
figure
pcshow(data{1,1},[0 1 0],"MarkerSize",40,"VerticalAxisDir","down");
xlabel("X")
ylabel("Y")
zlabel("Z")
title(data{1,2})

 Point Cloud Classification Using PointNet Deep Learning

3-239

Define PointNet Model

The PointNet classification model consists of two components. The first component is a point cloud
encoder that learns to encode sparse point cloud data into a dense feature vector. The second
component is a classifier that predicts the categorical class of each encoded point cloud.

The PointNet encoder model is further composed of four models followed by a max operation.

1 Input transform model
2 Shared MLP model
3 Feature transform model
4 Shared MLP model

The shared MLP model is implemented using a series of convolution, batch normalization, and ReLU
operations. The convolution operation is configured such that the weights are shared across the input
point cloud. The transform model is composed of a shared MLP and a learnable transform matrix that
is applied to each point cloud. The shared MLP and the max operation make the PointNet encoder
invariant to the order in which the points are processed, while the transform model provides
invariance to orientation changes.

Define PointNet Encoder Model Parameters

The shared MLP and transform models are parameterized by the number of input channels and the
hidden channel sizes. The values chosen in this example are selected by tuning these
hyperparameters on the Sydney Urban Objects data set. Note that if you want to apply PointNet to a
different data set, you must perform additional hyperparameter tuning.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-240

Set the input transform model input channel size to three and the hidden channel sizes to 64, 128,
and 256 and use the initializeTransform helper function, listed at the end of this example, to
initialize the model parameters.

inputChannelSize = 3;
hiddenChannelSize1 = [64,128];
hiddenChannelSize2 = 256;
[parameters.InputTransform, state.InputTransform] = initializeTransform(inputChannelSize,hiddenChannelSize1,hiddenChannelSize2);

Set the first shared MLP model input channel size to three and the hidden channel size to 64 and use
the initializeSharedMLP helper function, listed at the end of this example, to initialize the model
parameters.

inputChannelSize = 3;
hiddenChannelSize = [64 64];
[parameters.SharedMLP1,state.SharedMLP1] = initializeSharedMLP(inputChannelSize,hiddenChannelSize);

Set the feature transformation model input channel size to 64 and hidden channel sizes to 64, 128,
and 256 and use the initializeTransform helper function, listed at the end of this example, to
initialize the model parameters.

inputChannelSize = 64;
hiddenChannelSize1 = [64,128];
hiddenChannelSize2 = 256;
[parameters.FeatureTransform, state.FeatureTransform] = initializeTransform(inputChannelSize,hiddenChannelSize,hiddenChannelSize2);

Set the second shared MLP model input channel size to 64 and the hidden channel size to 64 and use
the initializeSharedMLP function, listed at the end of this example, to initialize the model
parameters.

inputChannelSize = 64;
hiddenChannelSize = 64;
[parameters.SharedMLP2,state.SharedMLP2] = initializeSharedMLP(inputChannelSize,hiddenChannelSize);

Define PointNet Classifier Model Parameters

The PointNet classifier model consists of a shared MLP, a fully connected operation, and a softmax
activation. Set the classifier model input size to 64 and the hidden channel size to 512 and 256 and
use the initalizeClassifier helper function, listed at the end of this example, to initialize the
model parameters.

inputChannelSize = 64;
hiddenChannelSize = [512,256];
numClasses = numel(classes);
[parameters.ClassificationMLP, state.ClassificationMLP] = initializeClassificationMLP(inputChannelSize,hiddenChannelSize,numClasses);

Define PointNet Function

Create the function pointnetClassifier, listed in the Model Function section at the end of the
example, to compute the outputs of the PointNet model. The function model takes as input the point
cloud data, the learnable model parameters, the model state, and a flag that specifies whether the
model returns outputs for training or prediction. The network returns the predictions for classifying
the input point cloud.

Define Model Gradients Function

Create the function modelGradients, listed in the Model Gradients Function section of the example,
that takes as input the model parameters, the model state, and a mini-batch of input data, and

 Point Cloud Classification Using PointNet Deep Learning

3-241

returns the gradients of the loss with respect to the learnable parameters in the models and the
corresponding loss.

Specify Training Options

Train for 10 epochs and load data in batches of 128. Set the initial learning rate to 0.002 and the L2
regularization factor to 0.01.

numEpochs = 10;
learnRate = 0.002;
miniBatchSize = 128;
l2Regularization = 0.01;
learnRateDropPeriod = 15;
learnRateDropFactor = 0.5;

Initialize the options for Adam optimization.

gradientDecayFactor = 0.9;
squaredGradientDecayFactor = 0.999;

Train PointNet

Train the model using a custom training loop.

Shuffle the data at the beginning of training.

For each iteration:

• Read a batch of data.
• Evaluate the model gradients.
• Apply L2 weight regularization.
• Use adamupdate to update the model parameters.
• Update the training progress plot.

At the end of each epoch, evaluate the model against the validation data set and collect confusion
metrics to measure classification accuracy as training progresses.

After completing learnRateDropPeriod epochs, reduce the learning rate by a factor of
learnRateDropFactor.

Initialize the moving average of the parameter gradients and the element-wise squares of the
gradients used by the Adam optimizer.

avgGradients = [];
avgSquaredGradients = [];

Train the model if doTraining is true. Otherwise, load a pretrained network.

Note that training was verified on an NVIDIA Titan X with 12 GB of GPU memory. If your GPU has
less memory, you may run out of memory during training. If this happens, lower the miniBatchSize.
Training this network takes about 5 minutes. Depending on your GPU hardware, it can take longer.

doTraining = false;

if doTraining

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-242

 % Create a minibatchqueue to batch data from training and validation
 % datastores. Use the batchData function, listed at the end of the
 % example, to batch the point cloud data and one-hot encode the label
 % data.
 numOutputsFromDSRead = 2;
 mbqTrain = minibatchqueue(dsTrain,numOutputsFromDSRead,...
 "MiniBatchSize", miniBatchSize,...
 "MiniBatchFcn",@batchData,...
 "MiniBatchFormat",["SCSB" "BC"]);

 mbqVal = minibatchqueue(dsVal,numOutputsFromDSRead,...
 "MiniBatchSize", miniBatchSize,...
 "MiniBatchFcn",@batchData,...
 "MiniBatchFormat",["SCSB" "BC"]);

 % Use the configureTrainingProgressPlot function, listed at the end of the
 % example, to initialize the training progress plot to display the training
 % loss, training accuracy, and validation accuracy.
 [lossPlotter, trainAccPlotter,valAccPlotter] = initializeTrainingProgressPlot;

 numClasses = numel(classes);
 iteration = 0;
 start = tic;
 for epoch = 1:numEpochs

 % Shuffle data every epoch.
 shuffle(mbqTrain);

 % Iterate through data set.
 while hasdata(mbqTrain)
 iteration = iteration + 1;

 % Read next batch of training data.
 [XTrain, YTrain] = next(mbqTrain);

 % Evaluate the model gradients and loss using dlfeval and the
 % modelGradients function.
 [gradients, loss, state, acc] = dlfeval(@modelGradients,XTrain,YTrain,parameters,state);

 % L2 regularization.
 gradients = dlupdate(@(g,p) g + l2Regularization*p,gradients,parameters);

 % Update the network parameters using the Adam optimizer.
 [parameters, avgGradients, avgSquaredGradients] = adamupdate(parameters, gradients, ...
 avgGradients, avgSquaredGradients, iteration,...
 learnRate,gradientDecayFactor, squaredGradientDecayFactor);

 % Update the training progress.
 D = duration(0,0,toc(start),"Format","hh:mm:ss");
 title(lossPlotter.Parent,"Epoch: " + epoch + ", Elapsed: " + string(D))
 addpoints(lossPlotter,iteration,double(gather(extractdata(loss))))
 addpoints(trainAccPlotter,iteration,acc);
 drawnow
 end

 % Evaluate the model on validation data.
 cmat = sparse(numClasses,numClasses);
 while hasdata(mbqVal)

 Point Cloud Classification Using PointNet Deep Learning

3-243

 % Read next batch of validation data.
 [XVal, YVal] = next(mbqVal);

 % Compute label predictions.
 isTraining = false;
 YPred = pointnetClassifier(XVal,parameters,state,isTraining);

 % Choose prediction with highest score as the class label for
 % XTest.
 [~,YValLabel] = max(YVal,[],1);
 [~,YPredLabel] = max(YPred,[],1);

 % Collect confusion metrics.
 cmat = aggreateConfusionMetric(cmat,YValLabel,YPredLabel);
 end

 % Update training progress plot with average classification accuracy.
 acc = sum(diag(cmat))./sum(cmat,"all");
 addpoints(valAccPlotter,iteration,acc);

 % Upate the learning rate.
 if mod(epoch,learnRateDropPeriod) == 0
 learnRate = learnRate * learnRateDropFactor;
 end

 % Reset training and validation data queues.
 reset(mbqTrain);
 reset(mbqVal);
 end

else
 % Download pretrained model parameters, model state, and validation
 % results.
 pretrainedURL = 'https://ssd.mathworks.com/supportfiles/vision/data/pointnetSydneyUrbanObjects.zip';
 pretrainedResults = downloadPretrainedPointNet(pretrainedURL);

 parameters = pretrainedResults.parameters;
 state = pretrainedResults.state;
 cmat = pretrainedResults.cmat;

 % Move model parameters to the GPU if possible and convert to a dlarray.
 parameters = prepareForPrediction(parameters,@(x)dlarray(toDevice(x,canUseGPU)));

 % Move model state to the GPU if possible.
 state = prepareForPrediction(state,@(x)toDevice(x,canUseGPU));
end

Display the validation confusion matrix.

figure
chart = confusionchart(cmat,classes);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-244

Compute the mean training and validation accuracy.

acc = sum(diag(cmat))./sum(cmat,"all")

acc = 0.5742

Due to the limited number of training samples in the Sydney Urban Objects data set, increasing the
validation accuracy beyond 60% is challenging. The model easily overfits the training data in the
absence of the augmentation defined in the augmentPointCloudData helper function. To improve
the robustness of the PointNet classifier, additional training is required.

Classify Point Cloud Data Using PointNet

Load point cloud data with pcread, preprocess the point cloud using the same function used during
training, and convert the result to a dlarray.

ptCloud = pcread("car.pcd");
X = preprocessPointCloud(ptCloud);
dlX = dlarray(X{1},"SCSB");

Predict point cloud labels with the pointnetClassifier model function.

YPred = pointnetClassifier(dlX,parameters,state,false);
[~,classIdx] = max(YPred,[],1);

Display the point cloud and the predicted label with the highest score.

 Point Cloud Classification Using PointNet Deep Learning

3-245

figure
pcshow(ptCloud.Location,[0 1 0],"MarkerSize",40,"VerticalAxisDir","down")
title(classes(classIdx))

Model Gradients Function

The modelGradients function takes as input a mini-batch of data dlX, the corresponding target dlY,
and the learnable parameters, and returns the gradients of the loss with respect to the learnable
parameters and the corresponding loss. The loss includes a regularization term designed to ensure
the feature transformation matrix predicted by the PointNet encoder is approximately orthogonal. To
compute the gradients, evaluate the modelGradients function using the dlfeval function in the
training loop.

function [gradients, loss, state, acc] = modelGradients(X,Y,parameters,state)

% Execute the model function.
isTraining = true;
[YPred,state,dlT] = pointnetClassifier(X,parameters,state,isTraining);

% Add regularization term to ensure feature transform matrix is
% approximately orthogonal.
K = size(dlT,1);
B = size(dlT, 4);
I = repelem(eye(K),1,1,1,B);
dlI = dlarray(I,"SSCB");
treg = mse(dlI,pagemtimes(dlT,permute(dlT,[2 1 3 4])));
factor = 0.001;

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-246

% Compute the loss.
loss = crossentropy(YPred,Y) + factor*treg;

% Compute the parameter gradients with respect to the loss.
gradients = dlgradient(loss, parameters);

% Compute training accuracy metric.
[~,YTest] = max(Y,[],1);
[~,YPred] = max(YPred,[],1);
acc = gather(extractdata(sum(YTest == YPred)./numel(YTest)));

end

PointNet Classifier Function

The pointnetClassifier function takes as input the point cloud data dlX, the learnable model
parameters, the model state, and the flag isTraining, which specifies whether the model returns
outputs for training or prediction. Then, the function invokes the PointNet encoder and a multilayer
perceptron to extract classification features. During training, dropout is applied after each
perceptron operation. After the last perceptron, a fullyconnect operation maps the classification
features to the number of classes and a softmax activation is used to normalize the output into a
probability distribution of labels. The probability distribution, the updated model state, and the
feature transformation matrix predicted by the PointNet encoder are returned as outputs.

function [dlY,state,dlT] = pointnetClassifier(dlX,parameters,state,isTraining)

% Invoke the PointNet encoder.
[dlY,state,dlT] = pointnetEncoder(dlX,parameters,state,isTraining);

% Invoke the classifier.
p = parameters.ClassificationMLP.Perceptron;
s = state.ClassificationMLP.Perceptron;
for k = 1:numel(p)

 [dlY, s(k)] = perceptron(dlY,p(k),s(k),isTraining);

 % If training, apply inverted dropout with a probability of 0.3.
 if isTraining
 probability = 0.3;
 dropoutScaleFactor = 1 - probability;
 dropoutMask = (rand(size(dlY), "like", dlY) > probability) / dropoutScaleFactor;
 dlY = dlY.*dropoutMask;
 end

end
state.ClassificationMLP.Perceptron = s;

% Apply final fully connected and softmax operations.
weights = parameters.ClassificationMLP.FC.Weights;
bias = parameters.ClassificationMLP.FC.Bias;
dlY = fullyconnect(dlY,weights,bias);
dlY = softmax(dlY);
end

 Point Cloud Classification Using PointNet Deep Learning

3-247

PointNet Encoder Function

The pointnetEncoder function processes the input dlX using an input transform, a shared MLP, a
feature transform, a second shared MLP, and a max operation, and returns the result of the max
operation.

function [dlY,state,T] = pointnetEncoder(dlX,parameters,state,isTraining)
% Input transform.
[dlY,state.InputTransform] = dataTransform(dlX,parameters.InputTransform,state.InputTransform,isTraining);

% Shared MLP.
[dlY,state.SharedMLP1.Perceptron] = sharedMLP(dlY,parameters.SharedMLP1.Perceptron,state.SharedMLP1.Perceptron,isTraining);

% Feature transform.
[dlY,state.FeatureTransform,T] = dataTransform(dlY,parameters.FeatureTransform,state.FeatureTransform,isTraining);

% Shared MLP.
[dlY,state.SharedMLP2.Perceptron] = sharedMLP(dlY,parameters.SharedMLP2.Perceptron,state.SharedMLP2.Perceptron,isTraining);

% Max operation.
dlY = max(dlY,[],1);
end

Shared Multilayer Perceptron Function

The shared multilayer perceptron function processes the input dlX using a series of perceptron
operations and returns the result of the last perceptron.

function [dlY,state] = sharedMLP(dlX,parameters,state,isTraining)
dlY = dlX;
for k = 1:numel(parameters)
 [dlY, state(k)] = perceptron(dlY,parameters(k),state(k),isTraining);
end
end

Perceptron Function

The perceptron function processes the input dlX using a convolution, a batch normalization, and a
relu operation and returns the output of the ReLU operation.

function [dlY,state] = perceptron(dlX,parameters,state,isTraining)
% Convolution.
W = parameters.Conv.Weights;
B = parameters.Conv.Bias;
dlY = dlconv(dlX,W,B);

% Batch normalization. Update batch normalization state when training.
offset = parameters.BatchNorm.Offset;
scale = parameters.BatchNorm.Scale;
trainedMean = state.BatchNorm.TrainedMean;
trainedVariance = state.BatchNorm.TrainedVariance;
if isTraining
 [dlY,trainedMean,trainedVariance] = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);

 % Update state.
 state.BatchNorm.TrainedMean = trainedMean;
 state.BatchNorm.TrainedVariance = trainedVariance;
else

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-248

 dlY = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
end

% ReLU.
dlY = relu(dlY);
end

Data Transform Function

The dataTransform function processes the input dlX using a shared MLP, a max operation, and
another shared MLP to predict a transformation matrix T. The transformation matrix is applied to the
input dlX using a batched matrix multiply operation. The function returns the result of the batched
matrix multiply and the transformation matrix.

function [dlY,state,T] = dataTransform(dlX,parameters,state,isTraining)

% Shared MLP.
[dlY,state.Block1.Perceptron] = sharedMLP(dlX,parameters.Block1.Perceptron,state.Block1.Perceptron,isTraining);

% Max operation.
dlY = max(dlY,[],1);

% Shared MLP.
[dlY,state.Block2.Perceptron] = sharedMLP(dlY,parameters.Block2.Perceptron,state.Block2.Perceptron,isTraining);

% Transform net (T-Net). Apply last fully connected operation as W*X to
% predict tranformation matrix T.
dlY = squeeze(dlY); % N-by-B
T = parameters.Transform * stripdims(dlY); % K^2-by-B

% Reshape T into a square matrix.
K = sqrt(size(T,1));
T = reshape(T,K,K,1,[]); % [K K 1 B]
T = T + eye(K);

% Apply to input dlX using batch matrix multiply.
[C,B] = size(dlX,[3 4]); % [M 1 K B]
dlX = reshape(dlX,[],C,1,B); % [M K 1 B]
Y = pagemtimes(dlX,T);
dlY = dlarray(Y,"SCSB");
end

Model Parameter Initialization Functions

initializeTransform Function

The initializeTransform function takes as input the channel size and the number of hidden
channels for the two shared MLPs, and returns the initialized parameters in a struct. The parameters
are initialized using He weight initialization [3 on page 3-256].

function [params,state] = initializeTransform(inputChannelSize,block1,block2)
[params.Block1,state.Block1] = initializeSharedMLP(inputChannelSize,block1);
[params.Block2,state.Block2] = initializeSharedMLP(block1(end),block2);

% Parameters for the transform matrix.
params.Transform = dlarray(zeros(inputChannelSize^2,block2(end)));
end

 Point Cloud Classification Using PointNet Deep Learning

3-249

initializeSharedMLP Function

The initializeSharedMLP function takes as input the channel size and the hidden channel size, and
returns the initialized parameters in a struct. The parameters are initialized using He weight
initialization.

function [params,state] = initializeSharedMLP(inputChannelSize,hiddenChannelSize)
weights = initializeWeightsHe([1 1 inputChannelSize hiddenChannelSize(1)]);
bias = zeros(hiddenChannelSize(1),1,"single");
p.Conv.Weights = dlarray(weights);
p.Conv.Bias = dlarray(bias);

p.BatchNorm.Offset = dlarray(zeros(hiddenChannelSize(1),1,"single"));
p.BatchNorm.Scale = dlarray(ones(hiddenChannelSize(1),1,"single"));

s.BatchNorm.TrainedMean = zeros(hiddenChannelSize(1),1,"single");
s.BatchNorm.TrainedVariance = ones(hiddenChannelSize(1),1,"single");

params.Perceptron(1) = p;
state.Perceptron(1) = s;

for k = 2:numel(hiddenChannelSize)
 weights = initializeWeightsHe([1 1 hiddenChannelSize(k-1) hiddenChannelSize(k)]);
 bias = zeros(hiddenChannelSize(k),1,"single");
 p.Conv.Weights = dlarray(weights);
 p.Conv.Bias = dlarray(bias);

 p.BatchNorm.Offset = dlarray(zeros(hiddenChannelSize(k),1,"single"));
 p.BatchNorm.Scale = dlarray(ones(hiddenChannelSize(k),1,"single"));

 s.BatchNorm.TrainedMean = zeros(hiddenChannelSize(k),1,"single");
 s.BatchNorm.TrainedVariance = ones(hiddenChannelSize(k),1,"single");

 params.Perceptron(k) = p;
 state.Perceptron(k) = s;
end
end

initializeClassificationMLP Function

The initializeClassificationMLP function takes as input the channel size, the hidden channel
size, and the number of classes and returns the initialized parameters in a struct. The shared MLP is
initialized using He weight initialization and the final fully connected operation is initialized using
random Gaussian values.

function [params,state] = initializeClassificationMLP(inputChannelSize,hiddenChannelSize,numClasses)
[params,state] = initializeSharedMLP(inputChannelSize,hiddenChannelSize);

weights = initializeWeightsGaussian([numClasses hiddenChannelSize(end)]);
bias = zeros(numClasses,1,"single");
params.FC.Weights = dlarray(weights);
params.FC.Bias = dlarray(bias);
end

initializeWeightsHe Function

The initializeWeightsHe function initializes parameters using He initialization.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-250

function x = initializeWeightsHe(sz)
fanIn = prod(sz(1:3));
stddev = sqrt(2/fanIn);
x = stddev .* randn(sz);
end

initializeWeightsGaussian Function

The initializeWeightsGaussian function initializes parameters using Gaussian initialization with
a standard deviation of 0.01.

function x = initializeWeightsGaussian(sz)
x = randn(sz,"single") .* 0.01;
end

Data Preprocessing Functions

preprocessPointCloudData Function

The preprocessPointCloudData function extracts the X, Y, Z point data from the input data and
normalizes the data between 0 and 1. The function returns the normalized X, Y, Z data.

function data = preprocessPointCloud(data)

if ~iscell(data)
 data = {data};
end

numObservations = size(data,1);
for i = 1:numObservations
 % Scale points between 0 and 1.
 xlim = data{i,1}.XLimits;
 ylim = data{i,1}.YLimits;
 zlim = data{i,1}.ZLimits;

 xyzMin = [xlim(1) ylim(1) zlim(1)];
 xyzDiff = [diff(xlim) diff(ylim) diff(zlim)];

 data{i,1} = (data{i,1}.Location - xyzMin) ./ xyzDiff;
end
end

selectPoints Function

The selectPoints function samples the desired number of points. When the point cloud contains
more than the desired number of points, the function uses pcdownsample to randomly select points.
Otherwise, the function replicates data to produce the desired number of points.

function data = selectPoints(data,numPoints)
% Select the desired number of points by downsampling or replicating
% point cloud data.
numObservations = size(data,1);
for i = 1:numObservations
 ptCloud = data{i,1};
 if ptCloud.Count > numPoints
 percentage = numPoints/ptCloud.Count;
 data{i,1} = pcdownsample(ptCloud,"random",percentage);
 else

 Point Cloud Classification Using PointNet Deep Learning

3-251

 replicationFactor = ceil(numPoints/ptCloud.Count);
 ind = repmat(1:ptCloud.Count,1,replicationFactor);
 data{i,1} = select(ptCloud,ind(1:numPoints));
 end
end
end

Data Augmentation Functions

The augmentPointCloudData function randomly rotates a point cloud about the z-axis, randomly
drops 30% of the points, and randomly jitters the point location with Gaussian noise.

function data = augmentPointCloud(data)

numObservations = size(data,1);
for i = 1:numObservations

 ptCloud = data{i,1};

 % Rotate the point cloud about "up axis", which is Z for this data set.
 tform = randomAffine3d(...
 "XReflection", true,...
 "YReflection", true,...
 "Rotation",@randomRotationAboutZ);

 ptCloud = pctransform(ptCloud,tform);

 % Randomly drop out 30% of the points.
 if rand > 0.5
 ptCloud = pcdownsample(ptCloud,'random',0.3);
 end

 if rand > 0.5
 % Jitter the point locations with Gaussian noise with a mean of 0 and
 % a standard deviation of 0.02 by creating a random displacement field.
 D = 0.02 * randn(size(ptCloud.Location));
 ptCloud = pctransform(ptCloud,D);
 end

 data{i,1} = ptCloud;
end
end

function [rotationAxis,theta] = randomRotationAboutZ()
rotationAxis = [0 0 1];
theta = 360*rand;
end

Supporting Functions

aggregateConfusionMetric Function

The aggregateConfusionMetric function incrementally fills a confusion matrix based on the
predicted results YPred and the expected results YTest.

function cmat = aggreateConfusionMetric(cmat,YTest,YPred)
YTest = gather(extractdata(YTest));
YPred = gather(extractdata(YPred));

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-252

[m,n] = size(cmat);
cmat = cmat + full(sparse(YTest,YPred,1,m,n));
end

initializeTrainingProgressPlot Function

The initializeTrainingProgressPlot function configures two plots for displaying the training
loss, training accuracy, and validation accuracy.

function [plotter,trainAccPlotter,valAccPlotter] = initializeTrainingProgressPlot()
% Plot the loss, training accuracy, and validation accuracy.
figure

% Loss plot
subplot(2,1,1)
plotter = animatedline;
xlabel("Iteration")
ylabel("Loss")

% Accuracy plot
subplot(2,1,2)
trainAccPlotter = animatedline('Color','b');
valAccPlotter = animatedline('Color','g');
legend('Training Accuracy','Validation Accuracy','Location','northwest');
xlabel("Iteration")
ylabel("Accuracy")
end

replicateFiles Function

The replicateFiles function randomly oversamples a set of files and returns a set of files with
numDesired elements.

function files = randReplicateFiles(files,numDesired)
n = numel(files);
ind = randi(n,numDesired,1);
files = files(ind);
end

downloadSydneyUrbanObjects Function

The downloadSydneyUrbanObjects function downloads the data set and saves it to a temporary
directory.

function datapath = downloadSydneyUrbanObjects(dataLoc)

if nargin == 0
 dataLoc = pwd;
end

dataLoc = string(dataLoc);

url = "http://www.acfr.usyd.edu.au/papers/data/";
name = "sydney-urban-objects-dataset.tar.gz";

datapath = fullfile(dataLoc,'sydney-urban-objects-dataset');
if ~exist(datapath,'dir')
 disp('Downloading Sydney Urban Objects data set...');

 Point Cloud Classification Using PointNet Deep Learning

3-253

 untar(url+name,dataLoc);
end

end

loadSydneyUrbanObjectsData Function

The loadSydneyUrbanObjectsData function creates a datastore for loading point cloud and label
data from the Sydney Urban Objects data set.

function ds = loadSydneyUrbanObjectsData(datapath,folds)

if nargin == 0
 return;
end

if nargin < 2
 folds = 1:4;
end

datapath = string(datapath);
path = fullfile(datapath,'objects',filesep);

% Add folds to datastore.
foldNames{1} = importdata(fullfile(datapath,'folds','fold0.txt'));
foldNames{2} = importdata(fullfile(datapath,'folds','fold1.txt'));
foldNames{3} = importdata(fullfile(datapath,'folds','fold2.txt'));
foldNames{4} = importdata(fullfile(datapath,'folds','fold3.txt'));
names = foldNames(folds);
names = vertcat(names{:});

fullFilenames = append(path,names);
ds = fileDatastore(fullFilenames,'ReadFcn',@extractTrainingData,'FileExtensions','.bin');
end

batchData Function

The batchData function collates data into batches and moves data to the GPU for processing.

function [X,Y] = batchData(ptCloud,labels)
X = cat(4,ptCloud{:});
labels = cat(1,labels{:});
Y = onehotencode(labels,2);
end

extractTrainingData Function

The extractTrainingData function extracts point cloud and label data from the Sydney Urban Objects
data set.

function dataOut = extractTrainingData(fname)

[pointData,intensity] = readbin(fname);

[~,name] = fileparts(fname);
name = string(name);
name = extractBefore(name,'.');
name = replace(name,'_',' ');

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-254

labelNames = ["4wd","building","bus","car","pedestrian","pillar",...
 "pole","traffic lights","traffic sign","tree","truck","trunk","ute","van"];

label = categorical(name,labelNames);

dataOut = {pointCloud(pointData,'Intensity',intensity),label};

end

readbin Function

The readbin function reads the point cloud data from Sydney Urban Object binary files.

function [pointData,intensity] = readbin(fname)
% readbin Read point and intensity data from Sydney Urban Object binary
% files.

% names = ['t','intensity','id',...
% 'x','y','z',...
% 'azimuth','range','pid']
%
% formats = ['int64', 'uint8', 'uint8',...
% 'float32', 'float32', 'float32',...
% 'float32', 'float32', 'int32']

fid = fopen(fname, 'r');
c = onCleanup(@() fclose(fid));

fseek(fid,10,-1); % Move to the first X point location 10 bytes from beginning
X = fread(fid,inf,'single',30);
fseek(fid,14,-1);
Y = fread(fid,inf,'single',30);
fseek(fid,18,-1);
Z = fread(fid,inf,'single',30);

fseek(fid,8,-1);
intensity = fread(fid,inf,'uint8',33);

pointData = [X,Y,Z];
end

downloadPretrainedPointNet Function

The downloadPretrainedPointNet function downloads a pretrained pointnet model.

function data = downloadPretrainedPointNet(pretrainedURL)
% Download and load a pretrained pointnet model.
if ~exist('pointnetSydneyUrbanObjects.mat', 'file')
 if ~exist('pointnetSydneyUrbanObjects.zip', 'file')
 disp('Downloading pretrained detector (5 MB)...');
 websave('pointnetSydneyUrbanObjects.zip', pretrainedURL);
 end
 unzip('pointnetSydneyUrbanObjects.zip');
end
data = load("pointnetSydneyUrbanObjects.mat");
end

 Point Cloud Classification Using PointNet Deep Learning

3-255

prepareForPrediction Function

The prepareForPrediction function is used to apply a user-defined function to nested structure
data. It is a used to move model parameter and state data to the GPU.

function p = prepareForPrediction(p,fcn)

for i = 1:numel(p)
 p(i) = structfun(@(x)invoke(fcn,x),p(i),'UniformOutput',0);
end

 function data = invoke(fcn,data)
 if isstruct(data)
 data = prepareForPrediction(data,fcn);
 else
 data = fcn(data);
 end
 end
end

% Move data to the GPU.
function x = toDevice(x,useGPU)
if useGPU
 x = gpuArray(x);
end
end

References

[1] Charles, R. Qi, Hao Su, Mo Kaichun, and Leonidas J. Guibas. “PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation.” In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 77–85. Honolulu, HI: IEEE, 2017. https://doi.org/10.1109/CVPR.2017.16.

[2] de Deuge, Mark, Alastair Quadras, Calvin Hung, and Bertrand Douillard. "Unsupervised Feature
Learning for Classification of Outdoor 3D Scans." In Australasian Conference on Robotics and
Automation 2013 (ACRA 13). Sydney, Australia: ACRA, 2013.

[3] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification.” In 2015 IEEE International
Conference on Computer Vision (ICCV), 1026–34. Santiago, Chile: IEEE, 2015. https://doi.org/
10.1109/ICCV.2015.123.

See Also

More About
• “Getting Started with Point Clouds Using Deep Learning” on page 12-3
• “Define Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox)
• “Specify Training Options in Custom Training Loop” (Deep Learning Toolbox)
• “Train Network Using Custom Training Loop” (Deep Learning Toolbox)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-256

• “List of Deep Learning Layers” (Deep Learning Toolbox)
• “Deep Learning Tips and Tricks” (Deep Learning Toolbox)
• “Automatic Differentiation Background” (Deep Learning Toolbox)

 Point Cloud Classification Using PointNet Deep Learning

3-257

Object Detection Using SSD Deep Learning

This example shows how to train a Single Shot Detector (SSD).

Overview

Deep learning is a powerful machine learning technique that automatically learns image features
required for detection tasks. There are several techniques for object detection using deep learning
such as Faster R-CNN, You Only Look Once (YOLO v2), and SSD. This example trains an SSD vehicle
detector using the trainSSDObjectDetector function. For more information, see “Object
Detection”.

Download Pretrained Detector

Download a pretrained detector to avoid having to wait for training to complete. If you want to train
the detector, set the doTraining variable to true.

doTraining = false;
if ~doTraining && ~exist('ssdResNet50VehicleExample_22b.mat','file')
 disp('Downloading pretrained detector (44 MB)...');
 pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/ssdResNet50VehicleExample_22b.mat';
 websave('ssdResNet50VehicleExample_22b.mat',pretrainedURL);
end

Load Dataset

This example uses a small vehicle data set that contains 295 images. Many of these images come
from the Caltech Cars 1999 and 2001 data sets, created by Pietro Perona and used with permission.
Each image contains one or two labeled instances of a vehicle. A small data set is useful for exploring
the SSD training procedure, but in practice, more labeled images are needed to train a robust
detector.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

The training data is stored in a table. The first column contains the path to the image files. The
remaining columns contain the ROI labels for vehicles. Display the first few rows of the data.

vehicleDataset(1:4,:)

ans=4×2 table
 imageFilename vehicle
 _________________________________ _________________

 {'vehicleImages/image_00001.jpg'} {[220 136 35 28]}
 {'vehicleImages/image_00002.jpg'} {[175 126 61 45]}
 {'vehicleImages/image_00003.jpg'} {[108 120 45 33]}
 {'vehicleImages/image_00004.jpg'} {[124 112 38 36]}

Split the data set into a training set for training the detector and a test set for evaluating the
detector. Select 60% of the data for training. Use the rest for evaluation.

rng(0);
shuffledIndices = randperm(height(vehicleDataset));

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-258

idx = floor(0.6 * length(shuffledIndices));
trainingData = vehicleDataset(shuffledIndices(1:idx),:);
testData = vehicleDataset(shuffledIndices(idx+1:end),:);

Use imageDatastore and boxLabelDatastore to load the image and label data during training
and evaluation.

imdsTrain = imageDatastore(trainingData{:,'imageFilename'});
bldsTrain = boxLabelDatastore(trainingData(:,'vehicle'));

imdsTest = imageDatastore(testData{:,'imageFilename'});
bldsTest = boxLabelDatastore(testData(:,'vehicle'));

Combine image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
testData = combine(imdsTest, bldsTest);

Display one of the training images and box labels.

data = read(trainingData);
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

 Object Detection Using SSD Deep Learning

3-259

Create a SSD Object Detection Network

Use the ssdObjectDetector function to automatically create a SSD object detector.
ssdObjectDetector requires you to specify several inputs that parameterize the SSD Object
detector, including the base network also known as feature extraction network, input size, class
names, anchor boxes and detection network sources. Use the specific layers from input base network
to specify the detection network source. Detection network will be automatically connected to input
base network by ssdObjectDetector function.

The feature extraction network is typically a pretrained CNN (see “Pretrained Deep Neural
Networks” (Deep Learning Toolbox) for more details). This example uses ResNet-50 for feature
extraction. Other pretrained networks such as MobileNet v2 or ResNet-18 can also be used
depending on application requirements. The detection sub-network is a small CNN compared to the
feature extraction network and is composed of a few convolutional layers and layers specific to SSD.

net = resnet50();
lgraph = layerGraph(net);

When choosing the network input size, consider the size of the training images, and the
computational cost incurred by processing data at the selected size. When feasible, choose a network
input size that is close to the size of the training image. However, to reduce the computational cost of
running this example, the network input size is chosen to be [300 300 3]. During training,
trainSSDObjectDetector automatically resizes the training images to the network input size.

inputSize = [300 300 3];

Define object classes to detect.

classNames = {'vehicle'};

To use the pretrained ResNet-50 network as a backbone network, you must do these steps.

Step 1: Remove the layers in pretrained ResNet-50 network present after the "activation_40_relu"
layer. This also removes the classification and the fully connected layers.

Step 2: Add seven convolutional layers after the "activation_40_relu" layer to make the backbone
network more robust.

% Find layer index of 'activation_40_relu'
idx = find(ismember({lgraph.Layers.Name},'activation_40_relu'));

% Remove all layers after 'activation_40_relu' layer
removedLayers = {lgraph.Layers(idx+1:end).Name};
ssdLayerGraph = removeLayers(lgraph,removedLayers);

weightsInitializerValue = 'glorot';
biasInitializerValue = 'zeros';

% Append Extra layers on top of a base network.
extraLayers = [];

% Add conv6_1 and corresponding reLU
filterSize = 1;
numFilters = 256;
numChannels = 1024;
conv6_1 = convolution2dLayer(filterSize, numFilters, NumChannels = numChannels, ...
 Name = 'conv6_1', ...

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-260

 WeightsInitializer = weightsInitializerValue, ...
 BiasInitializer = biasInitializerValue);
relu6_1 = reluLayer(Name = 'relu6_1');
extraLayers = [extraLayers; conv6_1; relu6_1];

% Add conv6_2 and corresponding reLU
filterSize = 3;
numFilters = 512;
numChannels = 256;
conv6_2 = convolution2dLayer(filterSize, numFilters, NumChannels = numChannels, ...
 Padding = iSamePadding(filterSize), ...
 Stride = [2, 2], ...
 Name = 'conv6_2', ...
 WeightsInitializer = weightsInitializerValue, ...
 BiasInitializer = biasInitializerValue);
relu6_2 = reluLayer(Name = 'relu6_2');
extraLayers = [extraLayers; conv6_2; relu6_2];

% Add conv7_1 and corresponding reLU
filterSize = 1;
numFilters = 128;
numChannels = 512;
conv7_1 = convolution2dLayer(filterSize, numFilters, NumChannels = numChannels, ...
 Name = 'conv7_1', ...
 WeightsInitializer = weightsInitializerValue, ...
 BiasInitializer = biasInitializerValue);
relu7_1 = reluLayer(Name = 'relu7_1');
extraLayers = [extraLayers; conv7_1; relu7_1];

% Add conv7_2 and corresponding reLU
filterSize = 3;
numFilters = 256;
numChannels = 128;
conv7_2 = convolution2dLayer(filterSize, numFilters, NumChannels = numChannels, ...
 Padding = iSamePadding(filterSize), ...
 Stride = [2, 2], ...
 Name = 'conv7_2', ...
 WeightsInitializer = weightsInitializerValue, ...
 BiasInitializer = biasInitializerValue);
relu7_2 = reluLayer(Name = 'relu7_2');
extraLayers = [extraLayers; conv7_2; relu7_2];

% Add conv8_1 and corresponding reLU
filterSize = 1;
numFilters = 128;
numChannels = 256;
conv8_1 = convolution2dLayer(filterSize, numFilters, NumChannels = numChannels, ...
 Name = 'conv8_1', ...
 WeightsInitializer = weightsInitializerValue, ...
 BiasInitializer = biasInitializerValue);
relu8_1 = reluLayer(Name = 'relu8_1');
extraLayers = [extraLayers; conv8_1; relu8_1];

% Add conv8_2 and corresponding reLU
filterSize = 3;
numFilters = 256;
numChannels = 128;
conv8_2 = convolution2dLayer(filterSize, numFilters, NumChannels = numChannels, ...

 Object Detection Using SSD Deep Learning

3-261

 Name = 'conv8_2', ...
 WeightsInitializer = weightsInitializerValue, ...
 BiasInitializer = biasInitializerValue);
relu8_2 = reluLayer(Name ='relu8_2');
extraLayers = [extraLayers; conv8_2; relu8_2];

% Add conv9_1 and corresponding reLU
filterSize = 1;
numFilters = 128;
numChannels = 256;
conv9_1 = convolution2dLayer(filterSize, numFilters, NumChannels = numChannels, ...
 Padding = iSamePadding(filterSize), ...
 Name = 'conv9_1', ...
 WeightsInitializer = weightsInitializerValue, ...
 BiasInitializer = biasInitializerValue);
relu9_1 = reluLayer('Name', 'relu9_1');
extraLayers = [extraLayers; conv9_1; relu9_1];

if ~isempty(extraLayers)
 lastLayerName = ssdLayerGraph.Layers(end).Name;
 ssdLayerGraph = addLayers(ssdLayerGraph, extraLayers);
 ssdLayerGraph = connectLayers(ssdLayerGraph, lastLayerName, extraLayers(1).Name);
end

Specify the layers name from the network to which detection network source will be added.

detNetworkSource = ["activation_22_relu", "activation_40_relu", "relu6_2", "relu7_2", "relu8_2"];

Specify the anchor Boxes. Anchor boxes (M-by-1 cell array) count (M) must be same as detection
network source count.

anchorBoxes = {[60,30;30,60;60,21;42,30];...
 [111,60;60,111;111,35;64,60;111,42;78,60];...
 [162,111;111,162;162,64;94,111;162,78;115,111];...
 [213,162;162,213;213,94;123,162;213,115;151,162];...
 [264,213;213,264;264,151;187,213]};

Create the SSD object detector object.

detector = ssdObjectDetector(ssdLayerGraph,classNames,anchorBoxes,DetectionNetworkSource=detNetworkSource,InputSize=inputSize,ModelName='ssdVehicle');

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples. Use transform to augment the
training data by

• Randomly flipping the image and associated box labels horizontally.
• Randomly scale the image, associated box labels.
• Jitter image color.

Note that data augmentation is not applied to the test data. Ideally, test data should be representative
of the original data and is left unmodified for unbiased evaluation.

augmentedTrainingData = transform(trainingData,@augmentData);

Visualize augmented training data by reading the same image multiple times.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-262

augmentedData = cell(4,1);
for k = 1:4
 data = read(augmentedTrainingData);
 augmentedData{k} = insertShape(data{1},rectangle = data{2});
 reset(augmentedTrainingData);
end

figure
montage(augmentedData,BorderSize = 10)

Preprocess Training Data

Preprocess the augmented training data to prepare for training.

preprocessedTrainingData = transform(augmentedTrainingData,@(data)preprocessData(data,inputSize));

Read the preprocessed training data.

data = read(preprocessedTrainingData);

Display the image and bounding boxes.

I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);

 Object Detection Using SSD Deep Learning

3-263

figure
imshow(annotatedImage)

Train SSD Object Detector

Use trainingOptions to specify network training options. Set 'CheckpointPath' to a temporary
location. This enables the saving of partially trained detectors during the training process. If training
is interrupted, such as by a power outage or system failure, you can resume training from the saved
checkpoint.

options = trainingOptions('sgdm', ...
 MiniBatchSize = 16,
 InitialLearnRate = 1e-3, ...
 LearnRateSchedule = 'piecewise', ...

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-264

 LearnRateDropPeriod = 30, ...
 LearnRateDropFactor = 0.8, ...
 MaxEpochs = 20, ...
 VerboseFrequency = 50, ...
 CheckpointPath = tempdir, ...
 Shuffle = 'every-epoch');

Use trainSSDObjectDetector function to train SSD object detector if doTraining to true.
Otherwise, load a pretrained network.

if doTraining
 % Train the SSD detector.
 [detector, info] = trainSSDObjectDetector(preprocessedTrainingData,detector,options);
else
 % Load pretrained detector for the example.
 pretrained = load('ssdResNet50VehicleExample_22b.mat');
 detector = pretrained.detector;
end

This example is verified on an NVIDIA™ Titan X GPU with 12 GB of memory. If your GPU has less
memory, you may run out of memory. If this happens, lower the 'MiniBatchSize' using the
trainingOptions function. Training this network took approximately 2 hours using this setup.
Training time varies depending on the hardware you use.

As a quick test, run the detector on one test image.

data = read(testData);
I = data{1,1};
I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);

Display the results.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)

 Object Detection Using SSD Deep Learning

3-265

Evaluate Detector Using Test Set

Evaluate the trained object detector on a large set of images to measure the performance. Computer
Vision Toolbox™ provides object detector evaluation functions to measure common metrics such as
average precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all
relevant objects (recall).

Apply the same preprocessing transform to the test data as for the training data. Note that data
augmentation is not applied to the test data. Test data should be representative of the original data
and be left unmodified for unbiased evaluation.

preprocessedTestData = transform(testData,@(data)preprocessData(data,inputSize));

Run the detector on all the test images.

detectionResults = detect(detector, preprocessedTestData, MiniBatchSize = 32);

Evaluate the object detector using average precision metric.

[ap,recall,precision] = evaluateDetectionPrecision(detectionResults, preprocessedTestData);

The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. Ideally,
the precision would be 1 at all recall levels. The use of more data can help improve the average
precision, but might require more training time Plot the PR curve.

figure
plot(recall,precision)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-266

xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f',ap))

Code Generation

Once the detector is trained and evaluated, you can generate code for the ssdObjectDetector
using GPU Coder™. For more details, see “Code Generation for Object Detection by Using Single
Shot Multibox Detector” on page 2-2 example.

Supporting Functions
function B = augmentData(A)
% Apply random horizontal flipping, and random X/Y scaling. Boxes that get
% scaled outside the bounds are clipped if the overlap is above 0.25. Also,
% jitter image color.
B = cell(size(A));
I = A{1};
sz = size(I);
if numel(sz)==3 && sz(3) == 3
 I = jitterColorHSV(I,...
 Contrast = 0.2,...
 Hue = 0,...
 Saturation = 0.1,...
 Brightness = 0.2);
end
% Randomly flip and scale image.

 Object Detection Using SSD Deep Learning

3-267

tform = randomAffine2d(XReflection = true, Scale = [1 1.1]);
rout = affineOutputView(sz,tform, BoundsStyle = 'CenterOutput');
B{1} = imwarp(I,tform,OutputView = rout);
% Sanitize boxes, if needed. This helper function is attached as a
% supporting file. Open the example in MATLAB to access this function.
A{2} = helperSanitizeBoxes(A{2});
% Apply same transform to boxes.
[B{2},indices] = bboxwarp(A{2},tform,rout,OverlapThreshold = 0.25);
B{3} = A{3}(indices);
% Return original data only when all boxes are removed by warping.
if isempty(indices)
 B = A;
end
end

function data = preprocessData(data,targetSize)
% Resize image and bounding boxes to the targetSize.
sz = size(data{1},[1 2]);
scale = targetSize(1:2)./sz;
data{1} = imresize(data{1},targetSize(1:2));
% Sanitize boxes, if needed. This helper function is attached as a
% supporting file. Open the example in MATLAB to access this function.
data{2} = helperSanitizeBoxes(data{2});
% Resize boxes.
data{2} = bboxresize(data{2},scale);
end

function p = iSamePadding(FilterSize)
 p = floor(FilterSize / 2);
end

References

[1] Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng Yang Fu, and
Alexander C. Berg. "SSD: Single shot multibox detector." In 14th European Conference on Computer
Vision, ECCV 2016. Springer Verlag, 2016.

See Also
Apps
Deep Network Designer

Functions
estimateAnchorBoxes | analyzeNetwork | combine | transform | read |
evaluateDetectionPrecision

Objects
boxLabelDatastore | imageDatastore

More About
• “Anchor Boxes for Object Detection” on page 17-44
• “Estimate Anchor Boxes From Training Data” on page 3-377
• “Transfer Learning with Deep Network Designer” (Deep Learning Toolbox)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-268

• “Getting Started with Object Detection Using Deep Learning” on page 17-34

 Object Detection Using SSD Deep Learning

3-269

Object Detection in a Cluttered Scene Using Point Feature
Matching

This example shows how to detect a particular object in a cluttered scene, given a reference image of
the object.

Overview

This example presents an algorithm for detecting a specific object based on finding point
correspondences between the reference and the target image. It can detect objects despite a scale
change or in-plane rotation. It is also robust to small amount of out-of-plane rotation and occlusion.

This method of object detection works best for objects that exhibit non-repeating texture patterns,
which give rise to unique feature matches. This technique is not likely to work well for uniformly-
colored objects, or for objects containing repeating patterns. Note that this algorithm is designed for
detecting a specific object, for example, the elephant in the reference image, rather than any
elephant. For detecting objects of a particular category, such as people or faces, see
vision.PeopleDetector and vision.CascadeObjectDetector.

Step 1: Read Images

Read the reference image containing the object of interest.

boxImage = imread('stapleRemover.jpg');
figure;
imshow(boxImage);
title('Image of a Box');

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-270

Read the target image containing a cluttered scene.

sceneImage = imread('clutteredDesk.jpg');
figure;
imshow(sceneImage);
title('Image of a Cluttered Scene');

 Object Detection in a Cluttered Scene Using Point Feature Matching

3-271

Step 2: Detect Feature Points

Detect feature points in both images.

boxPoints = detectSURFFeatures(boxImage);
scenePoints = detectSURFFeatures(sceneImage);

Visualize the strongest feature points found in the reference image.

figure;
imshow(boxImage);
title('100 Strongest Feature Points from Box Image');
hold on;
plot(selectStrongest(boxPoints, 100));

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-272

Visualize the strongest feature points found in the target image.

figure;
imshow(sceneImage);
title('300 Strongest Feature Points from Scene Image');
hold on;
plot(selectStrongest(scenePoints, 300));

 Object Detection in a Cluttered Scene Using Point Feature Matching

3-273

Step 3: Extract Feature Descriptors

Extract feature descriptors at the interest points in both images.

[boxFeatures, boxPoints] = extractFeatures(boxImage, boxPoints);
[sceneFeatures, scenePoints] = extractFeatures(sceneImage, scenePoints);

Step 4: Find Putative Point Matches

Match the features using their descriptors.

boxPairs = matchFeatures(boxFeatures, sceneFeatures);

Display putatively matched features.

matchedBoxPoints = boxPoints(boxPairs(:, 1), :);
matchedScenePoints = scenePoints(boxPairs(:, 2), :);
figure;
showMatchedFeatures(boxImage, sceneImage, matchedBoxPoints, ...
 matchedScenePoints, 'montage');
title('Putatively Matched Points (Including Outliers)');

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-274

Step 5: Locate the Object in the Scene Using Putative Matches

estgeotform2d calculates the transformation relating the matched points, while eliminating
outliers. This transformation allows us to localize the object in the scene.

[tform, inlierIdx] = estgeotform2d(matchedBoxPoints, matchedScenePoints, 'affine');
inlierBoxPoints = matchedBoxPoints(inlierIdx, :);
inlierScenePoints = matchedScenePoints(inlierIdx, :);

Display the matching point pairs with the outliers removed

figure;
showMatchedFeatures(boxImage, sceneImage, inlierBoxPoints, ...
 inlierScenePoints, 'montage');
title('Matched Points (Inliers Only)');

Get the bounding polygon of the reference image.

 Object Detection in a Cluttered Scene Using Point Feature Matching

3-275

boxPolygon = [1, 1;... % top-left
 size(boxImage, 2), 1;... % top-right
 size(boxImage, 2), size(boxImage, 1);... % bottom-right
 1, size(boxImage, 1);... % bottom-left
 1, 1]; % top-left again to close the polygon

Transform the polygon into the coordinate system of the target image. The transformed polygon
indicates the location of the object in the scene.

newBoxPolygon = transformPointsForward(tform, boxPolygon);

Display the detected object.

figure;
imshow(sceneImage);
hold on;
line(newBoxPolygon(:, 1), newBoxPolygon(:, 2), Color='y');
title('Detected Box');

Step 6: Detect Another Object

Detect a second object by using the same steps as before.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-276

Read an image containing the second object of interest.

elephantImage = imread('elephant.jpg');
figure;
imshow(elephantImage);
title('Image of an Elephant');

Detect and visualize feature points.

elephantPoints = detectSURFFeatures(elephantImage);
figure;
imshow(elephantImage);
hold on;
plot(selectStrongest(elephantPoints, 100));
title('100 Strongest Feature Points from Elephant Image');

 Object Detection in a Cluttered Scene Using Point Feature Matching

3-277

Extract feature descriptors.

[elephantFeatures, elephantPoints] = extractFeatures(elephantImage, elephantPoints);

Match Features

elephantPairs = matchFeatures(elephantFeatures, sceneFeatures, MaxRatio=0.9);

Display putatively matched features.

matchedElephantPoints = elephantPoints(elephantPairs(:, 1), :);
matchedScenePoints = scenePoints(elephantPairs(:, 2), :);
figure;
showMatchedFeatures(elephantImage, sceneImage, matchedElephantPoints, ...
 matchedScenePoints, 'montage');
title('Putatively Matched Points (Including Outliers)');

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-278

Estimate Geometric Transformation and Eliminate Outliers

[tform, inlierElephantPoints, inlierScenePoints] = ...
 estimateGeometricTransform(matchedElephantPoints, matchedScenePoints, 'affine');
figure;
showMatchedFeatures(elephantImage, sceneImage, inlierElephantPoints, ...
 inlierScenePoints, 'montage');
title('Matched Points (Inliers Only)');

Display Both Objects

elephantPolygon = [1, 1;... % top-left
 size(elephantImage, 2), 1;... % top-right
 size(elephantImage, 2), size(elephantImage, 1);... % bottom-right
 1, size(elephantImage, 1);... % bottom-left
 1,1]; % top-left again to close the polygon

newElephantPolygon = transformPointsForward(tform, elephantPolygon);

 Object Detection in a Cluttered Scene Using Point Feature Matching

3-279

figure;
imshow(sceneImage);
hold on;
line(newBoxPolygon(:, 1), newBoxPolygon(:, 2), Color='y');
line(newElephantPolygon(:, 1), newElephantPolygon(:, 2), Color='g');
title('Detected Elephant and Box');

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-280

Semantic Segmentation Using Deep Learning

This example shows how to segment an image using a semantic segmentation network.

A semantic segmentation network classifies every pixel in an image, resulting in an image that is
segmented by class. Applications for semantic segmentation include road segmentation for
autonomous driving and cancer cell segmentation for medical diagnosis. To learn more, see “Getting
Started with Semantic Segmentation Using Deep Learning” on page 17-75.

This example first shows you how to segment an image using a pretrained Deeplab v3+ [1] network,
which is one type of convolutional neural network (CNN) designed for semantic image segmentation.
Other types of networks for semantic segmentation include fully convolutional networks (FCN),
SegNet, and U-Net. Then, you can optionally download a dataset to train Deeplab v3 network using
transfer learning. The training procedure shown here can be applied to other types of semantic
segmentation networks.

To illustrate the training procedure, this example uses the CamVid dataset [2] from the University of
Cambridge. This dataset is a collection of images containing street-level views obtained while driving.
The dataset provides pixel-level labels for 32 semantic classes including car, pedestrian, and road.

A CUDA-capable NVIDIA™ GPU is highly recommended for running this example. Use of a GPU
requires Parallel Computing Toolbox™. For information about the supported compute capabilities, see
“GPU Computing Requirements” (Parallel Computing Toolbox).

Download Pretrained Semantic Segmentation Network

Download a pretrained version of DeepLab v3+ trained on the CamVid dataset.

pretrainedURL = 'https://ssd.mathworks.com/supportfiles/vision/data/deeplabv3plusResnet18CamVid.zip';
pretrainedFolder = fullfile(tempdir,'pretrainedNetwork');
pretrainedNetworkZip = fullfile(pretrainedFolder,'deeplabv3plusResnet18CamVid.zip');
if ~exist(pretrainedNetworkZip,'file')
 mkdir(pretrainedFolder);
 disp('Downloading pretrained network (58 MB)...');
 websave(pretrainedNetworkZip,pretrainedURL);
end
unzip(pretrainedNetworkZip, pretrainedFolder)

Load the pretrained network.

pretrainedNetwork = fullfile(pretrainedFolder,'deeplabv3plusResnet18CamVid.mat');
data = load(pretrainedNetwork);
net = data.net;

List the classes this network is trained to classify.

classes = string(net.Layers(end).Classes)

classes = 11×1 string
 "Sky"
 "Building"
 "Pole"
 "Road"
 "Pavement"
 "Tree"

 Semantic Segmentation Using Deep Learning

3-281

http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/

 "SignSymbol"
 "Fence"
 "Car"
 "Pedestrian"
 "Bicyclist"

Perform Semantic Image Segmentation

Read an image that contains classes the network is trained to classify.

I = imread('highway.png');

Resize the image to the input size of the network.

inputSize = net.Layers(1).InputSize;
I = imresize(I,inputSize(1:2));

Perform semantic segmentation using the semanticseg function and the pretrained network.

C = semanticseg(I,net);

Overlay the segmentation results on top of the image with labeloverlay. Set the overlay color map
to the color map values defined by the CamVid dataset [2].

cmap = camvidColorMap;
B = labeloverlay(I,C,'Colormap',cmap,'Transparency',0.4);
figure
imshow(B)
pixelLabelColorbar(cmap, classes);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-282

Although the network is pretrained on images of city driving, it produces a reasonable result on a
highway driving scene. To improve the segmentation results, the network should be retrained with
additional images that contain highway driving scenes. The remainder of this example shows you how
to train a semantic segmentation network using transfer learning.

Train a Semantic Segmentation Network

This example trains a Deeplab v3+ network with weights initialized from a pre-trained Resnet-18
network. ResNet-18 is an efficient network that is well suited for applications with limited processing
resources. Other pretrained networks such as MobileNet v2 or ResNet-50 can also be used depending
on application requirements. For more details, see “Pretrained Deep Neural Networks” (Deep
Learning Toolbox).

To get a pretrained Resnet-18, install resnet18 (Deep Learning Toolbox). After installation is
complete, run the following code to verify that the installation is correct.

resnet18();

Download CamVid Dataset

Download the CamVid dataset from the following URLs.

 Semantic Segmentation Using Deep Learning

3-283

imageURL = 'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/files/701_StillsRaw_full.zip';
labelURL = 'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/LabeledApproved_full.zip';

outputFolder = fullfile(tempdir,'CamVid');
labelsZip = fullfile(outputFolder,'labels.zip');
imagesZip = fullfile(outputFolder,'images.zip');

if ~exist(labelsZip, 'file') || ~exist(imagesZip,'file')
 mkdir(outputFolder)

 disp('Downloading 16 MB CamVid dataset labels...');
 websave(labelsZip, labelURL);
 unzip(labelsZip, fullfile(outputFolder,'labels'));

 disp('Downloading 557 MB CamVid dataset images...');
 websave(imagesZip, imageURL);
 unzip(imagesZip, fullfile(outputFolder,'images'));
end

Note: Download time of the data depends on your Internet connection. The commands used above
block MATLAB until the download is complete. Alternatively, you can use your web browser to first
download the dataset to your local disk. To use the file you downloaded from the web, change the
outputFolder variable above to the location of the downloaded file.

Load CamVid Images

Use imageDatastore to load CamVid images. The imageDatastore enables you to efficiently load
a large collection of images on disk.

imgDir = fullfile(outputFolder,'images','701_StillsRaw_full');
imds = imageDatastore(imgDir);

Display one of the images.

I = readimage(imds,559);
I = histeq(I);
imshow(I)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-284

Load CamVid Pixel-Labeled Images

Use pixelLabelDatastore to load CamVid pixel label image data. A pixelLabelDatastore
encapsulates the pixel label data and the label ID to a class name mapping.

To make training easier, group the 32 original classes in CamVid to 11 classes.

classes = [
 "Sky"
 "Building"
 "Pole"
 "Road"
 "Pavement"
 "Tree"
 "SignSymbol"
 "Fence"
 "Car"
 "Pedestrian"
 "Bicyclist"
];

To reduce 32 classes into 11, multiple classes from the original dataset are grouped together. For
example, "Car" is a combination of "Car", "SUVPickupTruck", "Truck_Bus", "Train", and

 Semantic Segmentation Using Deep Learning

3-285

"OtherMoving". Return the grouped label IDs by using the supporting function
camvidPixelLabelIDs, which is listed at the end of this example.

labelIDs = camvidPixelLabelIDs();

Use the classes and label IDs to create the pixelLabelDatastore.

labelDir = fullfile(outputFolder,'labels');
pxds = pixelLabelDatastore(labelDir,classes,labelIDs);

Read and display one of the pixel-labeled images by overlaying it on top of an image.

C = readimage(pxds,559);
cmap = camvidColorMap;
B = labeloverlay(I,C,'ColorMap',cmap);
imshow(B)
pixelLabelColorbar(cmap,classes);

Areas with no color overlay do not have pixel labels and are not used during training.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-286

Analyze Dataset Statistics

To see the distribution of class labels in the CamVid dataset, use countEachLabel. This function
counts the number of pixels by class label.

tbl = countEachLabel(pxds)

tbl=11×3 table
 Name PixelCount ImagePixelCount
 ______________ __________ _______________

 {'Sky' } 7.6801e+07 4.8315e+08
 {'Building' } 1.1737e+08 4.8315e+08
 {'Pole' } 4.7987e+06 4.8315e+08
 {'Road' } 1.4054e+08 4.8453e+08
 {'Pavement' } 3.3614e+07 4.7209e+08
 {'Tree' } 5.4259e+07 4.479e+08
 {'SignSymbol'} 5.2242e+06 4.6863e+08
 {'Fence' } 6.9211e+06 2.516e+08
 {'Car' } 2.4437e+07 4.8315e+08
 {'Pedestrian'} 3.4029e+06 4.4444e+08
 {'Bicyclist' } 2.5912e+06 2.6196e+08

Visualize the pixel counts by class.

frequency = tbl.PixelCount/sum(tbl.PixelCount);

bar(1:numel(classes),frequency)
xticks(1:numel(classes))
xticklabels(tbl.Name)
xtickangle(45)
ylabel('Frequency')

 Semantic Segmentation Using Deep Learning

3-287

Ideally, all classes would have an equal number of observations. However, the classes in CamVid are
imbalanced, which is a common issue in automotive data-sets of street scenes. Such scenes have
more sky, building, and road pixels than pedestrian and bicyclist pixels because sky, buildings and
roads cover more area in the image. If not handled correctly, this imbalance can be detrimental to the
learning process because the learning is biased in favor of the dominant classes. Later on in this
example, you will use class weighting to handle this issue.

The images in the CamVid data set are 720 by 960 in size. Image size is chosen such that a large
enough batch of images can fit in memory during training on an NVIDIA™ Titan X with 12 GB of
memory. You may need to resize the images to smaller sizes if your GPU does not have sufficient
memory or reduce the training batch size.

Prepare Training, Validation, and Test Sets

Deeplab v3+ is trained using 60% of the images from the dataset. The rest of the images are split
evenly in 20% and 20% for validation and testing respectively. The following code randomly splits the
image and pixel label data into a training, validation and test set.

[imdsTrain, imdsVal, imdsTest, pxdsTrain, pxdsVal, pxdsTest] = partitionCamVidData(imds,pxds);

The 60/20/20 split results in the following number of training, validation and test images:

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-288

numTrainingImages = numel(imdsTrain.Files)

numTrainingImages = 421

numValImages = numel(imdsVal.Files)

numValImages = 140

numTestingImages = numel(imdsTest.Files)

numTestingImages = 140

Create the Network

Use the deeplabv3plusLayers function to create a DeepLab v3+ network based on ResNet-18.
Choosing the best network for your application requires empirical analysis and is another level of
hyperparameter tuning. For example, you can experiment with different base networks such as
ResNet-50 or MobileNet v2, or you can try other semantic segmentation network architectures such
as SegNet, fully convolutional networks (FCN), or U-Net.

% Specify the network image size. This is typically the same as the traing image sizes.
imageSize = [720 960 3];

% Specify the number of classes.
numClasses = numel(classes);

% Create DeepLab v3+.
lgraph = deeplabv3plusLayers(imageSize, numClasses, "resnet18");

Balance Classes Using Class Weighting

As shown earlier, the classes in CamVid are not balanced. To improve training, you can use class
weighting to balance the classes. Use the pixel label counts computed earlier with countEachLabel
and calculate the median frequency class weights.

imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;
classWeights = median(imageFreq) ./ imageFreq

classWeights = 11×1

 0.3182
 0.2082
 5.0924
 0.1744
 0.7103
 0.4175
 4.5371
 1.8386
 1.0000
 6.6059
 ⋮

Specify the class weights using a pixelClassificationLayer.

pxLayer = pixelClassificationLayer('Name','labels','Classes',tbl.Name,'ClassWeights',classWeights);
lgraph = replaceLayer(lgraph,"classification",pxLayer);

 Semantic Segmentation Using Deep Learning

3-289

Select Training Options

The optimization algorithm used for training is stochastic gradient descent with momentum (SGDM).
Use trainingOptions (Deep Learning Toolbox) to specify the hyper-parameters used for SGDM.

% Define validation data.
dsVal = combine(imdsVal,pxdsVal);

% Define training options.
options = trainingOptions('sgdm', ...
 'LearnRateSchedule','piecewise',...
 'LearnRateDropPeriod',10,...
 'LearnRateDropFactor',0.3,...
 'Momentum',0.9, ...
 'InitialLearnRate',1e-3, ...
 'L2Regularization',0.005, ...
 'ValidationData',dsVal,...
 'MaxEpochs',30, ...
 'MiniBatchSize',8, ...
 'Shuffle','every-epoch', ...
 'CheckpointPath', tempdir, ...
 'VerboseFrequency',2,...
 'Plots','training-progress',...
 'ValidationPatience', 4);

The learning rate uses a piecewise schedule. The learning rate is reduced by a factor of 0.3 every 10
epochs. This allows the network to learn quickly with a higher initial learning rate, while being able
to find a solution close to the local optimum once the learning rate drops.

The network is tested against the validation data every epoch by setting the 'ValidationData'
parameter. The 'ValidationPatience' is set to 4 to stop training early when the validation
accuracy converges. This prevents the network from overfitting on the training dataset.

A mini-batch size of 8 is used to reduce memory usage while training. You can increase or decrease
this value based on the amount of GPU memory you have on your system.

In addition, 'CheckpointPath' is set to a temporary location. This name-value pair enables the
saving of network checkpoints at the end of every training epoch. If training is interrupted due to a
system failure or power outage, you can resume training from the saved checkpoint. Make sure that
the location specified by 'CheckpointPath' has enough space to store the network checkpoints.
For example, saving 100 Deeplab v3+ checkpoints requires ~6 GB of disk space because each
checkpoint is 61 MB.

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
increasing the number of labeled training samples. To apply the same random transformation to both
image and pixel label data use datastore combine and transform. First, combine imdsTrain and
pxdsTrain.

dsTrain = combine(imdsTrain, pxdsTrain);

Next, use datastore transform to apply the desired data augmentation defined in the supporting
function augmentImageAndLabel. Here, random left/right reflection and random X/Y translation of
+/- 10 pixels is used for data augmentation.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-290

xTrans = [-10 10];
yTrans = [-10 10];
dsTrain = transform(dsTrain, @(data)augmentImageAndLabel(data,xTrans,yTrans));

Note that data augmentation is not applied to the test and validation data. Ideally, test and validation
data should be representative of the original data and is left unmodified for unbiased evaluation.

Start Training

Start training using trainNetwork (Deep Learning Toolbox) if the doTraining flag is true.
Otherwise, load a pretrained network.

Note: The training was verified on an NVIDIA™ Titan X with 12 GB of GPU memory. If your GPU has
less memory, you may run out of memory during training. If this happens, try setting
'MiniBatchSize' to 1 in trainingOptions, or reducing the network input and resizing the
training data. Training this network takes about 70 minutes. Depending on your GPU hardware, it
may take longer.

doTraining = false;
if doTraining
 [net, info] = trainNetwork(dsTrain,lgraph,options);
end

Test Network on One Image

As a quick sanity check, run the trained network on one test image.

I = readimage(imdsTest,35);
C = semanticseg(I, net);

Display the results.

B = labeloverlay(I,C,'Colormap',cmap,'Transparency',0.4);
imshow(B)
pixelLabelColorbar(cmap, classes);

 Semantic Segmentation Using Deep Learning

3-291

Compare the results in C with the expected ground truth stored in pxdsTest. The green and
magenta regions highlight areas where the segmentation results differ from the expected ground
truth.

expectedResult = readimage(pxdsTest,35);
actual = uint8(C);
expected = uint8(expectedResult);
imshowpair(actual, expected)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-292

Visually, the semantic segmentation results overlap well for classes such as road, sky, and building.
However, smaller objects like pedestrians and cars are not as accurate. The amount of overlap per
class can be measured using the intersection-over-union (IoU) metric, also known as the Jaccard
index. Use the jaccard function to measure IoU.

iou = jaccard(C,expectedResult);
table(classes,iou)

ans=11×2 table
 classes iou
 ____________ _______

 "Sky" 0.93418
 "Building" 0.86604
 "Pole" 0.37524
 "Road" 0.94517
 "Pavement" 0.85422
 "Tree" 0.91563
 "SignSymbol" 0.62075
 "Fence" 0.81075
 "Car" 0.71446
 "Pedestrian" 0.37249

 Semantic Segmentation Using Deep Learning

3-293

 "Bicyclist" 0.69775

The IoU metric confirms the visual results. Road, sky, and building classes have high IoU scores,
while classes such as pedestrian and car have low scores. Other common segmentation metrics
include the dice and the bfscore contour matching score.

Evaluate Trained Network

To measure accuracy for multiple test images, runsemanticseg on the entire test set. A mini-batch
size of 4 is used to reduce memory usage while segmenting images. You can increase or decrease this
value based on the amount of GPU memory you have on your system.

pxdsResults = semanticseg(imdsTest,net, ...
 'MiniBatchSize',4, ...
 'WriteLocation',tempdir, ...
 'Verbose',false);

semanticseg returns the results for the test set as a pixelLabelDatastore object. The actual
pixel label data for each test image in imdsTest is written to disk in the location specified by the
'WriteLocation' parameter. Use evaluateSemanticSegmentation to measure semantic
segmentation metrics on the test set results.

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTest,'Verbose',false);

evaluateSemanticSegmentation returns various metrics for the entire dataset, for individual
classes, and for each test image. To see the dataset level metrics, inspect
metrics.DataSetMetrics .

metrics.DataSetMetrics

ans=1×5 table
 GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore
 ______________ ____________ _______ ___________ ___________

 0.89244 0.8657 0.66347 0.82837 0.69324

The dataset metrics provide a high-level overview of the network performance. To see the impact
each class has on the overall performance, inspect the per-class metrics using
metrics.ClassMetrics.

metrics.ClassMetrics

ans=11×3 table
 Accuracy IoU MeanBFScore
 ________ _______ ___________

 Sky 0.94272 0.90979 0.90853
 Building 0.81488 0.79161 0.63963
 Pole 0.75997 0.24632 0.58505
 Road 0.93955 0.92638 0.80615
 Pavement 0.90048 0.73874 0.74538
 Tree 0.88173 0.7746 0.72892
 SignSymbol 0.76491 0.42338 0.53707
 Fence 0.83661 0.57442 0.5567
 Car 0.92588 0.79441 0.74331
 Pedestrian 0.86718 0.47077 0.64356

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-294

 Bicyclist 0.88881 0.6478 0.59473

Although the overall dataset performance is quite high, the class metrics show that underrepresented
classes such as Pedestrian, Bicyclist, and Car are not segmented as well as classes such as
Road, Sky, and Building. Additional data that includes more samples of the underrepresented
classes might help improve the results.

Supporting Functions
function labelIDs = camvidPixelLabelIDs()
% Return the label IDs corresponding to each class.
%
% The CamVid dataset has 32 classes. Group them into 11 classes following
% the original SegNet training methodology [1].
%
% The 11 classes are:
% "Sky" "Building", "Pole", "Road", "Pavement", "Tree", "SignSymbol",
% "Fence", "Car", "Pedestrian", and "Bicyclist".
%
% CamVid pixel label IDs are provided as RGB color values. Group them into
% 11 classes and return them as a cell array of M-by-3 matrices. The
% original CamVid class names are listed alongside each RGB value. Note
% that the Other/Void class are excluded below.
labelIDs = { ...

 % "Sky"
 [
 128 128 128; ... % "Sky"
]

 % "Building"
 [
 000 128 064; ... % "Bridge"
 128 000 000; ... % "Building"
 064 192 000; ... % "Wall"
 064 000 064; ... % "Tunnel"
 192 000 128; ... % "Archway"
]

 % "Pole"
 [
 192 192 128; ... % "Column_Pole"
 000 000 064; ... % "TrafficCone"
]

 % Road
 [
 128 064 128; ... % "Road"
 128 000 192; ... % "LaneMkgsDriv"
 192 000 064; ... % "LaneMkgsNonDriv"
]

 % "Pavement"
 [
 000 000 192; ... % "Sidewalk"
 064 192 128; ... % "ParkingBlock"
 128 128 192; ... % "RoadShoulder"

 Semantic Segmentation Using Deep Learning

3-295

]

 % "Tree"
 [
 128 128 000; ... % "Tree"
 192 192 000; ... % "VegetationMisc"
]

 % "SignSymbol"
 [
 192 128 128; ... % "SignSymbol"
 128 128 064; ... % "Misc_Text"
 000 064 064; ... % "TrafficLight"
]

 % "Fence"
 [
 064 064 128; ... % "Fence"
]

 % "Car"
 [
 064 000 128; ... % "Car"
 064 128 192; ... % "SUVPickupTruck"
 192 128 192; ... % "Truck_Bus"
 192 064 128; ... % "Train"
 128 064 064; ... % "OtherMoving"
]

 % "Pedestrian"
 [
 064 064 000; ... % "Pedestrian"
 192 128 064; ... % "Child"
 064 000 192; ... % "CartLuggagePram"
 064 128 064; ... % "Animal"
]

 % "Bicyclist"
 [
 000 128 192; ... % "Bicyclist"
 192 000 192; ... % "MotorcycleScooter"
]

 };
end

function pixelLabelColorbar(cmap, classNames)
% Add a colorbar to the current axis. The colorbar is formatted
% to display the class names with the color.

colormap(gca,cmap)

% Add colorbar to current figure.
c = colorbar('peer', gca);

% Use class names for tick marks.
c.TickLabels = classNames;

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-296

numClasses = size(cmap,1);

% Center tick labels.
c.Ticks = 1/(numClasses*2):1/numClasses:1;

% Remove tick mark.
c.TickLength = 0;
end

function cmap = camvidColorMap()
% Define the colormap used by CamVid dataset.

cmap = [
 128 128 128 % Sky
 128 0 0 % Building
 192 192 192 % Pole
 128 64 128 % Road
 60 40 222 % Pavement
 128 128 0 % Tree
 192 128 128 % SignSymbol
 64 64 128 % Fence
 64 0 128 % Car
 64 64 0 % Pedestrian
 0 128 192 % Bicyclist
];

% Normalize between [0 1].
cmap = cmap ./ 255;
end

function [imdsTrain, imdsVal, imdsTest, pxdsTrain, pxdsVal, pxdsTest] = partitionCamVidData(imds,pxds)
% Partition CamVid data by randomly selecting 60% of the data for training. The
% rest is used for testing.

% Set initial random state for example reproducibility.
rng(0);
numFiles = numel(imds.Files);
shuffledIndices = randperm(numFiles);

% Use 60% of the images for training.
numTrain = round(0.60 * numFiles);
trainingIdx = shuffledIndices(1:numTrain);

% Use 20% of the images for validation
numVal = round(0.20 * numFiles);
valIdx = shuffledIndices(numTrain+1:numTrain+numVal);

% Use the rest for testing.
testIdx = shuffledIndices(numTrain+numVal+1:end);

% Create image datastores for training and test.
trainingImages = imds.Files(trainingIdx);
valImages = imds.Files(valIdx);
testImages = imds.Files(testIdx);

imdsTrain = imageDatastore(trainingImages);
imdsVal = imageDatastore(valImages);
imdsTest = imageDatastore(testImages);

 Semantic Segmentation Using Deep Learning

3-297

% Extract class and label IDs info.
classes = pxds.ClassNames;
labelIDs = camvidPixelLabelIDs();

% Create pixel label datastores for training and test.
trainingLabels = pxds.Files(trainingIdx);
valLabels = pxds.Files(valIdx);
testLabels = pxds.Files(testIdx);

pxdsTrain = pixelLabelDatastore(trainingLabels, classes, labelIDs);
pxdsVal = pixelLabelDatastore(valLabels, classes, labelIDs);
pxdsTest = pixelLabelDatastore(testLabels, classes, labelIDs);
end

function data = augmentImageAndLabel(data, xTrans, yTrans)
% Augment images and pixel label images using random reflection and
% translation.

for i = 1:size(data,1)

 tform = randomAffine2d(...
 'XReflection',true,...
 'XTranslation', xTrans, ...
 'YTranslation', yTrans);

 % Center the view at the center of image in the output space while
 % allowing translation to move the output image out of view.
 rout = affineOutputView(size(data{i,1}), tform, 'BoundsStyle', 'centerOutput');

 % Warp the image and pixel labels using the same transform.
 data{i,1} = imwarp(data{i,1}, tform, 'OutputView', rout);
 data{i,2} = imwarp(data{i,2}, tform, 'OutputView', rout);

end
end

References

[1] Chen, Liang-Chieh et al. “Encoder-Decoder with Atrous Separable Convolution for Semantic
Image Segmentation.” ECCV (2018).

[2] Brostow, G. J., J. Fauqueur, and R. Cipolla. "Semantic object classes in video: A high-definition
ground truth database." Pattern Recognition Letters. Vol. 30, Issue 2, 2009, pp 88-97.

See Also
pixelLabelDatastore | pixelLabelImageDatastore | semanticseg | labeloverlay |
countEachLabel | segnetLayers | pixelClassificationLayer | trainingOptions |
imageDataAugmenter | trainNetwork | evaluateSemanticSegmentation

More About
• “Getting Started with Semantic Segmentation Using Deep Learning” on page 17-75
• “Label Pixels for Semantic Segmentation” on page 9-19
• “Deep Learning in MATLAB” (Deep Learning Toolbox)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-298

• “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

 Semantic Segmentation Using Deep Learning

3-299

Calculate Segmentation Metrics in Block-Based Workflow

This example shows how to calculate the semantic segmentation confusion matrix for individual
blocks in a blockedImage object, then calculate global and block segmentation metrics.

Load a pretrained network that performs binary segmentation of triangles against a background.

load('triangleSegmentationNetwork');

The triangleImages data set has 100 test images with ground truth labels. Define the location of
the data set.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');

Define the location of the test images.

testImagesDir = fullfile(dataSetDir,'testImages');

Read three test images. Resize each image by a factor of four, convert it to data type double, then
create a blockedImage object. A blockedImage supports block-based image processing workflows.

numImages = 3;
for idx = 1:numImages
 im = imread(fullfile(testImagesDir,['image_' '00' num2str(idx) '.jpg']));
 im = imresize(im,4);
 testImages(idx) = blockedImage(im);
end

Display the first test image.

bigimageshow(testImages(1))

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-300

Define the location of the ground truth labels.

testLabelsDir = fullfile(dataSetDir,'testLabels');

Define the class names and their associated label IDs.

classNames = ["triangle","background"];
labelIDs = [255 0];

Read in the ground truth labels for each test image. Create a blockedImage object from each
ground truth label.

for idx = 1:numImages
 gtLabel = imread(fullfile(testLabelsDir,['labeled_image_' '00' num2str(idx) '.png']));
 gtLabel = imresize(gtLabel,4,'nearest');
 groundTruthImages(idx) = blockedImage(gtLabel);
end

Display the first ground truth image.

bigimageshow(groundTruthImages(1))

 Calculate Segmentation Metrics in Block-Based Workflow

3-301

For each test image, use the apply function to process each block. The apply function performs the
operations specified by the helper function segmentAndCalculateBlockMetrics, which is defined
at the end of this example. The function performs semantic segmentation of each block and calculates
the confusion matrix between the predicted and ground truth labels.

blockSize = [32 32];
datasetConfMat = table;
for idx = 1:numImages
 [segmentedImages(idx),blockConfMatOneImage] = apply(testImages(idx), ...
 @(block,labeledImageBlock) segmentAndCalculateBlockMetrics(block,labeledImageBlock,net,classNames,labelIDs), ...
 'ExtraImages',groundTruthImages(idx),'PadPartialBlocks',true,'BlockSize',blockSize,'UseParallel',false);

 % Read all the block results of an image and update the image number
 blockConfMatOneImageDS = blockedImageDatastore(blockConfMatOneImage);
 blockConfMat = readall(blockConfMatOneImageDS);
 blockConfMat = struct2table([blockConfMat{:}]);
 blockConfMat.ImageNumber = idx.*ones(height(blockConfMat),1);
 datasetConfMat = [datasetConfMat;blockConfMat];
end

Display the first segmented image.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-302

bigimageshow(segmentedImages(1))

Evaluate the data set metrics and block metrics for the segmentation.

[metrics,blockMetrics] = evaluateSemanticSegmentation(datasetConfMat,classNames,'Metrics','all');

Evaluating semantic segmentation results
--
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU.
* Processed 3 images.
* Finalizing... Done.
* Data set metrics:

 GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU
 ______________ ____________ _______ ___________

 0.95428 0.82739 0.69927 0.92533

Calculate the Jaccard score for all images.

jaccardSimilarity = metrics.ImageMetrics.MeanIoU

 Calculate Segmentation Metrics in Block-Based Workflow

3-303

jaccardSimilarity = 3×1

 0.7664
 0.7277
 0.6538

Supporting Function

The segmentAndCalculateBlockMetrics function performs semantic segmentation of a single
block then calculates the confusion matrix of the predicted and ground truth labels.

function [outputLabeledImageBlock,blockConfMatPerBlock] = segmentAndCalculateBlockMetrics(block,labeledImageBlock,net,classNames,labelIDs)

 outputLabeledImageBlock = semanticseg(block.Data,net);

 % Convert the ground truth labels to categorical
 labeledImageBlock = categorical(labeledImageBlock,labelIDs,classNames);
 confusionMatrix = segmentationConfusionMatrix(outputLabeledImageBlock,labeledImageBlock);

 % blockConfMatPerBlock is a struct with confusion matrices, image number
 % and blockInfo. Use the struct with evaluateSemanticSegmentation to
 % calculate metrics and aggregate block-based results.
 blockConfMatPerBlock.ConfusionMatrix = confusionMatrix;
 blockConfMatPerBlock.ImageNumber = block.ImageNumber;

 blockInfo.Start = block.Start;
 blockInfo.End = block.End;
 blockConfMatPerBlock.BlockInfo = blockInfo;
end

See Also
apply | bigimage | segmentationConfusionMatrix | semanticSegmentationMetrics |
evaluateSemanticSegmentation

Related Examples
• “Semantic Segmentation Using Deep Learning” on page 3-281

More About
• “Getting Started with Semantic Segmentation Using Deep Learning” on page 17-75

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-304

Semantic Segmentation of Multispectral Images Using Deep
Learning

This example shows how to perform semantic segmentation of a multispectral image with seven
channels using U-Net.

Semantic segmentation involves labeling each pixel in an image with a class. One application of
semantic segmentation is tracking deforestation, which is the change in forest cover over time.
Environmental agencies track deforestation to assess and quantify the environmental and ecological
health of a region.

Deep learning based semantic segmentation can yield a precise measurement of vegetation cover
from high-resolution aerial photographs. One challenge is differentiating classes with similar visual
characteristics, such as trying to classify a green pixel as grass, shrubbery, or tree. To increase
classification accuracy, some data sets contain multispectral images that provide additional
information about each pixel. For example, the Hamlin Beach State Park data set supplements the
color images with three near-infrared channels that provide a clearer separation of the classes.

This example first shows you how to perform semantic segmentation using a pretrained U-Net and
then use the segmentation results to calculate the extent of vegetation cover. Then, you can optionally
train a U-Net network on the Hamlin Beach State Parck data set using a patch-based training
methodology.

 Semantic Segmentation of Multispectral Images Using Deep Learning

3-305

Download Dataset

This example uses a high-resolution multispectral data set to train the network [1 on page 3-321]. The
image set was captured using a drone over the Hamlin Beach State Park, NY. The data contains
labeled training, validation, and test sets, with 18 object class labels. The size of the data file is 3.0
GB.

Download the MAT-file version of the data set using the downloadHamlinBeachMSIData helper
function. This function is attached to the example as a supporting file. Specify dataDir as the
desired location of the data.

dataDir = fullfile(tempdir,"rit18_data");
downloadHamlinBeachMSIData(dataDir);

Load the dataset.

load(fullfile(dataDir,"rit18_data.mat"));
whos train_data val_data test_data

 Name Size Bytes Class Attributes

 test_data 7x12446x7654 1333663576 uint16
 train_data 7x9393x5642 741934284 uint16
 val_data 7x8833x6918 855493716 uint16

The multispectral image data is arranged as numChannels-by-width-by-height arrays. However, in
MATLAB®, multichannel images are arranged as width-by-height-by-numChannels arrays. To reshape
the data so that the channels are in the third dimension, use the switchChannelsToThirdPlane
helper function. This function is attached to the example as a supporting file.

train_data = switchChannelsToThirdPlane(train_data);
val_data = switchChannelsToThirdPlane(val_data);
test_data = switchChannelsToThirdPlane(test_data);

Confirm that the data has the correct structure.

whos train_data val_data test_data

 Name Size Bytes Class Attributes

 test_data 12446x7654x7 1333663576 uint16
 train_data 9393x5642x7 741934284 uint16
 val_data 8833x6918x7 855493716 uint16

Save the training data as a MAT file and the training labels as a PNG file. This facilitates loading the
training data using an imageDatastore and a pixelLabelDatastore during training.

save("train_data.mat","train_data");
imwrite(train_labels,"train_labels.png");

Visualize Multispectral Data

In this dataset, the RGB color channels are the 3rd, 2nd, and 1st image channels. Display the color
component of the training, validation, and test images as a montage. To make the images appear
brighter on the screen, equalize their histograms by using the histeq function.

figure
montage(...

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-306

 {histeq(train_data(:,:,[3 2 1])), ...
 histeq(val_data(:,:,[3 2 1])), ...
 histeq(test_data(:,:,[3 2 1]))}, ...
 BorderSize=10,BackgroundColor="white")
title("RGB Component of Training, Validation, and Test Image (Left to Right)")

Display the last three histogram-equalized channels of the training data as a montage. These
channels correspond to the near-infrared bands and highlight different components of the image
based on their heat signatures. For example, the trees near the center of the second channel image
show more detail than the trees in the other two channels.

figure
montage(...
 {histeq(train_data(:,:,4)),histeq(train_data(:,:,5)),histeq(train_data(:,:,6))}, ...
 BorderSize=10,BackgroundColor="white")
title("Training Image IR Channels 1, 2, and 3 (Left to Right)")

 Semantic Segmentation of Multispectral Images Using Deep Learning

3-307

Channel 7 is a mask that indicates the valid segmentation region. Display the mask for the training,
validation, and test images.

figure
montage(...
 {train_data(:,:,7),val_data(:,:,7),test_data(:,:,7)}, ...
 BorderSize=10,BackgroundColor="white")
title("Mask of Training, Validation, and Test Image (Left to Right)")

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-308

Visualize Ground Truth Labels

The labeled images contain the ground truth data for the segmentation, with each pixel assigned to
one of the 18 classes. Get a list of the classes with their corresponding IDs.

disp(classes)

0. Other Class/Image Border
1. Road Markings
2. Tree
3. Building
4. Vehicle (Car, Truck, or Bus)
5. Person
6. Lifeguard Chair
7. Picnic Table
8. Black Wood Panel
9. White Wood Panel
10. Orange Landing Pad
11. Water Buoy
12. Rocks
13. Other Vegetation
14. Grass
15. Sand
16. Water (Lake)
17. Water (Pond)
18. Asphalt (Parking Lot/Walkway)

Create a vector of class names.

classNames = ["RoadMarkings","Tree","Building","Vehicle","Person", ...
 "LifeguardChair","PicnicTable","BlackWoodPanel",...

 Semantic Segmentation of Multispectral Images Using Deep Learning

3-309

 "WhiteWoodPanel","OrangeLandingPad","Buoy","Rocks",...
 "LowLevelVegetation","Grass_Lawn","Sand_Beach",...
 "Water_Lake","Water_Pond","Asphalt"];

Overlay the labels on the histogram-equalized RGB training image. Add a color bar to the image.

cmap = jet(numel(classNames));
B = labeloverlay(histeq(train_data(:,:,4:6)),train_labels,Transparency=0.8,Colormap=cmap);

figure
imshow(B)
title("Training Labels")
N = numel(classNames);
ticks = 1/(N*2):1/N:1;
colorbar(TickLabels=cellstr(classNames),Ticks=ticks,TickLength=0,TickLabelInterpreter="none");
colormap(cmap)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-310

 Semantic Segmentation of Multispectral Images Using Deep Learning

3-311

Perform Semantic Segmentation

Download a pretrained U-Net network.

trainedUnet_url = "https://www.mathworks.com/supportfiles/vision/data/multispectralUnet.mat";
downloadTrainedNetwork(trainedUnet_url,dataDir);
load(fullfile(dataDir,"multispectralUnet.mat"));

To perform the semantic segmentation on the trained network, use the
segmentMultispectralImage helper function with the validation data. This function is attached to
the example as a supporting file. The segmentMultispectralImage function performs
segmentation on image patches using the semanticseg function. Processing patches is required
because the size of the image prevents processing the entire image at once.

predictPatchSize = [1024 1024];
segmentedImage = segmentMultispectralImage(val_data,net,predictPatchSize);

To extract only the valid portion of the segmentation, multiply the segmented image by the mask
channel of the validation data.

segmentedImage = uint8(val_data(:,:,7)~=0) .* segmentedImage;

figure
imshow(segmentedImage,[])
title("Segmented Image")

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-312

 Semantic Segmentation of Multispectral Images Using Deep Learning

3-313

The output of semantic segmentation is noisy. Perform post image processing to remove noise and
stray pixels. Use the medfilt2 function to remove salt-and-pepper noise from the segmentation.
Visualize the segmented image with the noise removed.

segmentedImage = medfilt2(segmentedImage,[7,7]);
imshow(segmentedImage,[]);
title("Segmented Image with Noise Removed")

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-314

Overlay the segmented image on the histogram-equalized RGB validation image.

 Semantic Segmentation of Multispectral Images Using Deep Learning

3-315

B = labeloverlay(histeq(val_data(:,:,[3 2 1])),segmentedImage,Transparency=0.8,Colormap=cmap);

figure
imshow(B)
title("Labeled Segmented Image")
colorbar(TickLabels=cellstr(classNames),Ticks=ticks,TickLength=0,TickLabelInterpreter="none");
colormap(cmap)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-316

 Semantic Segmentation of Multispectral Images Using Deep Learning

3-317

Calculate Extent of Vegetation Cover

The semantic segmentation results can be used to answer pertinent ecological questions. For
example, what percentage of land area is covered by vegetation? To answer this question, find the
number of pixels labeled vegetation. The label IDs 2 ("Trees"), 13 ("LowLevelVegetation"), and 14
("Grass_Lawn") are the vegetation classes. Also find the total number of valid pixels by summing the
pixels in the ROI of the mask image.

vegetationClassIds = uint8([2,13,14]);
vegetationPixels = ismember(segmentedImage(:),vegetationClassIds);
validPixels = (segmentedImage~=0);

numVegetationPixels = sum(vegetationPixels(:));
numValidPixels = sum(validPixels(:));

Calculate the percentage of vegetation cover by dividing the number of vegetation pixels by the
number of valid pixels.

percentVegetationCover = (numVegetationPixels/numValidPixels)*100;
fprintf("The percentage of vegetation cover is %3.2f%%.",percentVegetationCover);

The percentage of vegetation cover is 51.72%.

The rest of the example shows you how to train U-Net on the Hamlin Beach dataset.

Create Random Patch Extraction Datastore for Training

Use a random patch extraction datastore to feed the training data to the network. This datastore
extracts multiple corresponding random patches from an image datastore and pixel label datastore
that contain ground truth images and pixel label data. Patching is a common technique to prevent
running out of memory for large images and to effectively increase the amount of available training
data.

Begin by loading the training images from "train_data.mat" in an imageDatastore. Because the
MAT file format is a nonstandard image format, you must use a MAT file reader to enable reading the
image data. You can use the helper MAT file reader, matRead6Channels, that extracts the first six
channels from the training data and omits the last channel containing the mask. This function is
attached to the example as a supporting file.

imds = imageDatastore("train_data.mat",FileExtensions=".mat",ReadFcn=@matRead6Channels);

Create a pixelLabelDatastore to store the label patches containing the 18 labeled regions.

pixelLabelIds = 1:18;
pxds = pixelLabelDatastore("train_labels.png",classNames,pixelLabelIds);

Create a randomPatchExtractionDatastore from the image datastore and the pixel label
datastore. Each mini-batch contains 16 patches of size 256-by-256 pixels. One thousand mini-batches
are extracted at each iteration of the epoch.

dsTrain = randomPatchExtractionDatastore(imds,pxds,[256,256],PatchesPerImage=16000);

The random patch extraction datastore dsTrain provides mini-batches of data to the network at
each iteration of the epoch. Preview the datastore to explore the data.

inputBatch = preview(dsTrain);
disp(inputBatch)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-318

 InputImage ResponsePixelLabelImage
 __________________ _______________________

 {256×256×6 uint16} {256×256 categorical}
 {256×256×6 uint16} {256×256 categorical}
 {256×256×6 uint16} {256×256 categorical}
 {256×256×6 uint16} {256×256 categorical}
 {256×256×6 uint16} {256×256 categorical}
 {256×256×6 uint16} {256×256 categorical}
 {256×256×6 uint16} {256×256 categorical}
 {256×256×6 uint16} {256×256 categorical}

Create U-Net Network Layers

This example uses a variation of the U-Net network. In U-Net, the initial series of convolutional layers
are interspersed with max pooling layers, successively decreasing the resolution of the input image.
These layers are followed by a series of convolutional layers interspersed with upsampling operators,
successively increasing the resolution of the input image [2 on page 3-322]. The name U-Net comes
from the fact that the network can be drawn with a symmetric shape like the letter U.

This example modifies the U-Net to use zero-padding in the convolutions, so that the input and the
output to the convolutions have the same size. Use the helper function, createUnet, to create a U-
Net with a few preselected hyperparameters. This function is attached to the example as a supporting
file.

inputTileSize = [256,256,6];
lgraph = createUnet(inputTileSize);
disp(lgraph.Layers)

 58×1 Layer array with layers:

 1 'ImageInputLayer' Image Input 256×256×6 images with 'zerocenter' normalization
 2 'Encoder-Section-1-Conv-1' 2-D Convolution 64 3×3×6 convolutions with stride [1 1] and padding [1 1 1 1]
 3 'Encoder-Section-1-ReLU-1' ReLU ReLU
 4 'Encoder-Section-1-Conv-2' 2-D Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1]
 5 'Encoder-Section-1-ReLU-2' ReLU ReLU
 6 'Encoder-Section-1-MaxPool' 2-D Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0]
 7 'Encoder-Section-2-Conv-1' 2-D Convolution 128 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1]
 8 'Encoder-Section-2-ReLU-1' ReLU ReLU
 9 'Encoder-Section-2-Conv-2' 2-D Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1]
 10 'Encoder-Section-2-ReLU-2' ReLU ReLU
 11 'Encoder-Section-2-MaxPool' 2-D Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0]
 12 'Encoder-Section-3-Conv-1' 2-D Convolution 256 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1]
 13 'Encoder-Section-3-ReLU-1' ReLU ReLU
 14 'Encoder-Section-3-Conv-2' 2-D Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1]
 15 'Encoder-Section-3-ReLU-2' ReLU ReLU
 16 'Encoder-Section-3-MaxPool' 2-D Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0]
 17 'Encoder-Section-4-Conv-1' 2-D Convolution 512 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1]
 18 'Encoder-Section-4-ReLU-1' ReLU ReLU
 19 'Encoder-Section-4-Conv-2' 2-D Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1]
 20 'Encoder-Section-4-ReLU-2' ReLU ReLU
 21 'Encoder-Section-4-DropOut' Dropout 50% dropout
 22 'Encoder-Section-4-MaxPool' 2-D Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0]
 23 'Mid-Conv-1' 2-D Convolution 1024 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1]
 24 'Mid-ReLU-1' ReLU ReLU
 25 'Mid-Conv-2' 2-D Convolution 1024 3×3×1024 convolutions with stride [1 1] and padding [1 1 1 1]
 26 'Mid-ReLU-2' ReLU ReLU
 27 'Mid-DropOut' Dropout 50% dropout

 Semantic Segmentation of Multispectral Images Using Deep Learning

3-319

 28 'Decoder-Section-1-UpConv' 2-D Transposed Convolution 512 2×2×1024 transposed convolutions with stride [2 2] and cropping [0 0 0 0]
 29 'Decoder-Section-1-UpReLU' ReLU ReLU
 30 'Decoder-Section-1-DepthConcatenation' Depth concatenation Depth concatenation of 2 inputs
 31 'Decoder-Section-1-Conv-1' 2-D Convolution 512 3×3×1024 convolutions with stride [1 1] and padding [1 1 1 1]
 32 'Decoder-Section-1-ReLU-1' ReLU ReLU
 33 'Decoder-Section-1-Conv-2' 2-D Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1]
 34 'Decoder-Section-1-ReLU-2' ReLU ReLU
 35 'Decoder-Section-2-UpConv' 2-D Transposed Convolution 256 2×2×512 transposed convolutions with stride [2 2] and cropping [0 0 0 0]
 36 'Decoder-Section-2-UpReLU' ReLU ReLU
 37 'Decoder-Section-2-DepthConcatenation' Depth concatenation Depth concatenation of 2 inputs
 38 'Decoder-Section-2-Conv-1' 2-D Convolution 256 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1]
 39 'Decoder-Section-2-ReLU-1' ReLU ReLU
 40 'Decoder-Section-2-Conv-2' 2-D Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1]
 41 'Decoder-Section-2-ReLU-2' ReLU ReLU
 42 'Decoder-Section-3-UpConv' 2-D Transposed Convolution 128 2×2×256 transposed convolutions with stride [2 2] and cropping [0 0 0 0]
 43 'Decoder-Section-3-UpReLU' ReLU ReLU
 44 'Decoder-Section-3-DepthConcatenation' Depth concatenation Depth concatenation of 2 inputs
 45 'Decoder-Section-3-Conv-1' 2-D Convolution 128 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1]
 46 'Decoder-Section-3-ReLU-1' ReLU ReLU
 47 'Decoder-Section-3-Conv-2' 2-D Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1]
 48 'Decoder-Section-3-ReLU-2' ReLU ReLU
 49 'Decoder-Section-4-UpConv' 2-D Transposed Convolution 64 2×2×128 transposed convolutions with stride [2 2] and cropping [0 0 0 0]
 50 'Decoder-Section-4-UpReLU' ReLU ReLU
 51 'Decoder-Section-4-DepthConcatenation' Depth concatenation Depth concatenation of 2 inputs
 52 'Decoder-Section-4-Conv-1' 2-D Convolution 64 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1]
 53 'Decoder-Section-4-ReLU-1' ReLU ReLU
 54 'Decoder-Section-4-Conv-2' 2-D Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1]
 55 'Decoder-Section-4-ReLU-2' ReLU ReLU
 56 'Final-ConvolutionLayer' 2-D Convolution 18 1×1×64 convolutions with stride [1 1] and padding [0 0 0 0]
 57 'Softmax-Layer' Softmax softmax
 58 'Segmentation-Layer' Pixel Classification Layer Cross-entropy loss

Select Training Options

Train the network using stochastic gradient descent with momentum (SGDM) optimization. Specify
the hyperparameter settings for SGDM by using the trainingOptions (Deep Learning Toolbox)
function.

Training a deep network is time-consuming. Accelerate the training by specifying a high learning
rate. However, this can cause the gradients of the network to explode or grow uncontrollably,
preventing the network from training successfully. To keep the gradients in a meaningful range,
enable gradient clipping by specifying "GradientThreshold" as 0.05, and specify
"GradientThresholdMethod" to use the L2-norm of the gradients.

initialLearningRate = 0.05;
maxEpochs = 150;
minibatchSize = 16;
l2reg = 0.0001;

options = trainingOptions("sgdm",...
 InitialLearnRate=initialLearningRate, ...
 Momentum=0.9,...
 L2Regularization=l2reg,...
 MaxEpochs=maxEpochs,...
 MiniBatchSize=minibatchSize,...
 LearnRateSchedule="piecewise",...
 Shuffle="every-epoch",...

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-320

 GradientThresholdMethod="l2norm",...
 GradientThreshold=0.05, ...
 Plots="training-progress", ...
 VerboseFrequency=20);

Train the Network or Download Pretrained Network

To train the network, set the doTraining variable in the following code to true. Train the model by
using the trainNetwork (Deep Learning Toolbox) function.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about 20 hours on an NVIDIA Titan X.

doTraining = false;
if doTraining
 net = trainNetwork(dsTrain,lgraph,options);
 modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
 save(fullfile(dataDir,"multispectralUnet-"+modelDateTime+".mat"),"net");
end

Evaluate Segmentation Accuracy

Segment the validation data.

segmentedImage = segmentMultispectralImage(val_data,net,predictPatchSize);

Save the segmented image and ground truth labels as PNG files. The example uses these files to
calculate accuracy metrics.

imwrite(segmentedImage,"results.png");
imwrite(val_labels,"gtruth.png");

Load the segmentation results and ground truth using pixelLabelDatastore.

pxdsResults = pixelLabelDatastore("results.png",classNames,pixelLabelIds);
pxdsTruth = pixelLabelDatastore("gtruth.png",classNames,pixelLabelIds);

Measure the global accuracy of the semantic segmentation by using the
evaluateSemanticSegmentation function.

ssm = evaluateSemanticSegmentation(pxdsResults,pxdsTruth,Metrics="global-accuracy");

Evaluating semantic segmentation results
--
* Selected metrics: global accuracy.
* Processed 1 images.
* Finalizing... Done.
* Data set metrics:

 GlobalAccuracy

 0.90411

The global accuracy score indicates that just over 90% of the pixels are classified correctly.

References

 Semantic Segmentation of Multispectral Images Using Deep Learning

3-321

[1] Kemker, R., C. Salvaggio, and C. Kanan. "High-Resolution Multispectral Dataset for Semantic
Segmentation." CoRR, abs/1703.01918. 2017.

[2] Ronneberger, O., P. Fischer, and T. Brox. "U-Net: Convolutional Networks for Biomedical Image
Segmentation." CoRR, abs/1505.04597. 2015.

[3] Kemker, Ronald, Carl Salvaggio, and Christopher Kanan. "Algorithms for Semantic Segmentation
of Multispectral Remote Sensing Imagery Using Deep Learning." ISPRS Journal of Photogrammetry
and Remote Sensing, Deep Learning RS Data, 145 (November 1, 2018): 60-77. https://doi.org/
10.1016/j.isprsjprs.2018.04.014.

See Also
trainingOptions | trainNetwork | randomPatchExtractionDatastore |
pixelLabelDatastore | semanticseg | evaluateSemanticSegmentation | imageDatastore |
histeq | unetLayers

More About
• “Getting Started with Semantic Segmentation Using Deep Learning” on page 17-75
• “Semantic Segmentation Using Deep Learning” on page 3-281
• “Datastores for Deep Learning” (Deep Learning Toolbox)

External Websites
• https://github.com/rmkemker/RIT-18

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-322

https://github.com/rmkemker/RIT-18

3-D Brain Tumor Segmentation Using Deep Learning

This example shows how to perform semantic segmentation of brain tumors from 3-D medical images.

Semantic segmentation involves labeling each pixel in an image or voxel of a 3-D volume with a class.
This example illustrates the use of a 3-D U-Net deep learning network to perform binary semantic
segmentation of brain tumors in magnetic resonance imaging (MRI) scans. U-Net is a fast, efficient
and simple network that has become popular in the semantic segmentation domain [1 on page 3-331].

One challenge of medical image segmentation is the amount of memory needed to store and process
3-D volumes. Training a network and performing segmentation on the full input volume is impractical
due to GPU resource constraints. This example solves the problem by dividing the image into smaller
patches, or blocks, for training and segmentation.

A second challenge of medical image segmentation is class imbalance in the data that hampers
training when using conventional cross entropy loss. This example solves the problem by using a
weighted multiclass Dice loss function [4 on page 3-332]. Weighting the classes helps to counter the
influence of larger regions on the Dice score, making it easier for the network to learn how to
segment smaller regions.

This example shows how to perform brain tumor segmentation using a pretrained 3-D U-Net
architecture, and how to evaluate the network performance using a set of test images. You can
optionally train a 3-D U-Net on the BraTS data set [2 on page 3-331].

Perform Brain Tumor Segmentation Using Pretrained 3-D U-Net

Download Pretrained 3-D U-Net

Download a pretrained 3-D U-Net into a variable called net.

dataDir = fullfile(tempdir,"BraTS");
if ~exist(dataDir,'dir')
 mkdir(dataDir);
end
trained3DUnetURL = "https://www.mathworks.com/supportfiles/"+ ...
 "vision/data/brainTumor3DUNetValid.mat";
downloadTrainedNetwork(trained3DUnetURL,dataDir);
load(dataDir+filesep+"brainTumor3DUNetValid.mat");

Download BraTS Sample Data

Download five sample test volumes and their corresponding labels from the BraTS data set using the
downloadBraTSSampleTestData helper function [3 on page 3-331]. The helper function is attached
to the example as a supporting file. The sample data enables you to perform segmentation on test
data without downloading the full data set.

downloadBraTSSampleTestData(dataDir);

Load one of the volume samples along with its pixel label ground truth.

testDir = dataDir+filesep+"sampleBraTSTestSetValid";
data = load(fullfile(testDir,"imagesTest","BraTS446.mat"));
labels = load(fullfile(testDir,"labelsTest","BraTS446.mat"));
volTest = data.cropVol;
volTestLabels = labels.cropLabel;

 3-D Brain Tumor Segmentation Using Deep Learning

3-323

Perform Semantic Segmentation

The example uses an overlap-tile strategy to process the large volume. The overlap-tile strategy
selects overlapping blocks, predicts the labels for each block by using the semanticseg function,
and then recombines the blocks into a complete segmented test volume. The strategy enables
efficient processing on the GPU, which has limited memory resources. The strategy also reduces
border artifacts by using the valid part of the convolution in the neural network [5 on page 3-332].

Implement the overlap-tile strategy by storing the volume data as a blockedImage object and
processing blocks using the apply function.

Create a blockedImage object for the sample volume downloaded in the previous section.

bim = blockedImage(volTest);

The apply function executes a custom function for each block within the blockedImage. Define
semanticsegBlock as the function to execute for each block.

semanticsegBlock = @(bstruct)semanticseg(bstruct.Data,net);

Specify the block size as the network output size. To create overlapping blocks, specify a nonzero
border size. This example uses a border size such that the block plus the border match the network
input size.

networkInputSize = net.Layers(1).InputSize;
networkOutputSize = net.Layers(end).OutputSize;
blockSize = [networkOutputSize(1:3) networkInputSize(end)];
borderSize = (networkInputSize(1:3) - blockSize(1:3))/2;

Perform semantic segmentation using blockedImage apply with partial block padding set to true.
The default padding method, "replicate", is appropriate because the volume data contains
multiple modalities. The batch size is specified as 1 to prevent out-of-memory errors on GPUs with
constrained memory resources. However, if your GPU has sufficient memory, then you can increase
the processessing speed by increasing the block size.

batchSize = 1;
results = apply(bim, ...
 semanticsegBlock, ...
 BlockSize=blockSize, ...
 BorderSize=borderSize,...
 PadPartialBlocks=true, ...
 BatchSize=batchSize);
predictedLabels = results.Source;

Display a montage showing the center slice of the ground truth and predicted labels along the depth
direction.

zID = size(volTest,3)/2;
zSliceGT = labeloverlay(volTest(:,:,zID),volTestLabels(:,:,zID));
zSlicePred = labeloverlay(volTest(:,:,zID),predictedLabels(:,:,zID));

figure
montage({zSliceGT,zSlicePred},Size=[1 2],BorderSize=5)
title("Labeled Ground Truth (Left) vs. Network Prediction (Right)")

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-324

The following image shows the result of displaying slices sequentially across the one of the volumes.
The labeled ground truth is on the left and the network prediction is on the right.

Train 3-D U-Net

This part of the example shows how to train a 3-D U-Net. If you do not want to download the training
data set or train the network, then you can skip to the Evaluate Network Performance on page 3-329
section of this example.

Download BraTS Data Set

This example uses the BraTS data set [2 on page 3-331]. The BraTS data set contains MRI scans of
brain tumors, namely gliomas, which are the most common primary brain malignancies. The size of
the data file is ~7 GB.

To download the BraTS data, go to the Medical Segmentation Decathlon website and click the
"Download Data" link. Download the "Task01_BrainTumour.tar" file [3 on page 3-331]. Unzip the TAR
file into the directory specified by the imageDir variable. When unzipped successfully, imageDir

 3-D Brain Tumor Segmentation Using Deep Learning

3-325

http://medicaldecathlon.com/

will contain a directory named Task01_BrainTumour that has three subdirectories: imagesTr,
imagesTs, and labelsTr.

The data set contains 750 4-D volumes, each representing a stack of 3-D images. Each 4-D volume
has size 240-by-240-by-155-by-4, where the first three dimensions correspond to height, width, and
depth of a 3-D volumetric image. The fourth dimension corresponds to different scan modalities. The
data set is divided into 484 training volumes with voxel labels and 266 test volumes. The test volumes
do not have labels so this example does not use the test data. Instead, the example splits the 484
training volumes into three independent sets that are used for training, validation, and testing.

Preprocess Training and Validation Data

To train the 3-D U-Net network more efficiently, preprocess the MRI data using the helper function
preprocessBraTSDataset. This function is attached to the example as a supporting file. The helper
function performs these operations:

• Crop the data to a region containing primarily the brain and tumor. Cropping the data reduces the
size of data while retaining the most critical part of each MRI volume and its corresponding labels.

• Normalize each modality of each volume independently by subtracting the mean and dividing by
the standard deviation of the cropped brain region.

• Split the 484 training volumes into 400 training, 29 validation, and 55 test sets.

Preprocessing the data can take about 30 minutes to complete.

sourceDataLoc = dataDir+filesep+"Task01_BrainTumour";
preprocessDataLoc = dataDir+filesep+"preprocessedDataset";
preprocessBraTSDataset(preprocessDataLoc,sourceDataLoc);

Create Random Patch Extraction Datastore for Training and Validation

Create an imageDatastore to store the 3-D image data. Because the MAT file format is a
nonstandard image format, you must use a MAT file reader to enable reading the image data. You can
use the helper MAT file reader, matRead. This function is attached to the example as a supporting
file.

volLoc = fullfile(preprocessDataLoc,"imagesTr");
volds = imageDatastore(volLoc,FileExtensions=".mat",ReadFcn=@matRead);

Create a pixelLabelDatastore to store the labels.

lblLoc = fullfile(preprocessDataLoc,"labelsTr");
classNames = ["background","tumor"];
pixelLabelID = [0 1];
pxds = pixelLabelDatastore(lblLoc,classNames,pixelLabelID, ...
 FileExtensions=".mat",ReadFcn=@matRead);

Create a randomPatchExtractionDatastore that extracts random patches from ground truth
images and corresponding pixel label data. Specify a patch size of 132-by-132-by-132 voxels. Specify
"PatchesPerImage" to extract 16 randomly positioned patches from each pair of volumes and labels
during training. Specify a mini-batch size of 8.

patchSize = [132 132 132];
patchPerImage = 16;
miniBatchSize = 8;
patchds = randomPatchExtractionDatastore(volds,pxds,patchSize, ...

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-326

 PatchesPerImage=patchPerImage);
patchds.MiniBatchSize = miniBatchSize;

Create a randomPatchExtractionDatastore that extracts patches from the validation image and
pixel label data. You can use validation data to evaluate whether the network is continuously learning,
underfitting, or overfitting as time progresses.

volLocVal = fullfile(preprocessDataLoc,"imagesVal");
voldsVal = imageDatastore(volLocVal,FileExtensions=".mat", ...
 ReadFcn=@matRead);

lblLocVal = fullfile(preprocessDataLoc,"labelsVal");
pxdsVal = pixelLabelDatastore(lblLocVal,classNames,pixelLabelID, ...
 FileExtensions=".mat",ReadFcn=@matRead);

dsVal = randomPatchExtractionDatastore(voldsVal,pxdsVal,patchSize, ...
 PatchesPerImage=patchPerImage);
dsVal.MiniBatchSize = miniBatchSize;

Set Up 3-D U-Net Layers

This example uses the 3-D U-Net network [1 on page 3-331]. In U-Net, the initial series of
convolutional layers are interspersed with max pooling layers, successively decreasing the resolution
of the input image. These layers are followed by a series of convolutional layers interspersed with
upsampling operators, successively increasing the resolution of the input image. A batch
normalization layer is introduced before each ReLU layer. The name U-Net comes from the fact that
the network can be drawn with a symmetric shape like the letter U.

Create a default 3-D U-Net network by using the unetLayers function. Specify two class
segmentation. Also specify valid convolution padding to avoid border artifacts when using the
overlap-tile strategy for prediction of the test volumes.

numChannels = 4;
inputPatchSize = [patchSize numChannels];
numClasses = 2;
[lgraph,outPatchSize] = unet3dLayers(inputPatchSize, ...
 numClasses,ConvolutionPadding="valid");

Augment the training and validation data by using the transform function with custom
preprocessing operations specified by the helper function augmentAndCrop3dPatch. This function
is attached to the example as a supporting file. The augmentAndCrop3dPatch function performs
these operations:

1 Randomly rotate and reflect training data to make the training more robust. The function does
not rotate or reflect validation data.

2 Crop response patches to the output size of the network, 44-by-44-by-44 voxels.

dsTrain = transform(patchds, ...
 @(patchIn)augmentAndCrop3dPatch(patchIn,outPatchSize,"Training"));
dsVal = transform(dsVal, ...
 @(patchIn)augmentAndCrop3dPatch(patchIn,outPatchSize,"Validation"));

To better segment smaller tumor regions and reduce the influence of larger background regions, this
example uses a dicePixelClassificationLayer. Replace the pixel classification layer with the
Dice pixel classification layer.

 3-D Brain Tumor Segmentation Using Deep Learning

3-327

outputLayer = dicePixelClassificationLayer(Name="Output");
lgraph = replaceLayer(lgraph,"Segmentation-Layer",outputLayer);

The data has already been normalized in the Preprocess Training and Validation Data on page 3-326
section of this example. Data normalization in the image3dInputLayer (Deep Learning Toolbox) is
unnecessary, so replace the input layer with an input layer that does not have data normalization.

inputLayer = image3dInputLayer(inputPatchSize, ...
 Normalization="none",Name="ImageInputLayer");
lgraph = replaceLayer(lgraph,"ImageInputLayer",inputLayer);

Alternatively, you can modify the 3-D U-Net network by using the Deep Network Designer app.

deepNetworkDesigner(lgraph)

Specify Training Options

Train the network using the adam optimization solver. Specify the hyperparameter settings using the
trainingOptions (Deep Learning Toolbox) function. The initial learning rate is set to 5e-4 and
gradually decreases over the span of training. You can experiment with the MiniBatchSize property
based on your GPU memory. To maximize GPU memory utilization, favor large input patches over a
large batch size. Note that batch normalization layers are less effective for smaller values of
MiniBatchSize. Tune the initial learning rate based on the MiniBatchSize.

options = trainingOptions("adam", ...
 MaxEpochs=50, ...

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-328

 InitialLearnRate=5e-4, ...
 LearnRateSchedule="piecewise", ...
 LearnRateDropPeriod=5, ...
 LearnRateDropFactor=0.95, ...
 ValidationData=dsVal, ...
 ValidationFrequency=400, ...
 Plots="training-progress", ...
 Verbose=false, ...
 MiniBatchSize=miniBatchSize);

Train Network

By default, the example uses the downloaded pretrained 3-D U-Net network. The pretrained network
enables you to perform semantic segmentation and evaluate the segmentation results without waiting
for training to complete.

To train the network, set the doTraining variable in the following code to true. Train the network
using the trainNetwork (Deep Learning Toolbox) function.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about 30 hours on a multi-GPU system with 4 NVIDIA™ Titan Xp
GPUs and can take even longer depending on your GPU hardware.

doTraining = ;
if doTraining
 [net,info] = trainNetwork(dsTrain,lgraph,options);
 modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
 save("trained3DUNet-"+modelDateTime+".mat","net");
end

Evaluate Network Performance

Select the source of test data that contains ground truth volumes and labels for testing. If you keep
the useFullTestSet variable in the following code as false, then the example uses five sample
volumes for testing. If you set the useFullTestSet variable to true, then the example uses 55 test
images selected from the full data set.

useFullTestSet = ;
if useFullTestSet
 volLocTest = fullfile(preprocessDataLoc,"imagesTest");
 lblLocTest = fullfile(preprocessDataLoc,"labelsTest");
else
 volLocTest = fullfile(testDir,"imagesTest");
 lblLocTest = fullfile(testDir,"labelsTest");
end

The voldsTest variable stores the ground truth test images. The pxdsTest variable stores the
ground truth labels.

voldsTest = imageDatastore(volLocTest,FileExtensions=".mat", ...
 ReadFcn=@matRead);
pxdsTest = pixelLabelDatastore(lblLocTest,classNames,pixelLabelID, ...
 FileExtensions=".mat",ReadFcn=@matRead);

For each test volume, process each block using the apply function. The apply function performs the
operations specified by the helper function calculateBlockMetrics, which is defined at the end of

 3-D Brain Tumor Segmentation Using Deep Learning

3-329

this example. The calculateBlockMetrics function performs semantic segmentation of each block
and calculates the confusion matrix between the predicted and ground truth labels.

imageIdx = 1;
datasetConfMat = table;
while hasdata(voldsTest)

 % Read volume and label data
 vol = read(voldsTest);
 volLabels = read(pxdsTest);

 % Create blockedImage for volume and label data
 testVolume = blockedImage(vol);
 testLabels = blockedImage(volLabels{1});

 % Calculate block metrics
 blockConfMatOneImage = apply(testVolume, ...
 @(block,labeledBlock) ...
 calculateBlockMetrics(block,labeledBlock,net), ...
 ExtraImages=testLabels, ...
 PadPartialBlocks=true, ...
 BlockSize=blockSize, ...
 BorderSize=borderSize, ...
 UseParallel=false);

 % Read all the block results of an image and update the image number
 blockConfMatOneImageDS = blockedImageDatastore(blockConfMatOneImage);
 blockConfMat = readall(blockConfMatOneImageDS);
 blockConfMat = struct2table([blockConfMat{:}]);
 blockConfMat.ImageNumber = imageIdx.*ones(height(blockConfMat),1);
 datasetConfMat = [datasetConfMat;blockConfMat];

 imageIdx = imageIdx + 1;
end

Evaluate the data set metrics and block metrics for the segmentation using the
evaluateSemanticSegmentation function.

[metrics,blockMetrics] = evaluateSemanticSegmentation(...
 datasetConfMat,classNames,Metrics="all");

Evaluating semantic segmentation results
--
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU.
* Processed 5 images.
* Finalizing... Done.
* Data set metrics:

 GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU
 ______________ ____________ _______ ___________

 0.99902 0.97955 0.95978 0.99808

Display the Jaccard score calculated for each image.

metrics.ImageMetrics.MeanIoU

ans = 5×1

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-330

 0.9613
 0.9570
 0.9551
 0.9656
 0.9594

Supporting Function

The calculateBlockMetrics helper function performs semantic segmentation of a block and
calculates the confusion matrix between the predicted and ground truth labels. The function returns
a structure with fields containing the confusion matrix and metadata about the block. You can use the
structure with the evaluateSemanticSegmentation function to calculate metrics and aggregate
block-based results.

function blockMetrics = calculateBlockMetrics(bstruct,gtBlockLabels,net)

% Segment block
predBlockLabels = semanticseg(bstruct.Data,net);

% Trim away border region from gtBlockLabels
blockStart = bstruct.BorderSize + 1;
blockEnd = blockStart + bstruct.BlockSize - 1;
gtBlockLabels = gtBlockLabels(...
 blockStart(1):blockEnd(1), ...
 blockStart(2):blockEnd(2), ...
 blockStart(3):blockEnd(3));

% Evaluate segmentation results against ground truth
confusionMat = segmentationConfusionMatrix(predBlockLabels,gtBlockLabels);

% blockMetrics is a struct with confusion matrices, image number,
% and block information.
blockMetrics.ConfusionMatrix = confusionMat;
blockMetrics.ImageNumber = bstruct.ImageNumber;
blockInfo.Start = bstruct.Start;
blockInfo.End = bstruct.End;
blockMetrics.BlockInfo = blockInfo;

end

References

[1] Çiçek, Ö., A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. "3D U-Net: Learning Dense
Volumetric Segmentation from Sparse Annotation." In Proceedings of the International Conference on
Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. Athens, Greece, Oct.
2016, pp. 424-432.

[2] Isensee, F., P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein. "Brain Tumor
Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge." In
Proceedings of BrainLes: International MICCAI Brainlesion Workshop. Quebec City, Canada, Sept.
2017, pp. 287-297.

 3-D Brain Tumor Segmentation Using Deep Learning

3-331

[3] "Brain Tumours". Medical Segmentation Decathlon. http://medicaldecathlon.com/

The BraTS dataset is provided by Medical Segmentation Decathlon under the CC-BY-SA 4.0 license.
All warranties and representations are disclaimed; see the license for details. MathWorks® has
modified the data set linked in the Download BraTS Sample Data on page 3-323 section of this
example. The modified sample data set has been cropped to a region containing primarily the brain
and tumor and each channel has been normalized independently by subtracting the mean and
dividing by the standard deviation of the cropped brain region.

[4] Sudre, C. H., W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso. "Generalised Dice Overlap as a
Deep Learning Loss Function for Highly Unbalanced Segmentations." Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop.
Quebec City, Canada, Sept. 2017, pp. 240-248.

[5] Ronneberger, O., P. Fischer, and T. Brox. "U-Net:Convolutional Networks for Biomedical Image
Segmentation." In Proceedings of the International Conference on Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2015. Munich, Germany, Oct. 2015, pp. 234-241. Available
at arXiv:1505.04597.

See Also
randomPatchExtractionDatastore | trainNetwork | trainingOptions | transform |
pixelLabelDatastore | imageDatastore | semanticseg | dicePixelClassificationLayer

More About
• “Preprocess Volumes for Deep Learning” (Deep Learning Toolbox)
• “Datastores for Deep Learning” (Deep Learning Toolbox)
• “List of Deep Learning Layers” (Deep Learning Toolbox)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-332

https://creativecommons.org/licenses/by-sa/4.0/

Image Category Classification Using Bag of Features

This example shows how to use a bag of features approach for image category classification. This
technique is also often referred to as bag of words. Visual image categorization is a process of
assigning a category label to an image under test. Categories may contain images representing just
about anything, for example, dogs, cats, trains, boats.

Load Image Dataset

Unzip a collection of images to use for this example.

unzip('MerchData.zip');

Load the image collection using an imageDatastore to help you manage the data. Because
imageDatastore operates on image file locations, and therefore does not load all the images into
memory, it is safe to use on large image collections.

imds = imageDatastore('MerchData','IncludeSubfolders',true,'LabelSource','foldernames');

You can easily inspect the number of images per category as well as category labels as shown below:

tbl = countEachLabel(imds)

tbl=5×2 table
 Label Count
 _______________________ _____

 MathWorks Cap 15
 MathWorks Cube 15
 MathWorks Playing Cards 15
 MathWorks Screwdriver 15
 MathWorks Torch 15

Note that the labels were derived from directory names used to construct the ImageDatastore, but
can be customized by manually setting the Labels property of the ImageDatastore object. Next,
display a few of the images to get a sense of the type of images being used.

figure
montage(imds.Files(1:16:end))

 Image Category Classification Using Bag of Features

3-333

Note that for the bag of features approach to be effective, the majority of the object must be visible in
the image.

Prepare Training and Validation Image Sets

Separate the sets into training and validation data. Pick 60% of images from each set for the training
data and the remainder, 40%, for the validation data. Randomize the split to avoid biasing the results.

[trainingSet, validationSet] = splitEachLabel(imds, 0.6, 'randomize');

The above call returns two imageDatastore objects ready for training and validation tasks.

Create a Visual Vocabulary and Train an Image Category Classifier

Bag of words is a technique adapted to computer vision from the world of natural language
processing. Since images do not actually contain discrete words, we first construct a "vocabulary" of
extractFeatures features representative of each image category.

This is accomplished with a single call to bagOfFeatures function, which:

1 extracts SURF features from all images in all image categories
2 constructs the visual vocabulary by reducing the number of features through quantization of

feature space using K-means clustering

bag = bagOfFeatures(trainingSet);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-334

Creating Bag-Of-Features.

* Image category 1: MathWorks Cap
* Image category 2: MathWorks Cube
* Image category 3: MathWorks Playing Cards
* Image category 4: MathWorks Screwdriver
* Image category 5: MathWorks Torch
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].

* Extracting features from 45 images...done. Extracted 141120 features.

* Keeping 80 percent of the strongest features from each category.

* Creating a 500 word visual vocabulary.
* Number of levels: 1
* Branching factor: 500
* Number of clustering steps: 1

* [Step 1/1] Clustering vocabulary level 1.
* Number of features : 112895
* Number of clusters : 500
* Initializing cluster centers...100.00%.
* Clustering...completed 46/100 iterations (~0.35 seconds/iteration)...converged in 46 iterations.

* Finished creating Bag-Of-Features

Additionally, the bagOfFeatures object provides an encode method for counting the visual word
occurrences in an image. It produced a histogram that becomes a new and reduced representation of
an image.

img = readimage(imds, 1);
featureVector = encode(bag, img);

Encoding images using Bag-Of-Features.

* Encoding an image...done.

% Plot the histogram of visual word occurrences
figure
bar(featureVector)
title('Visual word occurrences')
xlabel('Visual word index')
ylabel('Frequency of occurrence')

 Image Category Classification Using Bag of Features

3-335

This histogram forms a basis for training a classifier and for the actual image classification. In
essence, it encodes an image into a feature vector.

Encoded training images from each category are fed into a classifier training process invoked by the
trainImageCategoryClassifier function. Note that this function relies on the multiclass linear
SVM classifier from the Statistics and Machine Learning Toolbox™.

categoryClassifier = trainImageCategoryClassifier(trainingSet, bag);

Training an image category classifier for 5 categories.
--
* Category 1: MathWorks Cap
* Category 2: MathWorks Cube
* Category 3: MathWorks Playing Cards
* Category 4: MathWorks Screwdriver
* Category 5: MathWorks Torch

* Encoding features for 45 images...done.

* Finished training the category classifier. Use evaluate to test the classifier on a test set.

The above function utilizes the encode method of the input bag object to formulate feature vectors
representing each image category from the trainingSet.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-336

Evaluate Classifier Performance

Now that we have a trained classifier, categoryClassifier, let's evaluate it. As a sanity check,
let's first test it with the training set, which should produce near perfect confusion matrix, i.e. ones
on the diagonal.

confMatrix = evaluate(categoryClassifier, trainingSet);

Evaluating image category classifier for 5 categories.

* Category 1: MathWorks Cap
* Category 2: MathWorks Cube
* Category 3: MathWorks Playing Cards
* Category 4: MathWorks Screwdriver
* Category 5: MathWorks Torch

* Evaluating 45 images...done.

* Finished evaluating all the test sets.

* The confusion matrix for this test set is:

 PREDICTED
KNOWN | MathWorks Cap MathWorks Cube MathWorks Playing Cards MathWorks Screwdriver MathWorks Torch
--
MathWorks Cap | 1.00 0.00 0.00 0.00 0.00
MathWorks Cube | 0.00 0.89 0.00 0.00 0.11
MathWorks Playing Cards | 0.00 0.00 1.00 0.00 0.00
MathWorks Screwdriver | 0.00 0.00 0.00 1.00 0.00
MathWorks Torch | 0.00 0.00 0.00 0.00 1.00

* Average Accuracy is 0.98.

Next, let's evaluate the classifier on the validationSet, which was not used during the training. By
default, the evaluate function returns the confusion matrix, which is a good initial indicator of how
well the classifier is performing.

confMatrix = evaluate(categoryClassifier, validationSet);

Evaluating image category classifier for 5 categories.

* Category 1: MathWorks Cap
* Category 2: MathWorks Cube
* Category 3: MathWorks Playing Cards
* Category 4: MathWorks Screwdriver
* Category 5: MathWorks Torch

* Evaluating 30 images...done.

* Finished evaluating all the test sets.

* The confusion matrix for this test set is:

 PREDICTED

 Image Category Classification Using Bag of Features

3-337

KNOWN | MathWorks Cap MathWorks Cube MathWorks Playing Cards MathWorks Screwdriver MathWorks Torch
--
MathWorks Cap | 1.00 0.00 0.00 0.00 0.00
MathWorks Cube | 0.00 0.50 0.17 0.17 0.17
MathWorks Playing Cards | 0.00 0.00 1.00 0.00 0.00
MathWorks Screwdriver | 0.00 0.00 0.00 1.00 0.00
MathWorks Torch | 0.17 0.00 0.00 0.00 0.83

* Average Accuracy is 0.87.

% Compute average accuracy
mean(diag(confMatrix))

ans = 0.8667

You can tune bagOfFeatures hyperparameters and continue evaluating the trained classifier until
you are satisfied with the results. Additional statistics can be derived using the rest of arguments
returned by the evaluate function. See help for imageCategoryClassifier/evaluate.

Try the Newly Trained Classifier on Test Images

You can now apply the newly trained classifier to categorize new images.

img = imread(fullfile('MerchData','MathWorks Cap','Hat_0.jpg'));
figure
imshow(img)

[labelIdx, scores] = predict(categoryClassifier, img);

Encoding images using Bag-Of-Features.

* Encoding an image...done.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-338

% Display the string label
categoryClassifier.Labels(labelIdx)

ans = 1x1 cell array
 {'MathWorks Cap'}

 Image Category Classification Using Bag of Features

3-339

Image Category Classification Using Deep Learning

This example shows how to use a pretrained Convolutional Neural Network (CNN) as a feature
extractor for training an image category classifier.

Overview

A Convolutional Neural Network (CNN) is a powerful machine learning technique from the field of
deep learning. CNNs are trained using large collections of diverse images. From these large
collections, CNNs can learn rich feature representations for a wide range of images. These feature
representations often outperform hand-crafted features such as HOG, LBP, or SURF. An easy way to
leverage the power of CNNs, without investing time and effort into training, is to use a pretrained
CNN as a feature extractor.

In this example, images from a Flowers Dataset[5] are classified into categories using a multiclass
linear SVM trained with CNN features extracted from the images. This approach to image category
classification follows the standard practice of training an off-the-shelf classifier using features
extracted from images. For example, the “Image Category Classification Using Bag of Features” on
page 3-333 example uses SURF features within a bag of features framework to train a multiclass
SVM. The difference here is that instead of using image features such as HOG or SURF, features are
extracted using a CNN.

Note: This example requires Deep Learning Toolbox™, Statistics and Machine Learning Toolbox™,
and Deep Learning Toolbox™ Model for ResNet-50 Network .

Using a CUDA-capable NVIDIA™ GPU is highly recommended for running this example. Use of a GPU
requires the Parallel Computing Toolbox™. For information about the supported compute capabilities,
see “GPU Computing Requirements” (Parallel Computing Toolbox).

Download Image Data

The category classifier will be trained on images from a Flowers Dataset [5].

% Location of the compressed data set
url = 'http://download.tensorflow.org/example_images/flower_photos.tgz';

% Store the output in a temporary folder
downloadFolder = tempdir;
filename = fullfile(downloadFolder,'flower_dataset.tgz');

Note: Download time of the data depends on your internet connection. The next set of commands use
MATLAB to download the data and will block MATLAB. Alternatively, you can use your web browser
to first download the dataset to your local disk. To use the file you downloaded from the web, change
the 'outputFolder' variable above to the location of the downloaded file.

% Uncompressed data set
imageFolder = fullfile(downloadFolder,'flower_photos');

if ~exist(imageFolder,'dir') % download only once
 disp('Downloading Flower Dataset (218 MB)...');
 websave(filename,url);
 untar(filename,downloadFolder)
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-340

Load Images

Load the dataset using an ImageDatastore to help you manage the data. Because
ImageDatastore operates on image file locations, images are not loaded into memory until read,
making it efficient for use with large image collections.

imds = imageDatastore(imageFolder, 'LabelSource', 'foldernames', 'IncludeSubfolders',true);

Below, you can see an example image from one of the categories included in the dataset. The
displayed image is by Mario.

% Find the first instance of an image for each category
daisy = find(imds.Labels == 'daisy', 1);

figure
imshow(readimage(imds,daisy))

The imds variable now contains the images and the category labels associated with each image. The
labels are automatically assigned from the folder names of the image files. Use countEachLabel to
summarize the number of images per category.

tbl = countEachLabel(imds)

tbl=5×2 table
 Label Count
 __________ _____

 daisy 633
 dandelion 898
 roses 641
 sunflowers 699

 Image Category Classification Using Deep Learning

3-341

https://www.flickr.com/photos/64738468@N00/100080576/

 tulips 799

Because imds above contains an unequal number of images per category, let's first adjust it, so that
the number of images in the training set is balanced.

% Determine the smallest amount of images in a category
minSetCount = min(tbl{:,2});

% Limit the number of images to reduce the time it takes
% run this example.
maxNumImages = 100;
minSetCount = min(maxNumImages,minSetCount);

% Use splitEachLabel method to trim the set.
imds = splitEachLabel(imds, minSetCount, 'randomize');

% Notice that each set now has exactly the same number of images.
countEachLabel(imds)

ans=5×2 table
 Label Count
 __________ _____

 daisy 100
 dandelion 100
 roses 100
 sunflowers 100
 tulips 100

Load pretrained Network

There are several pretrained networks that have gained popularity. Most of these have been trained
on the ImageNet dataset, which has 1000 object categories and 1.2 million training images[1].
"ResNet-50" is one such model and can be loaded using the resnet50 function from Neural Network
Toolbox™. Using resnet50 requires that you first install resnet50 (Deep Learning Toolbox).

% Load pretrained network
net = resnet50();

Other popular networks trained on ImageNet include AlexNet, GoogLeNet, VGG-16 and VGG-19 [3],
which can be loaded using alexnet, googlenet, vgg16, and vgg19 from the Deep Learning
Toolbox™.

Use plot to visualize the network. Because this is a large network, adjust the display window to
show just the first section.

% Visualize the first section of the network.
figure
plot(net)
title('First section of ResNet-50')
set(gca,'YLim',[150 170]);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-342

The first layer defines the input dimensions. Each CNN has a different input size requirements. The
one used in this example requires image input that is 224-by-224-by-3.

% Inspect the first layer
net.Layers(1)

ans =
 ImageInputLayer with properties:

 Name: 'input_1'
 InputSize: [224 224 3]

 Hyperparameters
 DataAugmentation: 'none'
 Normalization: 'zerocenter'
 NormalizationDimension: 'auto'
 Mean: [224×224×3 single]

The intermediate layers make up the bulk of the CNN. These are a series of convolutional layers,
interspersed with rectified linear units (ReLU) and max-pooling layers [2]. Following the these layers
are 3 fully-connected layers.

The final layer is the classification layer and its properties depend on the classification task. In this
example, the CNN model that was loaded was trained to solve a 1000-way classification problem.
Thus the classification layer has 1000 classes from the ImageNet dataset.

 Image Category Classification Using Deep Learning

3-343

% Inspect the last layer
net.Layers(end)

ans =
 ClassificationOutputLayer with properties:

 Name: 'ClassificationLayer_fc1000'
 Classes: [1000×1 categorical]
 OutputSize: 1000

 Hyperparameters
 LossFunction: 'crossentropyex'

% Number of class names for ImageNet classification task
numel(net.Layers(end).ClassNames)

ans = 1000

Note that the CNN model is not going to be used for the original classification task. It is going to be
re-purposed to solve a different classification task on the Flowers Dataset.

Prepare Training and Test Image Sets

Split the sets into training and validation data. Pick 30% of images from each set for the training data
and the remainder, 70%, for the validation data. Randomize the split to avoid biasing the results. The
training and test sets will be processed by the CNN model.

[trainingSet, testSet] = splitEachLabel(imds, 0.3, 'randomize');

Pre-process Images For CNN

As mentioned earlier, net can only process RGB images that are 224-by-224. To avoid re-saving all
the images to this format, use an augmentedImageDatastore to resize and convert any grayscale
images to RGB on-the-fly. The augmentedImageDatastore can be used for additional data
augmentation as well when used for network training.

% Create augmentedImageDatastore from training and test sets to resize
% images in imds to the size required by the network.
imageSize = net.Layers(1).InputSize;
augmentedTrainingSet = augmentedImageDatastore(imageSize, trainingSet, 'ColorPreprocessing', 'gray2rgb');
augmentedTestSet = augmentedImageDatastore(imageSize, testSet, 'ColorPreprocessing', 'gray2rgb');

Extract Training Features Using CNN

Each layer of a CNN produces a response, or activation, to an input image. However, there are only a
few layers within a CNN that are suitable for image feature extraction. The layers at the beginning of
the network capture basic image features, such as edges and blobs. To see this, visualize the network
filter weights from the first convolutional layer. This can help build up an intuition as to why the
features extracted from CNNs work so well for image recognition tasks. Note that visualizing
features from deeper layer weights can be done using deepDreamImage from Deep Learning
Toolbox™.

% Get the network weights for the second convolutional layer
w1 = net.Layers(2).Weights;

% Scale and resize the weights for visualization

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-344

w1 = mat2gray(w1);
w1 = imresize(w1,5);

% Display a montage of network weights. There are 96 individual sets of
% weights in the first layer.
figure
montage(w1)
title('First convolutional layer weights')

Notice how the first layer of the network has learned filters for capturing blob and edge features.
These "primitive" features are then processed by deeper network layers, which combine the early
features to form higher level image features. These higher level features are better suited for

 Image Category Classification Using Deep Learning

3-345

recognition tasks because they combine all the primitive features into a richer image representation
[4].

You can easily extract features from one of the deeper layers using the activations method.
Selecting which of the deep layers to choose is a design choice, but typically starting with the layer
right before the classification layer is a good place to start. In net, this layer is named 'fc1000'. Let's
extract training features using that layer.

featureLayer = 'fc1000';
trainingFeatures = activations(net, augmentedTrainingSet, featureLayer, ...
 'MiniBatchSize', 32, 'OutputAs', 'columns');

Note that the activations function automatically uses a GPU for processing if one is available,
otherwise, a CPU is used.

In the code above, the 'MiniBatchSize' is set 32 to ensure that the CNN and image data fit into GPU
memory. You may need to lower the 'MiniBatchSize' if your GPU runs out of memory. Also, the
activations output is arranged as columns. This helps speed-up the multiclass linear SVM training
that follows.

Train A Multiclass SVM Classifier Using CNN Features

Next, use the CNN image features to train a multiclass SVM classifier. A fast Stochastic Gradient
Descent solver is used for training by setting the fitcecoc function's 'Learners' parameter to
'Linear'. This helps speed-up the training when working with high-dimensional CNN feature vectors.

% Get training labels from the trainingSet
trainingLabels = trainingSet.Labels;

% Train multiclass SVM classifier using a fast linear solver, and set
% 'ObservationsIn' to 'columns' to match the arrangement used for training
% features.
classifier = fitcecoc(trainingFeatures, trainingLabels, ...
 'Learners', 'Linear', 'Coding', 'onevsall', 'ObservationsIn', 'columns');

Evaluate Classifier

Repeat the procedure used earlier to extract image features from testSet. The test features can
then be passed to the classifier to measure the accuracy of the trained classifier.

% Extract test features using the CNN
testFeatures = activations(net, augmentedTestSet, featureLayer, ...
 'MiniBatchSize', 32, 'OutputAs', 'columns');

% Pass CNN image features to trained classifier
predictedLabels = predict(classifier, testFeatures, 'ObservationsIn', 'columns');

% Get the known labels
testLabels = testSet.Labels;

% Tabulate the results using a confusion matrix.
confMat = confusionmat(testLabels, predictedLabels);

% Convert confusion matrix into percentage form
confMat = bsxfun(@rdivide,confMat,sum(confMat,2))

confMat = 5×5

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-346

 0.8571 0.0286 0.0286 0.0714 0.0143
 0.0571 0.8286 0 0.0571 0.0571
 0.0143 0 0.7714 0.0714 0.1429
 0.0286 0.0571 0.0571 0.8000 0.0571
 0 0 0.2000 0.0286 0.7714

% Display the mean accuracy
mean(diag(confMat))

ans = 0.8057

Apply the Trained Classifier On One Test Image

Apply the trained classifier to categorize new images. Read one of the "daisy" test images.

testImage = readimage(testSet,1);
testLabel = testSet.Labels(1)

testLabel = categorical
 daisy

Extract image features using the CNN.

% Create augmentedImageDatastore to automatically resize the image when
% image features are extracted using activations.
ds = augmentedImageDatastore(imageSize, testImage, 'ColorPreprocessing', 'gray2rgb');

% Extract image features using the CNN
imageFeatures = activations(net, ds, featureLayer, 'OutputAs', 'columns');

Make a prediction using the classifier.

% Make a prediction using the classifier
predictedLabel = predict(classifier, imageFeatures, 'ObservationsIn', 'columns')

predictedLabel = categorical
 daisy

References

[1] Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009.

[2] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep
convolutional neural networks." Advances in neural information processing systems. 2012.

[3] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale
image recognition." arXiv preprint arXiv:1409.1556 (2014).

[4] Donahue, Jeff, et al. "Decaf: A deep convolutional activation feature for generic visual
recognition." arXiv preprint arXiv:1310.1531 (2013).

 Image Category Classification Using Deep Learning

3-347

[5] Tensorflow: How to Retrain an Image Classifier for New Categories.

See Also
alexnet | countEachLabel | imageInputLayer | convolution2dLayer | reluLayer |
maxPooling2dLayer | classificationLayer | fullyConnectedLayer | activations |
predict | deepDreamImage | fitcecoc | confusionmat

More About
• “Image Category Classification Using Bag of Features” on page 3-333
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-348

https://www.tensorflow.org/hub/tutorials/tf2_image_retraining

Image Retrieval Using Customized Bag of Features

This example shows how to create a Content Based Image Retrieval (CBIR) system using a
customized bag-of-features workflow.

Introduction

Content Based Image Retrieval (CBIR) systems are used to find images that are visually similar to a
query image. The application of CBIR systems can be found in many areas such as a web-based
product search, surveillance, and visual place identification. A common technique used to implement
a CBIR system is bag of visual words, also known as bag of features [1,2]. Bag of features is a
technique adapted to image retrieval from the world of document retrieval. Instead of using actual
words as in document retrieval, bag of features uses image features as the visual words that describe
an image.

Image features are an important part of CBIR systems. These image features are used to gauge
similarity between images and can include global image features such as color, texture, and shape.
Image features can also be local image features such as speeded up robust features (SURF),
histogram of gradients (HOG), or local binary patterns (LBP). The benefit of the bag-of-features
approach is that the type of features used to create the visual word vocabulary can be customized to
fit the application.

The speed and efficiency of image search is also important in CBIR systems. For example, it may be
acceptable to perform a brute force search in a small collection of images of less than a 100 images,
where features from the query image are compared to features from each image in the collection. For
larger collections, a brute force search is not feasible and more efficient search techniques must be
used. The bag of features provides a concise encoding scheme to represent a large collection of
images using a sparse set of visual word histograms. This enables compact storage and efficient
search through an inverted index data structure.

The Computer Vision Toolbox™ provides a customizable bag-of-features framework to implement an
image retrieval system. The following steps outline the procedure:

1 Select the Image Features for Retrieval
2 Create a Bag Of Features
3 Index the Images
4 Search for Similar Images

In this example, you will go through these steps to create an image retrieval system for searching a
flower dataset [3]. This dataset contains about 3670 images of 5 different types of flowers.

Download this dataset for use in the rest of this example.

% Location of the compressed data set
url = 'http://download.tensorflow.org/example_images/flower_photos.tgz';

% Store the output in a temporary folder
downloadFolder = tempdir;
filename = fullfile(downloadFolder,'flower_dataset.tgz');

Note that downloading the dataset from the web can take a very long time depending on your
Internet connection. The commands below will block MATLAB for that period of time. Alternatively,

 Image Retrieval Using Customized Bag of Features

3-349

you can use your web browser to first download the set to your local disk. If you choose that route, re-
point the 'url' variable above to the file that you downloaded.

% Uncompressed data set
imageFolder = fullfile(downloadFolder,'flower_photos');

if ~exist(imageFolder,'dir') % download only once
 disp('Downloading Flower Dataset (218 MB)...');
 websave(filename,url);
 untar(filename,downloadFolder)
end

flowerImageSet = imageDatastore(imageFolder,'LabelSource','foldernames','IncludeSubfolders',true);

% Total number of images in the data set
numel(flowerImageSet.Files)

ans = 3670

Step 1 - Select the Image Features for Retrieval

The type of feature used for retrieval depends on the type of images within the collection. For
example, if searching an image collection made up of scenes (beaches, cities, highways), it is
preferable to use a global image feature, such as a color histogram that captures the color content of
the entire scene. However, if the goal is to find specific objects within the image collections, then
local image features extracted around object keypoints are a better choice.

Let's start by viewing one of images to get an idea of how to approach the problem.

% Display a one of the flower images
figure
I = imread(flowerImageSet.Files{1});
imshow(I);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-350

The displayed image is by Mario.

In this example, the goal is to search for similar flowers in the dataset using the color information in
the query image. A simple image feature based on the spatial layout of color is a good place to start.

The following function describes the algorithm used to extract color features from a given image. This
function will be used as a “extractorFcn” within bagOfFeatures to extract color features.

type exampleBagOfFeaturesColorExtractor.m

function [features, metrics] = exampleBagOfFeaturesColorExtractor(I)
% Example color layout feature extractor. Designed for use with bagOfFeatures.
%
% Local color layout features are extracted from truecolor image, I and
% returned in features. The strength of the features are returned in
% metrics.

% Copyright 2014-2020 The MathWorks, Inc.

[~,~,P] = size(I);

isColorImage = P == 3;

if isColorImage

 % Convert RGB images to the L*a*b* colorspace. The L*a*b* colorspace
 % enables you to easily quantify the visual differences between colors.
 % Visually similar colors in the L*a*b* colorspace will have small
 % differences in their L*a*b* values.
 Ilab = rgb2lab(I);

 % Compute the "average" L*a*b* color within 16-by-16 pixel blocks. The
 % average value is used as the color portion of the image feature. An
 % efficient method to approximate this averaging procedure over
 % 16-by-16 pixel blocks is to reduce the size of the image by a factor
 % of 16 using IMRESIZE.
 Ilab = imresize(Ilab, 1/16);

 % Note, the average pixel value in a block can also be computed using
 % standard block processing or integral images.

 % Reshape L*a*b* image into "number of features"-by-3 matrix.
 [Mr,Nr,~] = size(Ilab);
 colorFeatures = reshape(Ilab, Mr*Nr, []);

 % L2 normalize color features
 rowNorm = sqrt(sum(colorFeatures.^2,2));
 colorFeatures = bsxfun(@rdivide, colorFeatures, rowNorm + eps);

 % Augment the color feature by appending the [x y] location within the
 % image from which the color feature was extracted. This technique is
 % known as spatial augmentation. Spatial augmentation incorporates the
 % spatial layout of the features within an image as part of the
 % extracted feature vectors. Therefore, for two images to have similar
 % color features, the color and spatial distribution of color must be
 % similar.

 % Normalize pixel coordinates to handle different image sizes.

 Image Retrieval Using Customized Bag of Features

3-351

https://www.flickr.com/photos/64738468@N00/100080576/

 xnorm = linspace(-0.5, 0.5, Nr);
 ynorm = linspace(-0.5, 0.5, Mr);
 [x, y] = meshgrid(xnorm, ynorm);

 % Concatenate the spatial locations and color features.
 features = [colorFeatures y(:) x(:)];

 % Use color variance as feature metric.
 metrics = var(colorFeatures(:,1:3),0,2);
else

 % Return empty features for non-color images. These features are
 % ignored by bagOfFeatures.
 features = zeros(0,5);
 metrics = zeros(0,1);
end

Step 2 - Create a Bag Of Features

With the feature type defined, the next step is to learn the visual vocabulary within the
bagOfFeatures using a set of training images. The code shown below picks a random subset of
images from the dataset for training and then trains bagOfFeatures using the 'CustomExtractor'
option.

Set doTraining to false to load a pretrained bagOfFeatures. doTraining is set to false because the
training process takes several minutes. The rest of the example uses a pre-trained bagOfFeatures
to save time. If you wish to recreate colorBag locally, set doTraining to true and consider
“Computer Vision Toolbox Preferences” to reduce processing time.

doTraining = false;

if doTraining
 %Pick a random subset of the flower images.
 trainingSet = splitEachLabel(flowerImageSet, 0.6, 'randomized');

 % Specify the number of levels and branching factor of the vocabulary
 % tree used within bagOfFeatures. Empirical analysis is required to
 % choose optimal values.
 numLevels = 1;
 numBranches = 5000;

 % Create a custom bag of features using the 'CustomExtractor' option.
 colorBag = bagOfFeatures(trainingSet, ...
 'CustomExtractor', @exampleBagOfFeaturesColorExtractor, ...
 'TreeProperties', [numLevels numBranches]);
else
 % Load a pretrained bagOfFeatures.
 load('savedColorBagOfFeatures.mat','colorBag');
end

Step 3 - Index the Images

Now that the bagOfFeatures is created, the entire flower image set can be indexed for search. The
indexing procedure extracts features from each image using the custom extractor function from step
1. The extracted features are encoded into a visual word histogram and added into the image index.

if doTraining
 % Create a search index.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-352

 flowerImageIndex = indexImages(flowerImageSet,colorBag,'SaveFeatureLocations',false);
else
 % Load a saved index
 load('savedColorBagOfFeatures.mat','flowerImageIndex');
end

Because the indexing step processes thousands of images, the rest of this example uses a saved index
to save time. You may recreate the index locally by setting doTraining to true.

Step 4 - Search for Similar Images

The final step is to use the retrieveImages function to search for similar images.

% Define a query image
queryImage = readimage(flowerImageSet,200);

figure
imshow(queryImage)

The displayed image is by RetinaFunk.

% Search for the top 5 images with similar color content
[imageIDs, scores] = retrieveImages(queryImage, flowerImageIndex,'NumResults',5);

retrieveImages returns the image IDs and the scores of each result. The scores are sorted from
best to worst.

scores

scores = 5×1

 0.4776
 0.2138
 0.1386

 Image Retrieval Using Customized Bag of Features

3-353

https://www.flickr.com/photos/retinafunk/21652746/

 0.1382
 0.1317

The imageIDs correspond to the images within the image set that are similar to the query image.

% Display results using montage.
figure
montage(flowerImageSet.Files(imageIDs),'ThumbnailSize',[200 200])

The displayed images are by RetinaFunk, Jenny Downing, Mayeesherr, daBinsi, and Steve Snodgrass.

Conclusion

This example showed you how to customize the bagOfFeatures and how to use indexImages and
retrieveImages to create an image retrieval system based on color features. The techniques shown
here may be extended to other feature types by further customizing the features used within
bagOfFeatures.

References

[1] Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In:
ICCV. (2003) 1470-1477

[2] Philbin, J., Chum, O., Isard, M., A., J.S., Zisserman: Object retrieval with large vocabularies and
fast spatial matching. In: CVPR. (2007)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-354

https://www.flickr.com/photos/retinafunk/21652746/
https://www.flickr.com/photos/mayeesherr/9353111163/
https://www.flickr.com/photos/dabinsi/8938566373/
https://www.flickr.com/photos/stevensnodgrass/4923279674/

[3] TensorFlow: How to Retrain an Image Classifier for New Categories.

 Image Retrieval Using Customized Bag of Features

3-355

https://www.tensorflow.org/hub/tutorials/tf2_image_retraining

Create SSD Object Detection Network

This example shows how to modify a pretrained MobileNet v2 network to create a SSD object
detection network.

The procedure to convert a pretrained network into a SSD network is similar to the transfer learning
procedure for image classification:

1 Load the pretrained network.
2 Select one or more layers from the pretrained network to use for feature extraction.
3 Remove all layers after the feature extraction layers
4 Add new layers to support the object detection task.

Load Pretrained Network

Load a pretrained MobileNet v2 network using mobilenetv2. This requires the Deep Learning
Toolbox Model for MobileNet v2 Network™ support package. If this support package is not installed,
then the function provides a download link. After you load the network, convert the network into a
layerGraph object so that you can manipulate the layers.

net = mobilenetv2();
lgraph = layerGraph(net);

Update Network Input Size

Update the network input size to meet the training data requirements. For example, assume the
training data are 300-by-300 RGB images. Set the input size.

imageInputSize = [300 300 3];

Next, create a new image input layer with the same name as the original layer.

imgLayer = imageInputLayer(imageInputSize,"Name","input_1");

Replace the old image input layer with the new image input layer.

lgraph = replaceLayer(lgraph,"input_1",imgLayer);

Select Feature Extraction Layers

SSD predict object locations using multiple feature maps. Typically, you choose feature extraction
layers with different output sizes to leverage the benefit of multi-scale features. You can use the
analyzeNetwork function or the Deep Network Designer app to determine the output sizes of layers
within a network. Note that selecting an optimal set feature extraction layers requires empirical
evaluation.

For brevity, this example illustrates the use one feature extraction layer. Set the feature extraction
layer to "block_12_add".

featureExtractionLayer = "block_12_add";

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-356

Remove Layers After Feature Extraction Layer

Next, remove the layers after the feature extraction layer. You can do so by importing the network
into the Deep Network Designer app, manually removing the layers, and exporting the modified the
network to your workspace.

For this example, load the modified network, which has been added to this example as a supporting
file.

modified = load("mobilenetv2Block12Add.mat");
lgraph = modified.mobilenetv2Block12Add;

Attach AnchorBoxLayer

Specify the anchor boxes and number of object classes and use anchorBoxLayer to create an anchor
box layer.

numClasses = 5;

anchorBoxes = [
 16 16
 32 16
];

anchorBox = anchorBoxLayer(anchorBoxes,"Name","anchors");

Attach the anchor box layer to the feature extraction layer.

lgraph = addLayers(lgraph,anchorBox);
lgraph = connectLayers(lgraph,"block_12_add","anchors");

Create SSD Classifcation Branch

Create a convolution layer where the number of convolution filters equals the numAnchors times the
numClasses + 1. The additional class represents the background class.

numAnchors = size(anchorBoxes,1);
numClassesPlusBackground = numClasses + 1;
numClsFilters = numAnchors * numClassesPlusBackground;
filterSize = 3;
conv = convolution2dLayer(filterSize,numClsFilters,...
 "Name","convClassification",...
 "Padding","same");

Add and connect the convolution layer to the anchor box layer.

lgraph = addLayers(lgraph,conv);
lgraph = connectLayers(lgraph,"anchors","convClassification");

Create SSD Regression Branch

Create a convolution layer where the number of convolution filters equals the four times number of
anchor boxes.

numRegFilters = 4 * numAnchors;
conv = convolution2dLayer(filterSize,numRegFilters,...
 "Name","convRegression",...
 "Padding","same");

 Create SSD Object Detection Network

3-357

Add and connect the convolution layer to the anchor box layer.

lgraph = addLayers(lgraph,conv);
lgraph = connectLayers(lgraph,"anchors","convRegression");

Merge Classification Features

Create an ssdMergeLayer initialized with the number of classes and the number of feature
extraction layers.

numFeatureExtractionLayers = numel(featureExtractionLayer);
mergeClassification = ssdMergeLayer(numClassesPlusBackground,numFeatureExtractionLayers,...
 "Name","mergeClassification");

Add and connect the SSD merge layer to the convClassification layer.

lgraph = addLayers(lgraph,mergeClassification);
lgraph = connectLayers(lgraph,"convClassification","mergeClassification/in1");

Merge Regression Features

Create an ssdMergeLayer initialized with the number of coordinate offsets used to refine anchor
box positions and the number of feature extraction layers.

numCoordinates = 4;
mergeRegression = ssdMergeLayer(numCoordinates,numFeatureExtractionLayers,...
 "Name","mergeRegression");

Add and connect the SSD merge layer to the convRegression layer.

lgraph = addLayers(lgraph,mergeRegression);
lgraph = connectLayers(lgraph,"convRegression","mergeRegression/in1");

Complete SSD Detection Network

To complete the classification branch, create and attach a softmax layer and a focal loss layer.

clsLayers = [
 softmaxLayer("Name","softmax")
 focalLossLayer("Name","focalLoss")
];

lgraph = addLayers(lgraph,clsLayers);
lgraph = connectLayers(lgraph,"mergeClassification","softmax");

To complete the regression branch, create and attach a box regression layer.

reg = rcnnBoxRegressionLayer("Name","boxRegression");

lgraph = addLayers(lgraph,reg);
lgraph = connectLayers(lgraph,"mergeRegression","boxRegression");

Use analyzeNetwork to check the network.

analyzeNetwork(lgraph)

The SSD network is complete and can be trained using the trainSSDObjectDetector function.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-358

Train YOLO v2 Network for Vehicle Detection

Load the training data for vehicle detection into the workspace.

data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData;

Specify the directory in which training samples are stored. Add full path to the file names in training
data.

dataDir = fullfile(toolboxdir('vision'),'visiondata');
trainingData.imageFilename = fullfile(dataDir,trainingData.imageFilename);

Randomly shuffle data for training.

rng(0);
shuffledIdx = randperm(height(trainingData));
trainingData = trainingData(shuffledIdx,:);

Create an imageDatastore using the files from the table.

imds = imageDatastore(trainingData.imageFilename);

Create a boxLabelDatastore using the label columns from the table.

blds = boxLabelDatastore(trainingData(:,2:end));

Combine the datastores.

ds = combine(imds, blds);

Load a preinitialized YOLO v2 object detection network.

net = load('yolov2VehicleDetector.mat');
lgraph = net.lgraph

lgraph =
 LayerGraph with properties:

 Layers: [25×1 nnet.cnn.layer.Layer]
 Connections: [24×2 table]
 InputNames: {'input'}
 OutputNames: {'yolov2OutputLayer'}

Inspect the layers in the YOLO v2 network and their properties. You can also create the YOLO v2
network by following the steps given in “Create YOLO v2 Object Detection Network” on page 3-406.

lgraph.Layers

ans =
 25x1 Layer array with layers:

 1 'input' Image Input 128x128x3 images
 2 'conv_1' Convolution 16 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 3 'BN1' Batch Normalization Batch normalization
 4 'relu_1' ReLU ReLU

 Train YOLO v2 Network for Vehicle Detection

3-359

 5 'maxpool1' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 6 'conv_2' Convolution 32 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 7 'BN2' Batch Normalization Batch normalization
 8 'relu_2' ReLU ReLU
 9 'maxpool2' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 10 'conv_3' Convolution 64 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 11 'BN3' Batch Normalization Batch normalization
 12 'relu_3' ReLU ReLU
 13 'maxpool3' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 14 'conv_4' Convolution 128 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 15 'BN4' Batch Normalization Batch normalization
 16 'relu_4' ReLU ReLU
 17 'yolov2Conv1' Convolution 128 3x3 convolutions with stride [1 1] and padding 'same'
 18 'yolov2Batch1' Batch Normalization Batch normalization
 19 'yolov2Relu1' ReLU ReLU
 20 'yolov2Conv2' Convolution 128 3x3 convolutions with stride [1 1] and padding 'same'
 21 'yolov2Batch2' Batch Normalization Batch normalization
 22 'yolov2Relu2' ReLU ReLU
 23 'yolov2ClassConv' Convolution 24 1x1 convolutions with stride [1 1] and padding [0 0 0 0]
 24 'yolov2Transform' YOLO v2 Transform Layer. YOLO v2 Transform Layer with 4 anchors.
 25 'yolov2OutputLayer' YOLO v2 Output YOLO v2 Output with 4 anchors.

Configure the network training options.

options = trainingOptions('sgdm',...
 'InitialLearnRate',0.001,...
 'Verbose',true,...
 'MiniBatchSize',16,...
 'MaxEpochs',30,...
 'Shuffle','never',...
 'VerboseFrequency',30,...
 'CheckpointPath',tempdir);

Train the YOLO v2 network.

[detector,info] = trainYOLOv2ObjectDetector(ds,lgraph,options);

Training a YOLO v2 Object Detector for the following object classes:

* vehicle

Training on single CPU.
|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | RMSE | Loss | Rate |
|==|
1	1	00:00:01	7.13	50.8	0.0010
2	30	00:00:14	1.35	1.8	0.0010
4	60	00:00:27	1.13	1.3	0.0010
5	90	00:00:39	0.64	0.4	0.0010
7	120	00:00:51	0.65	0.4	0.0010
9	150	00:01:04	0.72	0.5	0.0010
10	180	00:01:16	0.52	0.3	0.0010
12	210	00:01:28	0.45	0.2	0.0010
14	240	00:01:41	0.61	0.4	0.0010
15	270	00:01:52	0.43	0.2	0.0010
17	300	00:02:05	0.42	0.2	0.0010

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-360

19	330	00:02:17	0.52	0.3	0.0010
20	360	00:02:29	0.43	0.2	0.0010
22	390	00:02:42	0.43	0.2	0.0010
24	420	00:02:54	0.59	0.4	0.0010
25	450	00:03:06	0.61	0.4	0.0010
27	480	00:03:18	0.65	0.4	0.0010
29	510	00:03:31	0.48	0.2	0.0010
30	540	00:03:42	0.34	0.1	0.0010
==					
Detector training complete.

Inspect the properties of the detector.

detector

detector =
 yolov2ObjectDetector with properties:

 ModelName: 'vehicle'
 Network: [1×1 DAGNetwork]
 TrainingImageSize: [128 128]
 AnchorBoxes: [4×2 double]
 ClassNames: vehicle

You can verify the training accuracy by inspecting the training loss for each iteration.

figure
plot(info.TrainingLoss)
grid on
xlabel('Number of Iterations')
ylabel('Training Loss for Each Iteration')

 Train YOLO v2 Network for Vehicle Detection

3-361

Read a test image into the workspace.

img = imread('detectcars.png');

Run the trained YOLO v2 object detector on the test image for vehicle detection.

[bboxes,scores] = detect(detector,img);

Display the detection results.

if(~isempty(bboxes))
 img = insertObjectAnnotation(img,'rectangle',bboxes,scores);
end
figure
imshow(img)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-362

 Train YOLO v2 Network for Vehicle Detection

3-363

Import Pretrained ONNX YOLO v2 Object Detector

This example shows how to import a pretrained ONNX™ (Open Neural Network Exchange) you only
look once (YOLO) v2 [1] on page 3-369 object detection network and use it to detect objects. After
you import the network, you can deploy it to embedded platforms using GPU Coder™ or retrain it on
custom data using transfer learning with trainYOLOv2ObjectDetector.

Download ONNX YOLO v2 Network

Download files related to the pretrained Tiny YOLO v2 network.

pretrainedURL = 'https://ssd.mathworks.com/supportfiles/vision/deeplearning/models/yolov2/tiny_yolov2.tar';
pretrainedNetTar = 'yolov2Tiny.tar';
if ~exist(pretrainedNetTar,'file')
 disp('Downloading pretrained network (58 MB)...');
 websave(pretrainedNetTar,pretrainedURL);
end

Extract YOLO v2 Network

Untar the downloaded file to extract the Tiny YOLO v2 network. Load the 'Model.onnx' model from
tiny_yolov2 folder, which is an ONNX YOLO v2 network pretrained on the PASCAL VOC data set
[2] on page 3-369. The network can detect objects from 20 different classes [3] on page 3-370.

onnxfiles = untar(pretrainedNetTar);
pretrainedNet = fullfile('tiny_yolov2','Model.onnx');

Import ONNX YOLO v2 Layers

Use the importONNXLayers function to import the downloaded network.

lgraph = importONNXLayers(pretrainedNet,'ImportWeights',true);

importONNXLayers adds regression layer at the end by default. Remove the last regression layer
added by importONNXLayers as yolov2ObjectDetector expects YOLO v2 detection network to
end with yolov2OutputLayer. For more information on YOLO v2 detection network, see “Getting
Started with YOLO v2” on page 17-49.

lgraph = removeLayers(lgraph,'RegressionLayer_grid');

The Add YOLO v2 Transform and Output Layers on page 3-367 section shows how to add YOLO v2
output layer along with YOLO v2 Transform layer to the imported layers.

The network in this example contains no unsupported layers. Note that if the network you want to
import has unsupported layers, the function imports them as placeholder layers. Before you can use
your imported network, you must replace these layers. For more information on replacing
placeholder layers, see findPlaceholderLayers (Deep Learning Toolbox).

Define YOLO v2 Anchor Boxes

YOLO v2 uses predefined anchor boxes to predict object location. The anchor boxes used in the
imported network are defined in the Tiny YOLO v2 network configuration file [4] on page 3-370. The
ONNX anchors are defined with respect to the output size of the final convolution layer, which is 13-
by-13. To use the anchors with yolov2ObjectDetector, resize the anchor boxes to the network

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-364

input size, which is 416-by-416. The anchor boxes for yolov2ObjectDetector must be specified in
the form [height, width].

onnxAnchors = [1.08,1.19; 3.42,4.41; 6.63,11.38; 9.42,5.11; 16.62,10.52];

inputSize = lgraph.Layers(1,1).InputSize(1:2);
lastActivationSize = [13,13];
upScaleFactor = inputSize./lastActivationSize;
anchorBoxesTmp = upScaleFactor.* onnxAnchors;
anchorBoxes = [anchorBoxesTmp(:,2),anchorBoxesTmp(:,1)];

Reorder Detection Layer Weights

For efficient processing, you must reorder the weights and biases of the last convolution layer in the
imported network to obtain the activations in the arrangement that yolov2ObjectDetector
requires. yolov2ObjectDetector expects the 125 channels of the feature map of the last
convolution layer in the following arrangement:

• Channels 1 to 5 - IoU values for five anchors
• Channels 6 to 10 - X values for five anchors
• Channels 11 to 15 - Y values for five anchors
• Channels 16 to 20 - Width values for five anchors
• Channels 21 to 25 - Height values for five anchors
• Channels 26 to 30 - Class 1 probability values for five anchors
• Channels 31 to 35 - Class 2 probability values for five anchors
• Channels 121 to 125 - Class 20 probability values for five anchors

However, in the last convolution layer, which is of size 13-by-13, the activations are arranged
differently. Each of the 25 channels in the feature map corresponds to:

• Channel 1 - X values
• Channel 2 - Y values
• Channel 3 - Width values

 Import Pretrained ONNX YOLO v2 Object Detector

3-365

• Channel 4 - Height values
• Channel 5 - IoU values
• Channel 6 - Class 1 probability values
• Channel 7 - Class 2 probability values
• Channel 25 - Class 20 probability values

Use the supporting function rearrangeONNXWeights, listed at the end of this example, to reorder
the weights and biases of the last convolution layer in the imported network and obtain the
activations in the format required by yolov2ObjectDetector.

weights = lgraph.Layers(end,1).Weights;
bias = lgraph.Layers(end,1).Bias;
layerName = lgraph.Layers(end,1).Name;

numAnchorBoxes = size(onnxAnchors,1);
[modWeights,modBias] = rearrangeONNXWeights(weights,bias,numAnchorBoxes);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-366

Replace the weights and biases of the last convolution layer in the imported network with the new
convolution layer using the reordered weights and biases.

filterSize = size(modWeights,[1 2]);
numFilters = size(modWeights,4);
modConvolution8 = convolution2dLayer(filterSize,numFilters,...
 'Name',layerName,'Bias',modBias,'Weights',modWeights);
lgraph = replaceLayer(lgraph,'convolution8',modConvolution8);

Add YOLO v2 Transform and Output Layers

A YOLO v2 detection network requires the YOLO v2 transform and YOLO v2 output layers. Create
both of these layers, stack them in series, and attach the YOLO v2 transform layer to the last
convolution layer.

classNames = tinyYOLOv2Classes;

layersToAdd = [
 yolov2TransformLayer(numAnchorBoxes,'Name','yolov2Transform');
 yolov2OutputLayer(anchorBoxes,'Classes',classNames,'Name','yolov2Output');
];

lgraph = addLayers(lgraph, layersToAdd);
lgraph = connectLayers(lgraph,layerName,'yolov2Transform');

The ElementwiseAffineLayer in the imported network duplicates the preprocessing step
performed by yolov2ObjectDetector. Hence, remove the ElementwiseAffineLayer from the
imported network.

yoloScaleLayerIdx = find(...
 arrayfun(@(x)isa(x,'nnet.onnx.layer.ElementwiseAffineLayer'), ...
 lgraph.Layers));

if ~isempty(yoloScaleLayerIdx)
 for i = 1:size(yoloScaleLayerIdx,1)
 layerNames {i} = lgraph.Layers(yoloScaleLayerIdx(i,1),1).Name;
 end
 lgraph = removeLayers(lgraph,layerNames);
 lgraph = connectLayers(lgraph,'image','convolution');
end

Create YOLO v2 Object Detector

Assemble the layer graph using the assembleNetwork function and create a YOLO v2 object
detector using the yolov2ObjectDetector function.

net = assembleNetwork(lgraph)

net =
 DAGNetwork with properties:

 Layers: [34×1 nnet.cnn.layer.Layer]
 Connections: [33×2 table]
 InputNames: {'image'}
 OutputNames: {'yolov2Output'}

yolov2Detector = yolov2ObjectDetector(net)

 Import Pretrained ONNX YOLO v2 Object Detector

3-367

yolov2Detector =
 yolov2ObjectDetector with properties:

 ModelName: 'importedNetwork'
 Network: [1×1 DAGNetwork]
 TrainingImageSize: [416 416]
 AnchorBoxes: [5×2 double]
 ClassNames: [aeroplane bicycle bird boat bottle bus car cat chair cow diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor]

Detect Objects Using Imported YOLO v2 Detector

Use the imported detector to detect objects in a test image. Display the results.

I = imread('highway.png');
% Convert image to BGR format.
Ibgr = cat(3,I(:,:,3),I(:,:,2),I(:,:,1));
[bboxes, scores, labels] = detect(yolov2Detector, Ibgr);
detectedImg = insertObjectAnnotation(I, 'rectangle', bboxes, scores);
figure
imshow(detectedImg);

Supporting Functions

function [modWeights,modBias] = rearrangeONNXWeights(weights,bias,numAnchorBoxes)
%rearrangeONNXWeights rearranges the weights and biases of an imported YOLO
%v2 network as required by yolov2ObjectDetector. numAnchorBoxes is a scalar
%value containing the number of anchors that are used to reorder the weights and
%biases. This function performs the following operations:
% * Extract the weights and biases related to IoU, boxes, and classes.
% * Reorder the extracted weights and biases as expected by yolov2ObjectDetector.
% * Combine and reshape them back to the original dimensions.

weightsSize = size(weights);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-368

biasSize = size(bias);
sizeOfPredictions = biasSize(3)/numAnchorBoxes;

% Reshape the weights with regard to the size of the predictions and anchors.
reshapedWeights = reshape(weights,prod(weightsSize(1:3)),sizeOfPredictions,numAnchorBoxes);

% Extract the weights related to IoU, boxes, and classes.
weightsIou = reshapedWeights(:,5,:);
weightsBoxes = reshapedWeights(:,1:4,:);
weightsClasses = reshapedWeights(:,6:end,:);

% Combine the weights of the extracted parameters as required by
% yolov2ObjectDetector.
reorderedWeights = cat(2,weightsIou,weightsBoxes,weightsClasses);
permutedWeights = permute(reorderedWeights,[1 3 2]);

% Reshape the new weights to the original size.
modWeights = reshape(permutedWeights,weightsSize);

% Reshape the biases with regared to the size of the predictions and anchors.
reshapedBias = reshape(bias,sizeOfPredictions,numAnchorBoxes);

% Extract the biases related to IoU, boxes, and classes.
biasIou = reshapedBias(5,:);
biasBoxes = reshapedBias(1:4,:);
biasClasses = reshapedBias(6:end,:);

% Combine the biases of the extracted parameters as required by yolov2ObjectDetector.
reorderedBias = cat(1,biasIou,biasBoxes,biasClasses);
permutedBias = permute(reorderedBias,[2 1]);

% Reshape the new biases to the original size.
modBias = reshape(permutedBias,biasSize);
end

function classes = tinyYOLOv2Classes()
% Return the class names corresponding to the pretrained ONNX tiny YOLO v2
% network.
%
% The tiny YOLO v2 network is pretrained on the Pascal VOC data set,
% which contains images from 20 different classes.

classes = [...
 " aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car",...
 "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike",...
 "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"];
end

References

[1] Redmon, Joseph, and Ali Farhadi. "YOLO9000: Better, Faster, Stronger." In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 6517-25. Honolulu, HI: IEEE, 2017. https://
doi.org/10.1109/CVPR.2017.690.

 Import Pretrained ONNX YOLO v2 Object Detector

3-369

https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690

[2] "Tiny YOLO v2 Model License." https://github.com/onnx/onnx/blob/master/LICENSE.

[3] Everingham, Mark, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman.
"The Pascal Visual Object Classes (VOC) Challenge." International Journal of Computer Vision 88, no.
2 (June 2010): 303-38. https://doi.org/10.1007/s11263-009-0275-4.

[4] "yolov2-tiny-voc.cfg" https://github.com/pjreddie/darknet/blob/master/cfg/yolov2-tiny-voc.cfg.

References
[1] Redmon, Joseph, and Ali Farhadi. "YOLO9000: Better, Faster, Stronger." 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 6517-25. Honolulu, HI: IEEE, 2017. https://
doi.org/10.1109/CVPR.2017.690.

[2] Tiny YOLO v2 Model

[3] Tiny YOLO v2 Model License

[4] Everingham, Mark, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman.
"The Pascal Visual Object Classes (VOC) Challenge." International Journal of Computer Vision
88. Number 2 (June 2010): 303-38. https://doi.org/10.1007/s11263-009-0275-4.

[5] yolov2-tiny-voc.cfg

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-370

https://github.com/onnx/onnx/blob/master/LICENSE
https://doi.org/10.1007/s11263-009-0275-4
https://github.com/pjreddie/darknet/blob/master/cfg/yolov2-tiny-voc.cfg
https://github.com/onnx/models/tree/master/vision/object_detection_segmentation/tiny-yolov2
https://github.com/onnx/onnx/blob/master/LICENSE
https://github.com/pjreddie/darknet/blob/master/cfg/yolov2-tiny-voc.cfg

Export YOLO v2 Object Detector to ONNX

This example shows how to export a YOLO v2 object detection network to ONNX™ (Open Neural
Network Exchange) model format. After exporting the YOLO v2 network, you can import the network
into other deep learning frameworks for inference. This example also presents the workflow that you
can follow to perform inference using the imported ONNX model.

Export YOLO v2 Network

Export the detection network to ONNX and gather the metadata required to generate object
detection results.

First, load a pretrained YOLO v2 object detector into the workspace.

input = load('yolov2VehicleDetector.mat');
net = input.detector.Network;

Next, obtain the YOLO v2 detector metadata to use for inference. The detector metadata includes the
network input image size, anchor boxes, and activation size of last convolution layer.

Read the network input image size from the input YOLO v2 network.

inputImageSize = net.Layers(1,1).InputSize;

Read the anchor boxes used for training from the input detector.

anchorBoxes = input.detector.AnchorBoxes;

Get the activation size of the last convolution layer in the input network by using the
analyzeNetwork function.

analyzeNetwork(net);

 Export YOLO v2 Object Detector to ONNX

3-371

finalActivationSize = [16 16 24];

Export to ONNX Model Format

Export the YOLO v2 object detection network as an ONNX format file by using the
exportONNXNetwork (Deep Learning Toolbox) function. Specify the file name as yolov2.onnx. The
function saves the exported ONNX file to the current working folder.

filename = 'yolov2.onnx';
exportONNXNetwork(net,filename);

The exportONNXNetwork function maps the yolov2TransformLayer and yolov2OutputLayer in
the input YOLO v2 network to the basic ONNX operator and identity operator, respectively. After you
export the network, you can import the yolov2.onnx file into any deep learning framework that
supports ONNX import.

Using the exportONNXNetwork, requires Deep Learning Toolbox™ and the Deep Learning Toolbox
Converter for ONNX Model Format support package. If this support package is not installed, then the
function provides a download link.

Object Detection Using Exported YOLO v2 Network

When exporting is complete, you can import the ONNX model into any deep learning framework and
use the following workflow to perform object detection. Along with the ONNX network, this workflow

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-372

also requires the YOLO v2 detector metadata inputImageSize, anchorBoxes, and
finalActivationSize obtained from the MATLAB workspace. The following code is a MATLAB
implementation of the workflow that you must translate into the equivalent code for the framework of
your choice.

Preprocess Input Image

Preprocess the image to use for inference. The image must be an RGB image and must be resized to
the network input image size, and its pixel values must lie in the interval [0 1].

I = imread('highway.png');
resizedI = imresize(I,inputImageSize(1:2));
rescaledI = rescale(resizedI);

Pass Input and Run ONNX Model

Run the ONNX model in the deep learning framework of your choice with the preprocessed image as
input to the imported ONNX model.

Extract Predictions from Output of ONNX Model

The model predicts the following:

• Intersection over union (IoU) with ground truth boxes
• x, y, w, and h bounding box parameters for each anchor box
• Class probabilities for each anchor box

The output of the ONNX model is a feature map that contains the predictions and is of size
predictionsPerAnchor-by-numAnchors-by-numGrids.

• numAnchors is the number of anchor boxes.
• numGrids is the number of grids calculated as the product of the height and width of the last

convolution layer.
• predictionsPerAnchor is the output predictions in the form [IoU;x;y;w;h;class

probabilities].

 Export YOLO v2 Object Detector to ONNX

3-373

• The first row in the feature map contains IoU predictions for each anchor box.
• The second and third rows in the feature map contain predictions for the centroid coordinates

(x,y) of each anchor box.
• The fourth and fifth rows in the feature map contain the predictions for the width and height of

each anchor box.
• The sixth row in the feature map contains the predictions for class probabilities of each anchor

box.

Compute Final Detections

To compute final detections for the preprocessed test image, you must:

• Rescale the bounding box parameters with respect to the size of the input layer of the network.
• Compute object confidence scores from the predictions.
• Obtain predictions with high object confidence scores.
• Perform nonmaximum suppression.

As an implementation guide, use the code for yolov2PostProcess on page 3-375 function in
Postprocessing Functions on page 3-375.

[bboxes,scores,labels] = yolov2PostProcess(featureMap,inputImageSize,finalActivationsSize,anchorBoxes);

Display Detection Results

Idisp = insertObjectAnnotation(resizedI,'rectangle',bboxes,scores);
figure
imshow(Idisp)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-374

References

[1] Redmon, Joseph, and Ali Farhadi. “YOLO9000: Better, Faster, Stronger.” In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 6517–25. Honolulu, HI: IEEE, 2017. https://
doi.org/10.1109/CVPR.2017.690.

Postprocessing Functions

function [bboxes,scores,labels] = yolov2PostProcess(featureMap,inputImageSize,finalActivationsSize,anchorBoxes)

% Extract prediction values from the feature map.
iouPred = featureMap(1,:,:);
xyPred = featureMap(2:3,:,:);
whPred = featureMap(4:5,:,:);
probPred = featureMap(6,:,:);

% Rescale the bounding box parameters.
bBoxes = rescaleBbox(xyPred,whPred,anchorBoxes,finalActivationsSize,inputImageSize);

% Rearrange the feature map as a two-dimensional matrix for efficient processing.
predVal = [bBoxes;iouPred;probPred];
predVal = reshape(predVal,size(predVal,1),[]);

% Compute object confidence scores from the rearranged prediction values.
[confScore,idx] = computeObjectScore(predVal);

% Obtain predictions with high object confidence scores.
[bboxPred,scorePred,classPred] = selectMaximumPredictions(confScore,idx,predVal);

% To get the final detections, perform nonmaximum suppression with an overlap threshold of 0.5.
[bboxes,scores,labels] = selectStrongestBboxMulticlass(bboxPred', scorePred', classPred','RatioType','Union','OverlapThreshold',0.5);

end

function bBoxes = rescaleBbox(xyPred,whPred,anchorBoxes,finalActivationsSize,inputImageSize)

% To rescale the bounding box parameters, compute the scaling factor by using the network parameters inputImageSize and finalActivationSize.
scaleY = inputImageSize(1)/finalActivationsSize(1);
scaleX = inputImageSize(2)/finalActivationsSize(2);
scaleFactor = [scaleY scaleX];

bBoxes = zeros(size(xyPred,1)+size(whPred,1),size(anchors,1),size(xyPred,3),'like',xyPred);
for rowIdx=0:finalActivationsSize(1,1)-1
 for colIdx=0:finalActivationsSize(1,2)-1
 ind = rowIdx*finalActivationsSize(1,2)+colIdx+1;
 for anchorIdx = 1 : size(anchorBoxes,1)

 % Compute the center with respect to image.
 cx = (xyPred(1,anchorIdx,ind)+colIdx)* scaleFactor(1,2);
 cy = (xyPred(2,anchorIdx,ind)+rowIdx)* scaleFactor(1,1);

 % Compute the width and height with respect to the image.
 bw = whPred(1,anchorIdx,ind)* anchorBoxes(anchorIdx,1);
 bh = whPred(2,anchorIdx,ind)* anchorBoxes(anchorIdx,2);

 bBoxes(1,anchorIdx,ind) = (cx-bw/2);

 Export YOLO v2 Object Detector to ONNX

3-375

 bBoxes(2,anchorIdx,ind) = (cy-bh/2);
 bBoxes(3,anchorIdx,ind) = bw;
 bBoxes(4,anchorIdx,ind) = bh;
 end
 end
end
end

function [confScore,idx] = computeObjectScore(predVal)
iouPred = predVal(5,:);
probPred = predVal(6:end,:);
[imax,idx] = max(probPred,[],1);
confScore = iouPred.*imax;
end

function [bboxPred,scorePred,classPred] = selectMaximumPredictions(confScore,idx,predVal)
% Specify the threshold for confidence scores.
confScoreId = confScore >= 0.5;
% Obtain the confidence scores greater than or equal to 0.5.
scorePred = confScore(:,confScoreId);
% Obtain the class IDs for predictions with confidence scores greater than
% or equal to 0.5.
classPred = idx(:,confScoreId);
% Obtain the bounding box parameters for predictions with confidence scores
% greater than or equal to 0.5.
bboxesXYWH = predVal(1:4,:);
bboxPred = bboxesXYWH(:,confScoreId);
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-376

Estimate Anchor Boxes From Training Data

Anchor boxes are important parameters of deep learning object detectors such as Faster R-CNN and
YOLO v2. The shape, scale, and number of anchor boxes impact the efficiency and accuracy of the
detectors.

For more information, see “Anchor Boxes for Object Detection” on page 17-44.

Load Training Data

Load the vehicle dataset, which contains 295 images and associated box labels.

data = load('vehicleTrainingData.mat');
vehicleDataset = data.vehicleTrainingData;

Add the full path to the local vehicle data folder.

dataDir = fullfile(toolboxdir('vision'),'visiondata');
vehicleDataset.imageFilename = fullfile(dataDir,vehicleDataset.imageFilename);

Display the data set summary.

summary(vehicleDataset)

Variables:

 imageFilename: 295×1 cell array of character vectors

 vehicle: 295×1 cell

Visualize Ground Truth Box Distribution

Visualize the labeled boxes to better understand the range of object sizes present in the data set.

Combine all the ground truth boxes into one array.

allBoxes = vertcat(vehicleDataset.vehicle{:});

Plot the box area versus the box aspect ratio.

aspectRatio = allBoxes(:,3) ./ allBoxes(:,4);
area = prod(allBoxes(:,3:4),2);

figure
scatter(area,aspectRatio)
xlabel("Box Area")
ylabel("Aspect Ratio (width/height)");
title("Box Area vs. Aspect Ratio")

 Estimate Anchor Boxes From Training Data

3-377

The plot shows a few groups of objects that are of similar size and shape, However, because the
groups are spread out, manually choosing anchor boxes is difficult. A better way to estimate anchor
boxes is to use a clustering algorithm that can group similar boxes together using a meaningful
metric.

Estimate Anchor Boxes

Estimate anchor boxes from training data using the estimateAnchorBoxes function, which uses the
intersection-over-union (IoU) distance metric.

A distance metric based on IoU is invariant to the size of boxes, unlike the Euclidean distance metric,
which produces larger errors as the box sizes increase [1]. In addition, using an IoU distance metric
leads to boxes of similar aspect ratios and sizes being clustered together, which results in anchor box
estimates that fit the data.

Create a boxLabelDatastore using the ground truth boxes in the vehicle data set. If the
preprocessing step for training an object detector involves resizing of the images, use transform
and bboxresize to resize the bounding boxes in the boxLabelDatastore before estimating the
anchor boxes.

trainingData = boxLabelDatastore(vehicleDataset(:,2:end));

Select the number of anchors and estimate the anchor boxes using estimateAnchorBoxes function.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-378

numAnchors = ;
[anchorBoxes,meanIoU] = estimateAnchorBoxes(trainingData,numAnchors);
anchorBoxes

anchorBoxes = 5×2

 21 27
 87 116
 67 92
 43 61
 86 105

Choosing the number of anchors is another training hyperparameter that requires careful selection
using empirical analysis. One quality measure for judging the estimated anchor boxes is the mean
IoU of the boxes in each cluster. The estimateAnchorBoxes function uses a k-means clustering
algorithm with the IoU distance metric to calculate the overlap using the equation, 1 -
bboxOverlapRatio(allBoxes,boxInCluster).

meanIoU

meanIoU = 0.8411

The mean IoU value greater than 0.5 ensures that the anchor boxes overlap well with the boxes in the
training data. Increasing the number of anchors can improve the mean IoU measure. However, using
more anchor boxes in an object detector can also increase the computation cost and lead to
overfitting, which results in poor detector performance.

Sweep over a range of values and plot the mean IoU versus number of anchor boxes to measure the
trade-off between number of anchors and mean IoU.

maxNumAnchors = 15;
meanIoU = zeros([maxNumAnchors,1]);
anchorBoxes = cell(maxNumAnchors, 1);
for k = 1:maxNumAnchors
 % Estimate anchors and mean IoU.
 [anchorBoxes{k},meanIoU(k)] = estimateAnchorBoxes(trainingData,k);
end

figure
plot(1:maxNumAnchors,meanIoU,'-o')
ylabel("Mean IoU")
xlabel("Number of Anchors")
title("Number of Anchors vs. Mean IoU")

 Estimate Anchor Boxes From Training Data

3-379

Using two anchor boxes results in a mean IoU value greater than 0.65, and using more than 7 anchor
boxes yields only marginal improvement in mean IoU value. Given these results, the next step is to
train and evaluate multiple object detectors using values between 2 and 6. This empirical analysis
helps determine the number of anchor boxes required to satisfy application performance
requirements, such as detection speed, or accuracy.

References
[1] Redmon, Joseph, and Ali Farhadi. “YOLO9000: Better, Faster, Stronger.” In 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 6517–25. Honolulu, HI: IEEE, 2017.
https://doi.org/10.1109/CVPR.2017.690.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-380

Object Detection Using YOLO v3 Deep Learning

This example shows how to train a YOLO v3 on page 3-394 object detector.

Deep learning is a powerful machine learning technique that you can use to train robust object
detectors. Several techniques for object detection exist, including Faster R-CNN, you only look once
(YOLO) v2, and single shot detector (SSD). This example shows how to train a YOLO v3 object
detector. YOLO v3 improves upon YOLO v2 by adding detection at multiple scales to help detect
smaller objects. The loss function used for training is separated into mean squared error for bounding
box regression and binary cross-entropy for object classification to help improve detection accuracy.

Note: This example requires the Computer Vision Toolbox™ Model for YOLO v3 Object Detection.
You can install the Computer Vision Toolbox Model for YOLO v3 Object Detection from Add-On
Explorer. For more information about installing add-ons, see “Get and Manage Add-Ons”.

Download Pretrained Network

Download a pretrained network by using the helper function
downloadPretrainedYOLOv3Detector to avoid having to wait for training to complete. If you
want to train the network with a new set of data, set the doTraining variable to true.

doTraining = false;

if ~doTraining
 preTrainedDetector = downloadPretrainedYOLOv3Detector();
end

Load Data

This example uses a small labeled data set that contains 295 images. Many of these images come
from the Caltech Cars 1999 and 2001 data sets, created by Pietro Perona and used with permission.
Each image contains one or two labeled instances of a vehicle. A small data set is useful for exploring
the YOLO v3 training procedure, but in practice, more labeled images are needed to train a robust
network.

Unzip the vehicle images and load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

% Add the full path to the local vehicle data folder.
vehicleDataset.imageFilename = fullfile(pwd, vehicleDataset.imageFilename);

Note: In case of multiple classes, the data can also be organized as three columns where the first
column contains the image file names with paths, the second column contains the bounding boxes
and the third column must be a cell vector that contains the label names corresponding to each
bounding box. For more information on how to arrange the bounding boxes and labels, see
boxLabelDatastore.

All the bounding boxes must be in the form [x y width height]. This vector specifies the upper
left corner and the size of the bounding box in pixels.

Split the data set into a training set for training the network, and a test set for evaluating the
network. Use 60% of the data for training set and the rest for the test set.

 Object Detection Using YOLO v3 Deep Learning

3-381

rng(0);
shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.6 * length(shuffledIndices));
trainingDataTbl = vehicleDataset(shuffledIndices(1:idx), :);
testDataTbl = vehicleDataset(shuffledIndices(idx+1:end), :);

Create an image datastore for loading the images.

imdsTrain = imageDatastore(trainingDataTbl.imageFilename);
imdsTest = imageDatastore(testDataTbl.imageFilename);

Create a datastore for the ground truth bounding boxes.

bldsTrain = boxLabelDatastore(trainingDataTbl(:, 2:end));
bldsTest = boxLabelDatastore(testDataTbl(:, 2:end));

Combine the image and box label datastores.

trainingData = combine(imdsTrain, bldsTrain);
testData = combine(imdsTest, bldsTest);

Use validateInputData to detect invalid images, bounding boxes or labels i.e.,

• Samples with invalid image format or containing NaNs
• Bounding boxes containing zeros/NaNs/Infs/empty
• Missing/non-categorical labels.

The values of the bounding boxes should be finite, positive, non-fractional, non-NaN and should be
within the image boundary with a positive height and width. Any invalid samples must either be
discarded or fixed for proper training.

validateInputData(trainingData);
validateInputData(testData);

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Use transform function to apply custom data augmentations to the training data. The augmentData
helper function, listed at the end of the example, applies the following augmentations to the input
data.

• Color jitter augmentation in HSV space
• Random horizontal flip
• Random scaling by 10 percent

augmentedTrainingData = transform(trainingData, @augmentData);

Read the same image four times and display the augmented training data.

% Visualize the augmented images.
augmentedData = cell(4,1);
for k = 1:4
 data = read(augmentedTrainingData);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-382

 augmentedData{k} = insertShape(data{1,1}, 'Rectangle', data{1,2});
 reset(augmentedTrainingData);
end
figure
montage(augmentedData, 'BorderSize', 10)

Define YOLO v3 Object Detector

The YOLO v3 detector in this example is based on SqueezeNet, and uses the feature extraction
network in SqueezeNet with the addition of two detection heads at the end. The second detection
head is twice the size of the first detection head, so it is better able to detect small objects. Note that
you can specify any number of detection heads of different sizes based on the size of the objects that
you want to detect. The YOLO v3 detector uses anchor boxes estimated using training data to have
better initial priors corresponding to the type of data set and to help the detector learn to predict the
boxes accurately. For information about anchor boxes, see “Anchor Boxes for Object Detection” on
page 17-44.

The YOLO v3 network present in the YOLO v3 detector is illustrated in the following diagram.

You can use Deep Network Designer (Deep Learning Toolbox) to create the network shown in the
diagram.

 Object Detection Using YOLO v3 Deep Learning

3-383

Specify the network input size. When choosing the network input size, consider the minimum size
required to run the network itself, the size of the training images, and the computational cost
incurred by processing data at the selected size. When feasible, choose a network input size that is
close to the size of the training image and larger than the input size required for the network. To
reduce the computational cost of running the example, specify a network input size of [227 227 3].

networkInputSize = [227 227 3];

First, use transform to preprocess the training data for computing the anchor boxes, as the training
images used in this example are bigger than 227-by-227 and vary in size. Specify the number of
anchors as 6 to achieve a good tradeoff between number of anchors and mean IoU. Use the
estimateAnchorBoxes function to estimate the anchor boxes. For details on estimating anchor
boxes, see “Estimate Anchor Boxes From Training Data” on page 3-377. In case of using a pretrained
YOLOv3 object detector, the anchor boxes calculated on that particular training dataset need to be
specified. Note that the estimation process is not deterministic. To prevent the estimated anchor
boxes from changing while tuning other hyperparameters, set the random seed prior to estimation
using rng.

rng(0)
trainingDataForEstimation = transform(trainingData, @(data)preprocessData(data, networkInputSize));
numAnchors = 6;
[anchors, meanIoU] = estimateAnchorBoxes(trainingDataForEstimation, numAnchors)

anchors = 6×2

 41 34
 163 130
 98 93
 144 125
 33 24
 69 66

meanIoU = 0.8507

Specify anchorBoxes to use in both the detection heads. anchorBoxes is a cell array of [Mx1],
where M denotes the number of detection heads. Each detection head consists of a [Nx2] matrix of
anchors, where N is the number of anchors to use. Select anchorBoxes for each detection head
based on the feature map size. Use larger anchors at lower scale and smaller anchors at higher
scale. To do so, sort the anchors with the larger anchor boxes first and assign the first three to the
first detection head and the next three to the second detection head.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-384

area = anchors(:, 1).*anchors(:, 2);
[~, idx] = sort(area, 'descend');
anchors = anchors(idx, :);
anchorBoxes = {anchors(1:3,:)
 anchors(4:6,:)
 };

Load the SqueezeNet network pretrained on Imagenet data set and then specify the class names. You
can also choose to load a different pretrained network trained on COCO data set such as tiny-
yolov3-coco or darknet53-coco or Imagenet data set such as MobileNet-v2 or ResNet-18. YOLO
v3 performs better and trains faster when you use a pretrained network.

baseNetwork = squeezenet;
classNames = trainingDataTbl.Properties.VariableNames(2:end);

Next, create the yolov3ObjectDetector object by adding the detection network source. Choosing
the optimal detection network source requires trial and error, and you can use analyzeNetwork to
find the names of potential detection network source within a network. For this example, use the
fire9-concat and fire5-concat layers as DetectionNetworkSource.

yolov3Detector = yolov3ObjectDetector(baseNetwork, classNames, anchorBoxes, 'DetectionNetworkSource', {'fire9-concat', 'fire5-concat'}, InputSize = networkInputSize);

Alternatively, instead of the network created above using SqueezeNet, other pretrained YOLOv3
architectures trained using larger datasets like MS-COCO can be used to transfer learn the detector
on custom object detection task. Transfer learning can be realized by changing the classNames and
anchorBoxes.

Preprocess Training Data

Preprocess the augmented training data to prepare for training. The preprocess method in
yolov3ObjectDetector, applies the following preprocessing operations to the input data.

• Resize the images to the network input size by maintaining the aspect ratio.
• Scale the image pixels in the range [0 1].

preprocessedTrainingData = transform(augmentedTrainingData, @(data)preprocess(yolov3Detector, data));

Read the preprocessed training data.

data = read(preprocessedTrainingData);

Display the image with the bounding boxes.

I = data{1,1};
bbox = data{1,2};
annotatedImage = insertShape(I, 'Rectangle', bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

 Object Detection Using YOLO v3 Deep Learning

3-385

Reset the datastore.

reset(preprocessedTrainingData);

Specify Training Options

Specify these training options.

• Set the number of epochs to be 80.
• Set the mini batch size as 8. Stable training can be possible with higher learning rates when

higher mini batch size is used. Although, this should be set depending on the available memory.
• Set the learning rate to 0.001.
• Set the warmup period as 1000 iterations. This parameter denotes the number of iterations to

increase the learning rate exponentially based on the formula learningRate × iteration
warmupPeriod

4
. It

helps in stabilizing the gradients at higher learning rates.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-386

• Set the L2 regularization factor to 0.0005.
• Specify the penalty threshold as 0.5. Detections that overlap less than 0.5 with the ground truth

are penalized.
• Initialize the velocity of gradient as []. This is used by SGDM to store the velocity of gradients.

numEpochs = 80;
miniBatchSize = 8;
learningRate = 0.001;
warmupPeriod = 1000;
l2Regularization = 0.0005;
penaltyThreshold = 0.5;
velocity = [];

Train Model

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For information about the supported compute capabilities, see “GPU
Computing Requirements” (Parallel Computing Toolbox).

Use the minibatchqueue function to split the preprocessed training data into batches with the
supporting function createBatchData which returns the batched images and bounding boxes
combined with the respective class IDs. For faster extraction of the batch data for training,
dispatchInBackground should be set to "true" which ensures the usage of parallel pool.

minibatchqueue automatically detects the availability of a GPU. If you do not have a GPU, or do not
want to use one for training, set the OutputEnvironment parameter to "cpu".

if canUseParallelPool
 dispatchInBackground = true;
else
 dispatchInBackground = false;
end

mbqTrain = minibatchqueue(preprocessedTrainingData, 2,...
 "MiniBatchSize", miniBatchSize,...
 "MiniBatchFcn", @(images, boxes, labels) createBatchData(images, boxes, labels, classNames), ...
 "MiniBatchFormat", ["SSCB", ""],...
 "DispatchInBackground", dispatchInBackground,...
 "OutputCast", ["", "double"]);

Create the training progress plotter using supporting function
configureTrainingProgressPlotter to see the plot while training the detector object with a
custom training loop.

Finally, specify the custom training loop. For each iteration:

• Read data from the minibatchqueue. If it doesn't have any more data, reset the
minibatchqueue and shuffle.

• Evaluate the model gradients using dlfeval and the modelGradients function. The function
modelGradients, listed as a supporting function, returns the gradients of the loss with respect
to the learnable parameters in net, the corresponding mini-batch loss, and the state of the
current batch.

• Apply a weight decay factor to the gradients to regularization for more robust training.
• Determine the learning rate based on the iterations using the

piecewiseLearningRateWithWarmup supporting function.

 Object Detection Using YOLO v3 Deep Learning

3-387

• Update the detector parameters using the sgdmupdate function.
• Update the state parameters of detector with the moving average.
• Display the learning rate, total loss, and the individual losses (box loss, object loss and class loss)

for every iteration. These can be used to interpret how the respective losses are changing in each
iteration. For example, a sudden spike in the box loss after few iterations implies that there are Inf
or NaNs in the predictions.

• Update the training progress plot.

The training can also be terminated if the loss has saturated for few epochs.

if doTraining

 % Create subplots for the learning rate and mini-batch loss.
 fig = figure;
 [lossPlotter, learningRatePlotter] = configureTrainingProgressPlotter(fig);

 iteration = 0;
 % Custom training loop.
 for epoch = 1:numEpochs

 reset(mbqTrain);
 shuffle(mbqTrain);

 while(hasdata(mbqTrain))
 iteration = iteration + 1;

 [XTrain, YTrain] = next(mbqTrain);

 % Evaluate the model gradients and loss using dlfeval and the
 % modelGradients function.
 [gradients, state, lossInfo] = dlfeval(@modelGradients, yolov3Detector, XTrain, YTrain, penaltyThreshold);

 % Apply L2 regularization.
 gradients = dlupdate(@(g,w) g + l2Regularization*w, gradients, yolov3Detector.Learnables);

 % Determine the current learning rate value.
 currentLR = piecewiseLearningRateWithWarmup(iteration, epoch, learningRate, warmupPeriod, numEpochs);

 % Update the detector learnable parameters using the SGDM optimizer.
 [yolov3Detector.Learnables, velocity] = sgdmupdate(yolov3Detector.Learnables, gradients, velocity, currentLR);

 % Update the state parameters of dlnetwork.
 yolov3Detector.State = state;

 % Display progress.
 displayLossInfo(epoch, iteration, currentLR, lossInfo);

 % Update training plot with new points.
 updatePlots(lossPlotter, learningRatePlotter, iteration, currentLR, lossInfo.totalLoss);
 end
 end
else
 yolov3Detector = preTrainedDetector;
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-388

Evaluate Model

Computer Vision Toolbox™ provides object detector evaluation functions to measure common metrics
such as average precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). In this example, the average precision metric is used. The average
precision provides a single number that incorporates the ability of the detector to make correct
classifications (precision) and the ability of the detector to find all relevant objects (recall).

results = detect(yolov3Detector,testData,'MiniBatchSize',8);

% Evaluate the object detector using Average Precision metric.
[ap,recall,precision] = evaluateDetectionPrecision(results,testData);

The precision-recall (PR) curve shows how precise a detector is at varying levels of recall. Ideally, the
precision is 1 at all recall levels.

% Plot precision-recall curve.
figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', ap))

Detect Objects Using YOLO v3

Use the detector for object detection.

 Object Detection Using YOLO v3 Deep Learning

3-389

% Read the datastore.
data = read(testData);

% Get the image.
I = data{1};

[bboxes,scores,labels] = detect(yolov3Detector,I);

% Display the detections on image.
I = insertObjectAnnotation(I,'rectangle',bboxes,scores);

figure
imshow(I)

Supporting Functions

Model Gradients Function

The function modelGradients takes the yolov3ObjectDetector object, a mini-batch of input data
XTrain with corresponding ground truth boxes YTrain, the specified penalty threshold as input
arguments and returns the gradients of the loss with respect to the learnable parameters in
yolov3ObjectDetector, the corresponding mini-batch loss information, and the state of the
current batch.

The model gradients function computes the total loss and gradients by performing these operations.

• Generate predictions from the input batch of images using the forward method.
• Collect predictions on the CPU for postprocessing.
• Convert the predictions from the YOLO v3 grid cell coordinates to bounding box coordinates to

allow easy comparison with the ground truth data by using the anchorBoxGenerator method of
yolov3ObjectDetector.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-390

• Generate targets for loss computation by using the converted predictions and ground truth data.
These targets are generated for bounding box positions (x, y, width, height), object confidence,
and class probabilities. See the supporting function generateTargets.

• Calculates the mean squared error of the predicted bounding box coordinates with target boxes.
See the supporting function bboxOffsetLoss.

• Determines the binary cross-entropy of the predicted object confidence score with target object
confidence score. See the supporting function objectnessLoss.

• Determines the binary cross-entropy of the predicted class of object with the target. See the
supporting function classConfidenceLoss.

• Computes the total loss as the sum of all losses.
• Computes the gradients of learnables with respect to the total loss.

function [gradients, state, info] = modelGradients(detector, XTrain, YTrain, penaltyThreshold)
inputImageSize = size(XTrain,1:2);

% Gather the ground truths in the CPU for post processing
YTrain = gather(extractdata(YTrain));

% Extract the predictions from the detector.
[gatheredPredictions, YPredCell, state] = forward(detector, XTrain);

% Generate target for predictions from the ground truth data.
[boxTarget, objectnessTarget, classTarget, objectMaskTarget, boxErrorScale] = generateTargets(gatheredPredictions,...
 YTrain, inputImageSize, detector.AnchorBoxes, penaltyThreshold);

% Compute the loss.
boxLoss = bboxOffsetLoss(YPredCell(:,[2 3 7 8]),boxTarget,objectMaskTarget,boxErrorScale);
objLoss = objectnessLoss(YPredCell(:,1),objectnessTarget,objectMaskTarget);
clsLoss = classConfidenceLoss(YPredCell(:,6),classTarget,objectMaskTarget);
totalLoss = boxLoss + objLoss + clsLoss;

info.boxLoss = boxLoss;
info.objLoss = objLoss;
info.clsLoss = clsLoss;
info.totalLoss = totalLoss;

% Compute gradients of learnables with regard to loss.
gradients = dlgradient(totalLoss, detector.Learnables);
end

function boxLoss = bboxOffsetLoss(boxPredCell, boxDeltaTarget, boxMaskTarget, boxErrorScaleTarget)
% Mean squared error for bounding box position.
lossX = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,1),boxDeltaTarget(:,1),boxMaskTarget(:,1),boxErrorScaleTarget));
lossY = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,2),boxDeltaTarget(:,2),boxMaskTarget(:,1),boxErrorScaleTarget));
lossW = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,3),boxDeltaTarget(:,3),boxMaskTarget(:,1),boxErrorScaleTarget));
lossH = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,4),boxDeltaTarget(:,4),boxMaskTarget(:,1),boxErrorScaleTarget));
boxLoss = lossX+lossY+lossW+lossH;
end

function objLoss = objectnessLoss(objectnessPredCell, objectnessDeltaTarget, boxMaskTarget)
% Binary cross-entropy loss for objectness score.
objLoss = sum(cellfun(@(a,b,c) crossentropy(a.*c,b.*c,'TargetCategories','independent'),objectnessPredCell,objectnessDeltaTarget,boxMaskTarget(:,2)));
end

function clsLoss = classConfidenceLoss(classPredCell, classTarget, boxMaskTarget)

 Object Detection Using YOLO v3 Deep Learning

3-391

% Binary cross-entropy loss for class confidence score.
clsLoss = sum(cellfun(@(a,b,c) crossentropy(a.*c,b.*c,'TargetCategories','independent'),classPredCell,classTarget,boxMaskTarget(:,3)));
end

Augmentation and Data Processing Functions

function data = augmentData(A)
% Apply random horizontal flipping, and random X/Y scaling. Boxes that get
% scaled outside the bounds are clipped if the overlap is above 0.25. Also,
% jitter image color.

data = cell(size(A));
for ii = 1:size(A,1)
 I = A{ii,1};
 bboxes = A{ii,2};
 labels = A{ii,3};
 sz = size(I);

 if numel(sz) == 3 && sz(3) == 3
 I = jitterColorHSV(I,...
 'Contrast',0.0,...
 'Hue',0.1,...
 'Saturation',0.2,...
 'Brightness',0.2);
 end

 % Randomly flip image.
 tform = randomAffine2d('XReflection',true,'Scale',[1 1.1]);
 rout = affineOutputView(sz,tform,'BoundsStyle','centerOutput');
 I = imwarp(I,tform,'OutputView',rout);

 % Apply same transform to boxes.
 [bboxes,indices] = bboxwarp(bboxes,tform,rout,'OverlapThreshold',0.25);
 bboxes = round(bboxes);
 labels = labels(indices);

 % Return original data only when all boxes are removed by warping.
 if isempty(indices)
 data(ii,:) = A(ii,:);
 else
 data(ii,:) = {I, bboxes, labels};
 end
end
end

function data = preprocessData(data, targetSize)
% Resize the images and scale the pixels to between 0 and 1. Also scale the
% corresponding bounding boxes.

for ii = 1:size(data,1)
 I = data{ii,1};
 imgSize = size(I);

 % Convert an input image with single channel to 3 channels.
 if numel(imgSize) < 3
 I = repmat(I,1,1,3);
 end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-392

 bboxes = data{ii,2};

 I = im2single(imresize(I,targetSize(1:2)));
 scale = targetSize(1:2)./imgSize(1:2);
 bboxes = bboxresize(bboxes,scale);

 data(ii, 1:2) = {I, bboxes};
end
end

function [XTrain, YTrain] = createBatchData(data, groundTruthBoxes, groundTruthClasses, classNames)
% Returns images combined along the batch dimension in XTrain and
% normalized bounding boxes concatenated with classIDs in YTrain

% Concatenate images along the batch dimension.
XTrain = cat(4, data{:,1});

% Get class IDs from the class names.
classNames = repmat({categorical(classNames')}, size(groundTruthClasses));
[~, classIndices] = cellfun(@(a,b)ismember(a,b), groundTruthClasses, classNames, 'UniformOutput', false);

% Append the label indexes and training image size to scaled bounding boxes
% and create a single cell array of responses.
combinedResponses = cellfun(@(bbox, classid)[bbox, classid], groundTruthBoxes, classIndices, 'UniformOutput', false);
len = max(cellfun(@(x)size(x,1), combinedResponses));
paddedBBoxes = cellfun(@(v) padarray(v,[len-size(v,1),0],0,'post'), combinedResponses, 'UniformOutput',false);
YTrain = cat(4, paddedBBoxes{:,1});
end

Learning Rate Schedule Function

function currentLR = piecewiseLearningRateWithWarmup(iteration, epoch, learningRate, warmupPeriod, numEpochs)
% The piecewiseLearningRateWithWarmup function computes the current
% learning rate based on the iteration number.
persistent warmUpEpoch;

if iteration <= warmupPeriod
 % Increase the learning rate for number of iterations in warmup period.
 currentLR = learningRate * ((iteration/warmupPeriod)^4);
 warmUpEpoch = epoch;
elseif iteration >= warmupPeriod && epoch < warmUpEpoch+floor(0.6*(numEpochs-warmUpEpoch))
 % After warm up period, keep the learning rate constant if the remaining number of epochs is less than 60 percent.
 currentLR = learningRate;

elseif epoch >= warmUpEpoch + floor(0.6*(numEpochs-warmUpEpoch)) && epoch < warmUpEpoch+floor(0.9*(numEpochs-warmUpEpoch))
 % If the remaining number of epochs is more than 60 percent but less
 % than 90 percent multiply the learning rate by 0.1.
 currentLR = learningRate*0.1;

else
 % If remaining epochs are more than 90 percent multiply the learning
 % rate by 0.01.
 currentLR = learningRate*0.01;
end

end

 Object Detection Using YOLO v3 Deep Learning

3-393

Utility Functions

function [lossPlotter, learningRatePlotter] = configureTrainingProgressPlotter(f)
% Create the subplots to display the loss and learning rate.
figure(f);
clf
subplot(2,1,1);
ylabel('Learning Rate');
xlabel('Iteration');
learningRatePlotter = animatedline;
subplot(2,1,2);
ylabel('Total Loss');
xlabel('Iteration');
lossPlotter = animatedline;
end

function displayLossInfo(epoch, iteration, currentLR, lossInfo)
% Display loss information for each iteration.
disp("Epoch : " + epoch + " | Iteration : " + iteration + " | Learning Rate : " + currentLR + ...
 " | Total Loss : " + double(gather(extractdata(lossInfo.totalLoss))) + ...
 " | Box Loss : " + double(gather(extractdata(lossInfo.boxLoss))) + ...
 " | Object Loss : " + double(gather(extractdata(lossInfo.objLoss))) + ...
 " | Class Loss : " + double(gather(extractdata(lossInfo.clsLoss))));
end

function updatePlots(lossPlotter, learningRatePlotter, iteration, currentLR, totalLoss)
% Update loss and learning rate plots.
addpoints(lossPlotter, iteration, double(extractdata(gather(totalLoss))));
addpoints(learningRatePlotter, iteration, currentLR);
drawnow
end

function detector = downloadPretrainedYOLOv3Detector()
% Download a pretrained yolov3 detector.
if ~exist('yolov3SqueezeNetVehicleExample_21aSPKG.mat', 'file')
 if ~exist('yolov3SqueezeNetVehicleExample_21aSPKG.zip', 'file')
 disp('Downloading pretrained detector...');
 pretrainedURL = 'https://ssd.mathworks.com/supportfiles/vision/data/yolov3SqueezeNetVehicleExample_21aSPKG.zip';
 websave('yolov3SqueezeNetVehicleExample_21aSPKG.zip', pretrainedURL);
 end
 unzip('yolov3SqueezeNetVehicleExample_21aSPKG.zip');
end
pretrained = load("yolov3SqueezeNetVehicleExample_21aSPKG.mat");
detector = pretrained.detector;
end

References

[1] Redmon, Joseph, and Ali Farhadi. “YOLOv3: An Incremental Improvement.” Preprint, submitted
April 8, 2018. https://arxiv.org/abs/1804.02767.

See Also
detect | preprocess | forward | yolov3ObjectDetector | analyzeNetwork |
evaluateDetectionPrecision | evaluateDetectionMissRate

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-394

Related Examples
• “Getting Started with YOLO v3” on page 17-53
• “Object Detection Using YOLO v2 Deep Learning” on page 3-396

 Object Detection Using YOLO v3 Deep Learning

3-395

Object Detection Using YOLO v2 Deep Learning

This example shows how to train a you only look once (YOLO) v2 object detector.

Deep learning is a powerful machine learning technique that you can use to train robust object
detectors. Several techniques for object detection exist, including Faster R-CNN and you only look
once (YOLO) v2. This example trains a YOLO v2 vehicle detector using the
trainYOLOv2ObjectDetector function. For more information, see “Getting Started with YOLO v2”
on page 17-49.

Download Pretrained Detector

Download a pretrained detector to avoid having to wait for training to complete. If you want to train
the detector, set the doTraining variable to true.

doTraining = false;
if ~doTraining && ~exist('yolov2ResNet50VehicleExample_19b.mat','file')
 disp('Downloading pretrained detector (98 MB)...');
 pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/yolov2ResNet50VehicleExample_19b.mat';
 websave('yolov2ResNet50VehicleExample_19b.mat',pretrainedURL);
end

Load Dataset

This example uses a small vehicle dataset that contains 295 images. Many of these images come from
the Caltech Cars 1999 and 2001 data sets, created by Pietro Perona and used with permission. Each
image contains one or two labeled instances of a vehicle. A small dataset is useful for exploring the
YOLO v2 training procedure, but in practice, more labeled images are needed to train a robust
detector. Unzip the vehicle images and load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

The vehicle data is stored in a two-column table, where the first column contains the image file paths
and the second column contains the vehicle bounding boxes.

% Display first few rows of the data set.
vehicleDataset(1:4,:)

ans=4×2 table
 imageFilename vehicle
 _________________________________ ____________

 {'vehicleImages/image_00001.jpg'} {1×4 double}
 {'vehicleImages/image_00002.jpg'} {1×4 double}
 {'vehicleImages/image_00003.jpg'} {1×4 double}
 {'vehicleImages/image_00004.jpg'} {1×4 double}

% Add the fullpath to the local vehicle data folder.
vehicleDataset.imageFilename = fullfile(pwd,vehicleDataset.imageFilename);

Split the dataset into training, validation, and test sets. Select 60% of the data for training, 10% for
validation, and the rest for testing the trained detector.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-396

rng(0);
shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.6 * length(shuffledIndices));

trainingIdx = 1:idx;
trainingDataTbl = vehicleDataset(shuffledIndices(trainingIdx),:);

validationIdx = idx+1 : idx + 1 + floor(0.1 * length(shuffledIndices));
validationDataTbl = vehicleDataset(shuffledIndices(validationIdx),:);

testIdx = validationIdx(end)+1 : length(shuffledIndices);
testDataTbl = vehicleDataset(shuffledIndices(testIdx),:);

Use imageDatastore and boxLabelDatastore to create datastores for loading the image and
label data during training and evaluation.

imdsTrain = imageDatastore(trainingDataTbl{:,'imageFilename'});
bldsTrain = boxLabelDatastore(trainingDataTbl(:,'vehicle'));

imdsValidation = imageDatastore(validationDataTbl{:,'imageFilename'});
bldsValidation = boxLabelDatastore(validationDataTbl(:,'vehicle'));

imdsTest = imageDatastore(testDataTbl{:,'imageFilename'});
bldsTest = boxLabelDatastore(testDataTbl(:,'vehicle'));

Combine image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
validationData = combine(imdsValidation,bldsValidation);
testData = combine(imdsTest,bldsTest);

Display one of the training images and box labels.

data = read(trainingData);
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

 Object Detection Using YOLO v2 Deep Learning

3-397

Create a YOLO v2 Object Detection Network

A YOLO v2 object detection network is composed of two subnetworks. A feature extraction network
followed by a detection network. The feature extraction network is typically a pretrained CNN (for
details, see “Pretrained Deep Neural Networks” (Deep Learning Toolbox)). This example uses
ResNet-50 for feature extraction. You can also use other pretrained networks such as MobileNet v2 or
ResNet-18 can also be used depending on application requirements. The detection sub-network is a
small CNN compared to the feature extraction network and is composed of a few convolutional layers
and layers specific for YOLO v2.

Use the yolov2Layers function to create a YOLO v2 object detection network automatically given a
pretrained ResNet-50 feature extraction network. yolov2Layers requires you to specify several
inputs that parameterize a YOLO v2 network:

• Network input size
• Anchor boxes
• Feature extraction network

First, specify the network input size and the number of classes. When choosing the network input
size, consider the minimum size required by the network itself, the size of the training images, and
the computational cost incurred by processing data at the selected size. When feasible, choose a
network input size that is close to the size of the training image and larger than the input size
required for the network. To reduce the computational cost of running the example, specify a network
input size of [224 224 3], which is the minimum size required to run the network.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-398

inputSize = [224 224 3];

Define the number of object classes to detect.

numClasses = width(vehicleDataset)-1;

Note that the training images used in this example are bigger than 224-by-224 and vary in size, so
you must resize the images in a preprocessing step prior to training.

Next, use estimateAnchorBoxes to estimate anchor boxes based on the size of objects in the
training data. To account for the resizing of the images prior to training, resize the training data for
estimating anchor boxes. Use transform to preprocess the training data, then define the number of
anchor boxes and estimate the anchor boxes. Resize the training data to the input image size of the
network using the supporting function preprocessData.

trainingDataForEstimation = transform(trainingData,@(data)preprocessData(data,inputSize));
numAnchors = 7;
[anchorBoxes, meanIoU] = estimateAnchorBoxes(trainingDataForEstimation, numAnchors)

anchorBoxes = 7×2

 162 136
 85 80
 149 123
 43 32
 65 63
 117 105
 33 27

meanIoU = 0.8472

For more information on choosing anchor boxes, see “Estimate Anchor Boxes From Training Data” on
page 3-377 (Computer Vision Toolbox™) and “Anchor Boxes for Object Detection” on page 17-44.

Now, use resnet50 to load a pretrained ResNet-50 model.

featureExtractionNetwork = resnet50;

Select 'activation_40_relu' as the feature extraction layer to replace the layers after
'activation_40_relu' with the detection subnetwork. This feature extraction layer outputs
feature maps that are downsampled by a factor of 16. This amount of downsampling is a good trade-
off between spatial resolution and the strength of the extracted features, as features extracted
further down the network encode stronger image features at the cost of spatial resolution. Choosing
the optimal feature extraction layer requires empirical analysis.

featureLayer = 'activation_40_relu';

Create the YOLO v2 object detection network.

lgraph = yolov2Layers(inputSize,numClasses,anchorBoxes,featureExtractionNetwork,featureLayer);

You can visualize the network using analyzeNetwork or Deep Network Designer from Deep
Learning Toolbox™.

If more control is required over the YOLO v2 network architecture, use Deep Network Designer to
design the YOLO v2 detection network manually. For more information, see “Design a YOLO v2
Detection Network” on page 17-50.

 Object Detection Using YOLO v2 Deep Learning

3-399

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Use transform to augment the training data by randomly flipping the image and associated box
labels horizontally. Note that data augmentation is not applied to the test and validation data. Ideally,
test and validation data should be representative of the original data and is left unmodified for
unbiased evaluation.

augmentedTrainingData = transform(trainingData,@augmentData);

Read the same image multiple times and display the augmented training data.

% Visualize the augmented images.
augmentedData = cell(4,1);
for k = 1:4
 data = read(augmentedTrainingData);
 augmentedData{k} = insertShape(data{1},'rectangle',data{2});
 reset(augmentedTrainingData);
end
figure
montage(augmentedData,'BorderSize',10)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-400

Preprocess Training Data

Preprocess the augmented training data, and the validation data to prepare for training.

preprocessedTrainingData = transform(augmentedTrainingData,@(data)preprocessData(data,inputSize));
preprocessedValidationData = transform(validationData,@(data)preprocessData(data,inputSize));

Read the preprocessed training data.

data = read(preprocessedTrainingData);

Display the image and bounding boxes.

I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

 Object Detection Using YOLO v2 Deep Learning

3-401

Train YOLO v2 Object Detector

Use trainingOptions to specify network training options. Set 'ValidationData' to the
preprocessed validation data. Set 'CheckpointPath' to a temporary location. This enables the
saving of partially trained detectors during the training process. If training is interrupted, such as by
a power outage or system failure, you can resume training from the saved checkpoint.

options = trainingOptions('sgdm', ...
 'MiniBatchSize',16,
 'InitialLearnRate',1e-3, ...
 'MaxEpochs',20, ...
 'CheckpointPath',tempdir, ...
 'ValidationData',preprocessedValidationData);

Use trainYOLOv2ObjectDetector function to train YOLO v2 object detector if doTraining is
true. Otherwise, load the pretrained network.

if doTraining
 % Train the YOLO v2 detector.
 [detector,info] = trainYOLOv2ObjectDetector(preprocessedTrainingData,lgraph,options);
else
 % Load pretrained detector for the example.
 pretrained = load('yolov2ResNet50VehicleExample_19b.mat');
 detector = pretrained.detector;
end

This example was verified on an NVIDIA™ Titan X GPU with 12 GB of memory. If your GPU has less
memory, you may run out of memory. If this happens, lower the 'MiniBatchSize' using the
trainingOptions function. Training this network took approximately 7 minutes using this setup.
Training time varies depending on the hardware you use.

As a quick test, run the detector on a test image. Make sure you resize the image to the same size as
the training images.

I = imread('highway.png');
I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);

Display the results.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-402

Evaluate Detector Using Test Set

Evaluate the trained object detector on a large set of images to measure the performance. Computer
Vision Toolbox™ provides object detector evaluation functions to measure common metrics such as
average precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all relevant
objects (recall).

Apply the same preprocessing transform to the test data as for the training data. Note that data
augmentation is not applied to the test data. Test data should be representative of the original data
and be left unmodified for unbiased evaluation.

preprocessedTestData = transform(testData,@(data)preprocessData(data,inputSize));

Run the detector on all the test images.

detectionResults = detect(detector, preprocessedTestData);

Evaluate the object detector using average precision metric.

[ap,recall,precision] = evaluateDetectionPrecision(detectionResults, preprocessedTestData);

The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. The
ideal precision is 1 at all recall levels. The use of more data can help improve the average precision
but might require more training time. Plot the PR curve.

figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f',ap))

 Object Detection Using YOLO v2 Deep Learning

3-403

Code Generation

Once the detector is trained and evaluated, you can generate code for the yolov2ObjectDetector
using GPU Coder™. See “Code Generation for Object Detection by Using YOLO v2” (GPU Coder)
example for more details.

Supporting Functions

function B = augmentData(A)
% Apply random horizontal flipping, and random X/Y scaling. Boxes that get
% scaled outside the bounds are clipped if the overlap is above 0.25. Also,
% jitter image color.

B = cell(size(A));

I = A{1};
sz = size(I);
if numel(sz)==3 && sz(3) == 3
 I = jitterColorHSV(I,...
 'Contrast',0.2,...
 'Hue',0,...
 'Saturation',0.1,...
 'Brightness',0.2);
end

% Randomly flip and scale image.
tform = randomAffine2d('XReflection',true,'Scale',[1 1.1]);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-404

rout = affineOutputView(sz,tform,'BoundsStyle','CenterOutput');
B{1} = imwarp(I,tform,'OutputView',rout);

% Sanitize boxes, if needed. This helper function is attached as a
% supporting file. Open the example in MATLAB to access this function.
A{2} = helperSanitizeBoxes(A{2});

% Apply same transform to boxes.
[B{2},indices] = bboxwarp(A{2},tform,rout,'OverlapThreshold',0.25);
B{3} = A{3}(indices);

% Return original data only when all boxes are removed by warping.
if isempty(indices)
 B = A;
end
end

function data = preprocessData(data,targetSize)
% Resize image and bounding boxes to the targetSize.
sz = size(data{1},[1 2]);
scale = targetSize(1:2)./sz;
data{1} = imresize(data{1},targetSize(1:2));

% Sanitize boxes, if needed. This helper function is attached as a
% supporting file. Open the example in MATLAB to access this function.
data{2} = helperSanitizeBoxes(data{2});

% Resize boxes to new image size.
data{2} = bboxresize(data{2},scale);
end

References

[1] Redmon, Joseph, and Ali Farhadi. “YOLO9000: Better, Faster, Stronger.” In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 6517–25. Honolulu, HI: IEEE, 2017. https://
doi.org/10.1109/CVPR.2017.690.

 Object Detection Using YOLO v2 Deep Learning

3-405

Create YOLO v2 Object Detection Network

This example shows how to modify a pretrained MobileNet v2 network to create a YOLO v2 object
detection network.

The procedure to convert a pretrained network into a YOLO v2 network is similar to the transfer
learning procedure for image classification:

1 Load the pretrained network.
2 Select a layer from the pretrained network to use for feature extraction.
3 Remove all layers after the feature extraction layer.
4 Add new layers to support the object detection task.

Load Pretrained Network

Load a pretrained MobileNet v2 network using mobilenetv2. This requires the Deep Learning
Toolbox Model for MobileNet v2 Network™ support package. If this support package is not installed,
then the function provides a download link. After you load the network, convert the network into a
layerGraph object so that you can manipulate the layers.

net = mobilenetv2();
lgraph = layerGraph(net);

Update Network Input Size

Update the network input size to meet the training data requirements. For example, assume the
training data are 300-by-300 RGB images. Set the input size.

imageInputSize = [300 300 3];

Next, create a new image input layer with the same name as the original layer.

imgLayer = imageInputLayer(imageInputSize,"Name","input_1")

imgLayer =
 ImageInputLayer with properties:

 Name: 'input_1'
 InputSize: [300 300 3]
 SplitComplexInputs: 0

 Hyperparameters
 DataAugmentation: 'none'
 Normalization: 'zerocenter'
 NormalizationDimension: 'auto'
 Mean: []

Replace the old image input layer with the new image input layer.

lgraph = replaceLayer(lgraph,"input_1",imgLayer);

Display and inspect the layers in the network by using the analyzeNetwork function.

analyzeNetwork(lgraph);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-406

Select Feature Extraction Layer

A YOLO v2 feature extraction layer is most effective when the output feature width and height are
between 8 and 16 times smaller than the input image. This amount of downsampling is a trade-off
between spatial resolution and output-feature quality. You can use the analyzeNetwork function or
the Deep Network Designer app to determine the output sizes of layers within a network. Note that
selecting an optimal feature extraction layer requires empirical evaluation.

Set the feature extraction layer to "block_12_add". The output size of this layer is about 16 times
smaller than the input image size of 300-by-300.

featureExtractionLayer = "block_12_add";

Remove Layers After Feature Extraction Layer

Next, remove all the layers after the feature extraction layer by using the removeLayers function.

index = find(strcmp({lgraph.Layers(1:end).Name},featureExtractionLayer));
lgraph = removeLayers(lgraph,{lgraph.Layers(index+1:end).Name});

 Create YOLO v2 Object Detection Network

3-407

Create YOLO v2 Detection Sub-Network

The detection subnetwork consists of groups of serially connected convolution, ReLU, and batch
normalization layers. These layers are followed by a yolov2TransformLayer and a
yolov2OutputLayer.

First, create two groups of serially connected convolution, ReLU, and batch normalization layers. Set
the convolution layer filter size to 3-by-3 and the number of filters to match the number of channels in
the feature extraction layer output. Specify "same" padding in the convolution layer to preserve the
input size.

filterSize = [3 3];
numFilters = 96;

detectionLayers = [
 convolution2dLayer(filterSize,numFilters,"Name","yolov2Conv1","Padding", "same", "WeightsInitializer",@(sz)randn(sz)*0.01)
 batchNormalizationLayer("Name","yolov2Batch1")
 reluLayer("Name","yolov2Relu1")
 convolution2dLayer(filterSize,numFilters,"Name","yolov2Conv2","Padding", "same", "WeightsInitializer",@(sz)randn(sz)*0.01)
 batchNormalizationLayer("Name","yolov2Batch2")
 reluLayer("Name","yolov2Relu2")
]

detectionLayers =
 6x1 Layer array with layers:

 1 'yolov2Conv1' 2-D Convolution 96 3x3 convolutions with stride [1 1] and padding 'same'
 2 'yolov2Batch1' Batch Normalization Batch normalization
 3 'yolov2Relu1' ReLU ReLU
 4 'yolov2Conv2' 2-D Convolution 96 3x3 convolutions with stride [1 1] and padding 'same'
 5 'yolov2Batch2' Batch Normalization Batch normalization
 6 'yolov2Relu2' ReLU ReLU

Next, create the final portion of the detection subnetwork, which has a convolution layer followed by
a yolov2TransformLayer and a yolov2OutputLayer. The output of convolution layer predicts
the following for each anchor box:

1 The object class probabilities.
2 The x and y location offset.
3 The width and height offset.

Specify the anchor boxes and number of classes and compute the number of filters for the
convolution layer.

numClasses = 5;

anchorBoxes = [
 16 16
 32 16
];

numAnchors = size(anchorBoxes,1);
numPredictionsPerAnchor = 5;
numFiltersInLastConvLayer = numAnchors*(numClasses+numPredictionsPerAnchor);

Add the convolution2dLayer, yolov2TransformLayer, and yolov2OutputLayer to the
detection subnetwork.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-408

detectionLayers = [
 detectionLayers
 convolution2dLayer(1,numFiltersInLastConvLayer,"Name","yolov2ClassConv",...
 "WeightsInitializer", @(sz)randn(sz)*0.01)
 yolov2TransformLayer(numAnchors,"Name","yolov2Transform")
 yolov2OutputLayer(anchorBoxes,"Name","yolov2OutputLayer")
]

detectionLayers =
 9x1 Layer array with layers:

 1 'yolov2Conv1' 2-D Convolution 96 3x3 convolutions with stride [1 1] and padding 'same'
 2 'yolov2Batch1' Batch Normalization Batch normalization
 3 'yolov2Relu1' ReLU ReLU
 4 'yolov2Conv2' 2-D Convolution 96 3x3 convolutions with stride [1 1] and padding 'same'
 5 'yolov2Batch2' Batch Normalization Batch normalization
 6 'yolov2Relu2' ReLU ReLU
 7 'yolov2ClassConv' 2-D Convolution 20 1x1 convolutions with stride [1 1] and padding [0 0 0 0]
 8 'yolov2Transform' YOLO v2 Transform Layer. YOLO v2 Transform Layer with 2 anchors.
 9 'yolov2OutputLayer' YOLO v2 Output YOLO v2 Output with 2 anchors.

Complete YOLO v2 Detection Network

Attach the detection subnetwork to the feature extraction network.

lgraph = addLayers(lgraph,detectionLayers);
lgraph = connectLayers(lgraph,featureExtractionLayer,"yolov2Conv1");

Use analyzeNetwork function to check the network. You can then train the network by using the
trainYOLOv2ObjectDetector function.

analyzeNetwork(lgraph)

 Create YOLO v2 Object Detection Network

3-409

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-410

Train Object Detector Using R-CNN Deep Learning

This example shows how to train an object detector using deep learning and R-CNN (Regions with
Convolutional Neural Networks).

Overview

This example shows how to train an R-CNN object detector for detecting stop signs. R-CNN is an
object detection framework, which uses a convolutional neural network (CNN) to classify image
regions within an image [1]. Instead of classifying every region using a sliding window, the R-CNN
detector only processes those regions that are likely to contain an object. This greatly reduces the
computational cost incurred when running a CNN.

To illustrate how to train an R-CNN stop sign detector, this example follows the transfer learning
workflow that is commonly used in deep learning applications. In transfer learning, a network trained
on a large collection of images, such as ImageNet [2], is used as the starting point to solve a new
classification or detection task. The advantage of using this approach is that the pretrained network
has already learned a rich set of image features that are applicable to a wide range of images. This
learning is transferable to the new task by fine-tuning the network. A network is fine-tuned by making
small adjustments to the weights such that the feature representations learned for the original task
are slightly adjusted to support the new task.

The advantage of transfer learning is that the number of images required for training and the training
time are reduced. To illustrate these advantages, this example trains a stop sign detector using the
transfer learning workflow. First a CNN is pretrained using the CIFAR-10 data set, which has 50,000
training images. Then this pretrained CNN is fine-tuned for stop sign detection using just 41 training
images. Without pretraining the CNN, training the stop sign detector would require many more
images.

Note: This example requires Computer Vision Toolbox™, Image Processing Toolbox™, Deep Learning
Toolbox™, and Statistics and Machine Learning Toolbox™.

Using a CUDA-capable NVIDIA™ GPU is highly recommended for running this example. Use of a GPU
requires the Parallel Computing Toolbox™. For information about the supported compute capabilities,
see “GPU Computing Requirements” (Parallel Computing Toolbox).

Download CIFAR-10 Image Data

Download the CIFAR-10 data set [3]. This dataset contains 50,000 training images that will be used to
train a CNN.

Download CIFAR-10 data to a temporary directory

cifar10Data = tempdir;

url = 'https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz';

helperCIFAR10Data.download(url,cifar10Data);

Load the CIFAR-10 training and test data.

[trainingImages,trainingLabels,testImages,testLabels] = helperCIFAR10Data.load(cifar10Data);

Each image is a 32x32 RGB image and there are 50,000 training samples.

 Train Object Detector Using R-CNN Deep Learning

3-411

size(trainingImages)

ans = 1×4

 32 32 3 50000

CIFAR-10 has 10 image categories. List the image categories:

numImageCategories = 10;
categories(trainingLabels)

ans = 10×1 cell
 {'airplane' }
 {'automobile'}
 {'bird' }
 {'cat' }
 {'deer' }
 {'dog' }
 {'frog' }
 {'horse' }
 {'ship' }
 {'truck' }

You can display a few of the training images using the following code.

figure
thumbnails = trainingImages(:,:,:,1:100);
montage(thumbnails)

Create A Convolutional Neural Network (CNN)

A CNN is composed of a series of layers, where each layer defines a specific computation. The Deep
Learning Toolbox™ provides functionality to easily design a CNN layer-by-layer. In this example, the
following layers are used to create a CNN:

• imageInputLayer (Deep Learning Toolbox) - Image input layer
• convolution2dLayer (Deep Learning Toolbox) - 2D convolution layer for Convolutional Neural

Networks
• reluLayer (Deep Learning Toolbox) - Rectified linear unit (ReLU) layer
• maxPooling2dLayer (Deep Learning Toolbox) - Max pooling layer
• fullyConnectedLayer (Deep Learning Toolbox) - Fully connected layer
• softmaxLayer (Deep Learning Toolbox) - Softmax layer
• classificationLayer (Deep Learning Toolbox) - Classification output layer for a neural

network

The network defined here is similar to the one described in [4] and starts with an imageInputLayer.
The input layer defines the type and size of data the CNN can process. In this example, the CNN is
used to process CIFAR-10 images, which are 32x32 RGB images:

% Create the image input layer for 32x32x3 CIFAR-10 images.
[height,width,numChannels, ~] = size(trainingImages);

imageSize = [height width numChannels];
inputLayer = imageInputLayer(imageSize)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-412

inputLayer =
 ImageInputLayer with properties:

 Name: ''
 InputSize: [32 32 3]
 Hyperparameters
 DataAugmentation: 'none'
 Normalization: 'zerocenter'
 NormalizationDimension: 'auto'
 Mean: []

Next, define the middle layers of the network. The middle layers are made up of repeated blocks of
convolutional, ReLU (rectified linear units), and pooling layers. These 3 layers form the core building
blocks of convolutional neural networks. The convolutional layers define sets of filter weights, which
are updated during network training. The ReLU layer adds non-linearity to the network, which allow
the network to approximate non-linear functions that map image pixels to the semantic content of the
image. The pooling layers downsample data as it flows through the network. In a network with lots of
layers, pooling layers should be used sparingly to avoid downsampling the data too early in the
network.

% Convolutional layer parameters
filterSize = [5 5];
numFilters = 32;

middleLayers = [

% The first convolutional layer has a bank of 32 5x5x3 filters. A
% symmetric padding of 2 pixels is added to ensure that image borders
% are included in the processing. This is important to avoid
% information at the borders being washed away too early in the
% network.
convolution2dLayer(filterSize,numFilters,'Padding',2)

% Note that the third dimension of the filter can be omitted because it
% is automatically deduced based on the connectivity of the network. In
% this case because this layer follows the image layer, the third
% dimension must be 3 to match the number of channels in the input
% image.

% Next add the ReLU layer:
reluLayer()

% Follow it with a max pooling layer that has a 3x3 spatial pooling area
% and a stride of 2 pixels. This down-samples the data dimensions from
% 32x32 to 15x15.
maxPooling2dLayer(3,'Stride',2)

% Repeat the 3 core layers to complete the middle of the network.
convolution2dLayer(filterSize,numFilters,'Padding',2)
reluLayer()
maxPooling2dLayer(3, 'Stride',2)

convolution2dLayer(filterSize,2 * numFilters,'Padding',2)
reluLayer()
maxPooling2dLayer(3,'Stride',2)

]

 Train Object Detector Using R-CNN Deep Learning

3-413

middleLayers =
 9x1 Layer array with layers:

 1 '' Convolution 32 5x5 convolutions with stride [1 1] and padding [2 2 2 2]
 2 '' ReLU ReLU
 3 '' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0 0 0]
 4 '' Convolution 32 5x5 convolutions with stride [1 1] and padding [2 2 2 2]
 5 '' ReLU ReLU
 6 '' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0 0 0]
 7 '' Convolution 64 5x5 convolutions with stride [1 1] and padding [2 2 2 2]
 8 '' ReLU ReLU
 9 '' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0 0 0]

A deeper network may be created by repeating these 3 basic layers. However, the number of pooling
layers should be reduced to avoid downsampling the data prematurely. Downsampling early in the
network discards image information that is useful for learning.

The final layers of a CNN are typically composed of fully connected layers and a softmax loss layer.

finalLayers = [

% Add a fully connected layer with 64 output neurons. The output size of
% this layer will be an array with a length of 64.
fullyConnectedLayer(64)

% Add an ReLU non-linearity.
reluLayer

% Add the last fully connected layer. At this point, the network must
% produce 10 signals that can be used to measure whether the input image
% belongs to one category or another. This measurement is made using the
% subsequent loss layers.
fullyConnectedLayer(numImageCategories)

% Add the softmax loss layer and classification layer. The final layers use
% the output of the fully connected layer to compute the categorical
% probability distribution over the image classes. During the training
% process, all the network weights are tuned to minimize the loss over this
% categorical distribution.
softmaxLayer
classificationLayer
]

finalLayers =
 5x1 Layer array with layers:

 1 '' Fully Connected 64 fully connected layer
 2 '' ReLU ReLU
 3 '' Fully Connected 10 fully connected layer
 4 '' Softmax softmax
 5 '' Classification Output crossentropyex

Combine the input, middle, and final layers.

layers = [
 inputLayer
 middleLayers
 finalLayers
]

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-414

layers =
 15x1 Layer array with layers:

 1 '' Image Input 32x32x3 images with 'zerocenter' normalization
 2 '' Convolution 32 5x5 convolutions with stride [1 1] and padding [2 2 2 2]
 3 '' ReLU ReLU
 4 '' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0 0 0]
 5 '' Convolution 32 5x5 convolutions with stride [1 1] and padding [2 2 2 2]
 6 '' ReLU ReLU
 7 '' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0 0 0]
 8 '' Convolution 64 5x5 convolutions with stride [1 1] and padding [2 2 2 2]
 9 '' ReLU ReLU
 10 '' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0 0 0]
 11 '' Fully Connected 64 fully connected layer
 12 '' ReLU ReLU
 13 '' Fully Connected 10 fully connected layer
 14 '' Softmax softmax
 15 '' Classification Output crossentropyex

Initialize the first convolutional layer weights using normally distributed random numbers with
standard deviation of 0.0001. This helps improve the convergence of training.

layers(2).Weights = 0.0001 * randn([filterSize numChannels numFilters]);

Train CNN Using CIFAR-10 Data

Now that the network architecture is defined, it can be trained using the CIFAR-10 training data.
First, set up the network training algorithm using the trainingOptions (Deep Learning Toolbox)
function. The network training algorithm uses Stochastic Gradient Descent with Momentum (SGDM)
with an initial learning rate of 0.001. During training, the initial learning rate is reduced every 8
epochs (1 epoch is defined as one complete pass through the entire training data set). The training
algorithm is run for 40 epochs.

Note that the training algorithm uses a mini-batch size of 128 images. If using a GPU for training, this
size may need to be lowered due to memory constraints on the GPU.

% Set the network training options
opts = trainingOptions('sgdm', ...
 'Momentum', 0.9, ...
 'InitialLearnRate', 0.001, ...
 'LearnRateSchedule', 'piecewise', ...
 'LearnRateDropFactor', 0.1, ...
 'LearnRateDropPeriod', 8, ...
 'L2Regularization', 0.004, ...
 'MaxEpochs', 40, ...
 'MiniBatchSize', 128, ...
 'Verbose', true);

Train the network using the trainNetwork (Deep Learning Toolbox) function. This is a
computationally intensive process that takes 20-30 minutes to complete. To save time while running
this example, a pretrained network is loaded from disk. If you wish to train the network yourself, set
the doTraining variable shown below to true.

Note that a CUDA-capable NVIDIA™ GPU is highly recommended for training.

% A trained network is loaded from disk to save time when running the
% example. Set this flag to true to train the network.

 Train Object Detector Using R-CNN Deep Learning

3-415

doTraining = false;

if doTraining
 % Train a network.
 cifar10Net = trainNetwork(trainingImages, trainingLabels, layers, opts);
else
 % Load pre-trained detector for the example.
 load('rcnnStopSigns.mat','cifar10Net')
end

Validate CIFAR-10 Network Training

After the network is trained, it should be validated to ensure that training was successful. First, a
quick visualization of the first convolutional layer's filter weights can help identify any immediate
issues with training.

% Extract the first convolutional layer weights
w = cifar10Net.Layers(2).Weights;

% rescale the weights to the range [0, 1] for better visualization
w = rescale(w);

figure
montage(w)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-416

The first layer weights should have some well defined structure. If the weights still look random, then
that is an indication that the network may require additional training. In this case, as shown above,
the first layer filters have learned edge-like features from the CIFAR-10 training data.

To completely validate the training results, use the CIFAR-10 test data to measure the classification
accuracy of the network. A low accuracy score indicates additional training or additional training
data is required. The goal of this example is not necessarily to achieve 100% accuracy on the test set,
but to sufficiently train a network for use in training an object detector.

% Run the network on the test set.
YTest = classify(cifar10Net, testImages);

 Train Object Detector Using R-CNN Deep Learning

3-417

% Calculate the accuracy.
accuracy = sum(YTest == testLabels)/numel(testLabels)

accuracy = 0.7456

Further training will improve the accuracy, but that is not necessary for the purpose of training the R-
CNN object detector.

Load Training Data

Now that the network is working well for the CIFAR-10 classification task, the transfer learning
approach can be used to fine-tune the network for stop sign detection.

Start by loading the ground truth data for stop signs.

% Load the ground truth data
data = load('stopSignsAndCars.mat', 'stopSignsAndCars');
stopSignsAndCars = data.stopSignsAndCars;

% Update the path to the image files to match the local file system
visiondata = fullfile(toolboxdir('vision'),'visiondata');
stopSignsAndCars.imageFilename = fullfile(visiondata, stopSignsAndCars.imageFilename);

% Display a summary of the ground truth data
summary(stopSignsAndCars)

Variables:
 imageFilename: 41×1 cell array of character vectors
 stopSign: 41×1 cell
 carRear: 41×1 cell
 carFront: 41×1 cell

The training data is contained within a table that contains the image filename and ROI labels for stop
signs, car fronts, and rears. Each ROI label is a bounding box around objects of interest within an
image. For training the stop sign detector, only the stop sign ROI labels are needed. The ROI labels
for car front and rear must be removed:

% Only keep the image file names and the stop sign ROI labels
stopSigns = stopSignsAndCars(:, {'imageFilename','stopSign'});

% Display one training image and the ground truth bounding boxes
I = imread(stopSigns.imageFilename{1});
I = insertObjectAnnotation(I,'Rectangle',stopSigns.stopSign{1},'stop sign','LineWidth',8);

figure
imshow(I)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-418

Note that there are only 41 training images within this data set. Training an R-CNN object detector
from scratch using only 41 images is not practical and would not produce a reliable stop sign
detector. Because the stop sign detector is trained by fine-tuning a network that has been pre-trained
on a larger dataset (CIFAR-10 has 50,000 training images), using a much smaller dataset is feasible.

Train R-CNN Stop Sign Detector

Finally, train the R-CNN object detector using trainRCNNObjectDetector. The input to this
function is the ground truth table which contains labeled stop sign images, the pre-trained CIFAR-10
network, and the training options. The training function automatically modifies the original CIFAR-10
network, which classified images into 10 categories, into a network that can classify images into 2
classes: stop signs and a generic background class.

During training, the input network weights are fine-tuned using image patches extracted from the
ground truth data. The 'PositiveOverlapRange' and 'NegativeOverlapRange' parameters control which
image patches are used for training. Positive training samples are those that overlap with the ground
truth boxes by 0.5 to 1.0, as measured by the bounding box intersection over union metric. Negative
training samples are those that overlap by 0 to 0.3. The best values for these parameters should be
chosen by testing the trained detector on a validation set.

For R-CNN training, the use of a parallel pool of MATLAB workers is highly recommended to
reduce training time. trainRCNNObjectDetector automatically creates and uses a parallel pool
based on your “Computer Vision Toolbox Preferences”. Ensure that the use of the parallel pool is
enabled prior to training.

To save time while running this example, a pretrained network is loaded from disk. If you wish to
train the network yourself, set the doTraining variable shown below to true.

Note that a CUDA-capable NVIDIA™ GPU is highly recommended for training.

 Train Object Detector Using R-CNN Deep Learning

3-419

% A trained detector is loaded from disk to save time when running the
% example. Set this flag to true to train the detector.
doTraining = false;

if doTraining

 % Set training options
 options = trainingOptions('sgdm', ...
 'MiniBatchSize', 128, ...
 'InitialLearnRate', 1e-3, ...
 'LearnRateSchedule', 'piecewise', ...
 'LearnRateDropFactor', 0.1, ...
 'LearnRateDropPeriod', 100, ...
 'MaxEpochs', 100, ...
 'Verbose', true);

 % Train an R-CNN object detector. This will take several minutes.
 rcnn = trainRCNNObjectDetector(stopSigns, cifar10Net, options, ...
 'NegativeOverlapRange', [0 0.3], 'PositiveOverlapRange',[0.5 1])
else
 % Load pre-trained network for the example.
 load('rcnnStopSigns.mat','rcnn')
end

Test R-CNN Stop Sign Detector

The R-CNN object detector can now be used to detect stop signs in images. Try it out on a test image:

% Read test image
testImage = imread('stopSignTest.jpg');

% Detect stop signs
[bboxes,score,label] = detect(rcnn,testImage,'MiniBatchSize',128)

bboxes = 1×4

 419 147 31 20

score = single
 0.9955

label = categorical categorical
 stopSign

The R-CNN object detect method returns the object bounding boxes, a detection score, and a class
label for each detection. The labels are useful when detecting multiple objects, e.g. stop, yield, or
speed limit signs. The scores, which range between 0 and 1, indicate the confidence in the detection
and can be used to ignore low scoring detections.

% Display the detection results
[score, idx] = max(score);

bbox = bboxes(idx, :);
annotation = sprintf('%s: (Confidence = %f)', label(idx), score);

outputImage = insertObjectAnnotation(testImage, 'rectangle', bbox, annotation);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-420

figure
imshow(outputImage)

Debugging Tips

The network used within the R-CNN detector can also be used to process the entire test image. By
directly processing the entire image, which is larger than the network's input size, a 2-D heat-map of
classification scores can be generated. This is a useful debugging tool because it helps identify items
in the image that are confusing the network, and may help provide insight into improving training.

% The trained network is stored within the R-CNN detector
rcnn.Network

ans =
 SeriesNetwork with properties:

 Layers: [15×1 nnet.cnn.layer.Layer]

Extract the activations (Deep Learning Toolbox) from the softmax layer, which is the 14th layer in
the network. These are the classification scores produced by the network as it scans the image.

featureMap = activations(rcnn.Network, testImage, 14);

% The softmax activations are stored in a 3-D array.
size(featureMap)

ans = 1×3

 43 78 2

 Train Object Detector Using R-CNN Deep Learning

3-421

The 3rd dimension in featureMap corresponds to the object classes.

rcnn.ClassNames

ans = 2×1 cell
 {'stopSign' }
 {'Background'}

The stop sign feature map is stored in the first channel.

stopSignMap = featureMap(:, :, 1);

The size of the activations output is smaller than the input image due to the downsampling operations
in the network. To generate a nicer visualization, resize stopSignMap to the size of the input image.
This is a very crude approximation that maps activations to image pixels and should only be used for
illustrative purposes.

% Resize stopSignMap for visualization
[height, width, ~] = size(testImage);
stopSignMap = imresize(stopSignMap, [height, width]);

% Visualize the feature map superimposed on the test image.
featureMapOnImage = imfuse(testImage, stopSignMap);

figure
imshow(featureMapOnImage)

The stop sign in the test image corresponds nicely with the largest peak in the network activations.
This helps verify that the CNN used within the R-CNN detector has effectively learned to identify stop

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-422

signs. Had there been other peaks, this may indicate that the training requires additional negative
data to help prevent false positives. If that's the case, then you can increase 'MaxEpochs' in the
trainingOptions and re-train.

Summary

This example showed how to train an R-CNN stop sign object detector using a network trained with
CIFAR-10 data. Similar steps may be followed to train other object detectors using deep learning.

References
[1] Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for Accurate Object

Detection and Semantic Segmentation." Proceedings of the 2014 IEEE Conference on
Computer Vision and Pattern Recognition. Columbus, OH, June 2014, pp. 580-587.

[2] Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. "ImageNet: A Large-Scale Hierarchical
Image Database." Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern
Recognition. Miami, FL, June 2009, pp. 248-255.

[3] Krizhevsky, A., and G. Hinton. "Learning multiple layers of features from tiny images." Master's
Thesis, University of Toronto. Toronto, Canada, 2009.

[4] https://code.google.com/p/cuda-convnet/

See Also
rcnnObjectDetector | trainingOptions | trainNetwork | trainRCNNObjectDetector |
fastRCNNObjectDetector | fasterRCNNObjectDetector | trainFastRCNNObjectDetector |
trainFasterRCNNObjectDetector | classify | detect | activations

More About
• “Object Detection Using Faster R-CNN Deep Learning” on page 3-424
• “Deep Learning in MATLAB” (Deep Learning Toolbox)

 Train Object Detector Using R-CNN Deep Learning

3-423

Object Detection Using Faster R-CNN Deep Learning

This example shows how to train a Faster R-CNN (regions with convolutional neural networks) object
detector.

Deep learning is a powerful machine learning technique that you can use to train robust object
detectors. Several deep learning techniques for object detection exist, including Faster R-CNN and
you only look once (YOLO) v2. This example trains a Faster R-CNN vehicle detector using the
trainFasterRCNNObjectDetector function. For more information, see “Object Detection”.

Download Pretrained Detector

Download a pretrained detector to avoid having to wait for training to complete. If you want to train
the detector, set the doTraining variable to true.

doTraining = false;
if ~doTraining && ~exist('fasterRCNNResNet50EndToEndVehicleExample.mat','file')
 disp('Downloading pretrained detector (118 MB)...');
 pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/fasterRCNNResNet50EndToEndVehicleExample.mat';
 websave('fasterRCNNResNet50EndToEndVehicleExample.mat',pretrainedURL);
end

Load Data Set

This example uses a small labeled dataset that contains 295 images. Many of these images come from
the Caltech Cars 1999 and 2001 data sets, created by Pietro Perona and used with permission. Each
image contains one or two labeled instances of a vehicle. A small dataset is useful for exploring the
Faster R-CNN training procedure, but in practice, more labeled images are needed to train a robust
detector. Unzip the vehicle images and load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

The vehicle data is stored in a two-column table, where the first column contains the image file paths
and the second column contains the vehicle bounding boxes.

Split the dataset into training, validation, and test sets. Select 60% of the data for training, 10% for
validation, and the rest for testing the trained detector.

rng(0)
shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.6 * height(vehicleDataset));

trainingIdx = 1:idx;
trainingDataTbl = vehicleDataset(shuffledIndices(trainingIdx),:);

validationIdx = idx+1 : idx + 1 + floor(0.1 * length(shuffledIndices));
validationDataTbl = vehicleDataset(shuffledIndices(validationIdx),:);

testIdx = validationIdx(end)+1 : length(shuffledIndices);
testDataTbl = vehicleDataset(shuffledIndices(testIdx),:);

Use imageDatastore and boxLabelDatastore to create datastores for loading the image and
label data during training and evaluation.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-424

imdsTrain = imageDatastore(trainingDataTbl{:,'imageFilename'});
bldsTrain = boxLabelDatastore(trainingDataTbl(:,'vehicle'));

imdsValidation = imageDatastore(validationDataTbl{:,'imageFilename'});
bldsValidation = boxLabelDatastore(validationDataTbl(:,'vehicle'));

imdsTest = imageDatastore(testDataTbl{:,'imageFilename'});
bldsTest = boxLabelDatastore(testDataTbl(:,'vehicle'));

Combine image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
validationData = combine(imdsValidation,bldsValidation);
testData = combine(imdsTest,bldsTest);

Display one of the training images and box labels.

data = read(trainingData);
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

 Object Detection Using Faster R-CNN Deep Learning

3-425

Create Faster R-CNN Detection Network

A Faster R-CNN object detection network is composed of a feature extraction network followed by
two subnetworks. The feature extraction network is typically a pretrained CNN, such as ResNet-50 or
Inception v3. The first subnetwork following the feature extraction network is a region proposal
network (RPN) trained to generate object proposals - areas in the image where objects are likely to
exist. The second subnetwork is trained to predict the actual class of each object proposal.

The feature extraction network is typically a pretrained CNN (for details, see “Pretrained Deep
Neural Networks” (Deep Learning Toolbox)). This example uses ResNet-50 for feature extraction. You
can also use other pretrained networks such as MobileNet v2 or ResNet-18, depending on your
application requirements.

Use fasterRCNNLayers to create a Faster R-CNN network automatically given a pretrained feature
extraction network. fasterRCNNLayers requires you to specify several inputs that parameterize a
Faster R-CNN network:

• Network input size
• Anchor boxes
• Feature extraction network

First, specify the network input size. When choosing the network input size, consider the minimum
size required to run the network itself, the size of the training images, and the computational cost
incurred by processing data at the selected size. When feasible, choose a network input size that is
close to the size of the training image and larger than the input size required for the network. To
reduce the computational cost of running the example, specify a network input size of [224 224 3],
which is the minimum size required to run the network.

inputSize = [224 224 3];

Note that the training images used in this example are bigger than 224-by-224 and vary in size, so
you must resize the images in a preprocessing step prior to training.

Next, use estimateAnchorBoxes to estimate anchor boxes based on the size of objects in the
training data. To account for the resizing of the images prior to training, resize the training data for
estimating anchor boxes. Use transform to preprocess the training data, then define the number of
anchor boxes and estimate the anchor boxes.

preprocessedTrainingData = transform(trainingData, @(data)preprocessData(data,inputSize));
numAnchors = 3;
anchorBoxes = estimateAnchorBoxes(preprocessedTrainingData,numAnchors)

anchorBoxes = 3×2

 29 17
 46 39
 136 116

For more information on choosing anchor boxes, see “Estimate Anchor Boxes From Training Data” on
page 3-377 (Computer Vision Toolbox™) and “Anchor Boxes for Object Detection” on page 17-44.

Now, use resnet50 to load a pretrained ResNet-50 model.

featureExtractionNetwork = resnet50;

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-426

Select 'activation_40_relu' as the feature extraction layer. This feature extraction layer outputs
feature maps that are downsampled by a factor of 16. This amount of downsampling is a good trade-
off between spatial resolution and the strength of the extracted features, as features extracted
further down the network encode stronger image features at the cost of spatial resolution. Choosing
the optimal feature extraction layer requires empirical analysis. You can use analyzeNetwork to
find the names of other potential feature extraction layers within a network.

featureLayer = 'activation_40_relu';

Define the number of classes to detect.

numClasses = width(vehicleDataset)-1;

Create the Faster R-CNN object detection network.

lgraph = fasterRCNNLayers(inputSize,numClasses,anchorBoxes,featureExtractionNetwork,featureLayer);

You can visualize the network using analyzeNetwork or Deep Network Designer from Deep
Learning Toolbox™.

If more control is required over the Faster R-CNN network architecture, use Deep Network Designer
to design the Faster R-CNN detection network manually. For more information, see “Getting Started
with R-CNN, Fast R-CNN, and Faster R-CNN” on page 17-61.

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Use transform to augment the training data by randomly flipping the image and associated box
labels horizontally. Note that data augmentation is not applied to test and validation data. Ideally, test
and validation data are representative of the original data and are left unmodified for unbiased
evaluation.

augmentedTrainingData = transform(trainingData,@augmentData);

Read the same image multiple times and display the augmented training data.

augmentedData = cell(4,1);
for k = 1:4
 data = read(augmentedTrainingData);
 augmentedData{k} = insertShape(data{1},'rectangle',data{2});
 reset(augmentedTrainingData);
end
figure
montage(augmentedData,'BorderSize',10)

 Object Detection Using Faster R-CNN Deep Learning

3-427

Preprocess Training Data

Preprocess the augmented training data, and the validation data to prepare for training.

trainingData = transform(augmentedTrainingData,@(data)preprocessData(data,inputSize));
validationData = transform(validationData,@(data)preprocessData(data,inputSize));

Read the preprocessed data.

data = read(trainingData);

Display the image and box bounding boxes.

I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-428

Train Faster R-CNN

Use trainingOptions to specify network training options. Set 'ValidationData' to the
preprocessed validation data. Set 'CheckpointPath' to a temporary location. This enables the
saving of partially trained detectors during the training process. If training is interrupted, such as by
a power outage or system failure, you can resume training from the saved checkpoint.

options = trainingOptions('sgdm',...
 'MaxEpochs',10,...
 'MiniBatchSize',2,...
 'InitialLearnRate',1e-3,...
 'CheckpointPath',tempdir,...
 'ValidationData',validationData);

Use trainFasterRCNNObjectDetector to train Faster R-CNN object detector if doTraining is
true. Otherwise, load the pretrained network.

if doTraining
 % Train the Faster R-CNN detector.

 Object Detection Using Faster R-CNN Deep Learning

3-429

 % * Adjust NegativeOverlapRange and PositiveOverlapRange to ensure
 % that training samples tightly overlap with ground truth.
 [detector, info] = trainFasterRCNNObjectDetector(trainingData,lgraph,options, ...
 'NegativeOverlapRange',[0 0.3], ...
 'PositiveOverlapRange',[0.6 1]);
else
 % Load pretrained detector for the example.
 pretrained = load('fasterRCNNResNet50EndToEndVehicleExample.mat');
 detector = pretrained.detector;
end

This example was verified on an Nvidia(TM) Titan X GPU with 12 GB of memory. Training the network
took approximately 20 minutes. The training time varies depending on the hardware you use.

As a quick check, run the detector on one test image. Make sure you resize the image to the same
size as the training images.

I = imread(testDataTbl.imageFilename{3});
I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);

Display the results.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)

Evaluate Detector Using Test Set

Evaluate the trained object detector on a large set of images to measure the performance. Computer
Vision Toolbox™ provides object detector evaluation functions to measure common metrics such as
average precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-430

detector to make correct classifications (precision) and the ability of the detector to find all relevant
objects (recall).

Apply the same preprocessing transform to the test data as for the training data.

testData = transform(testData,@(data)preprocessData(data,inputSize));

Run the detector on all the test images.

detectionResults = detect(detector,testData,'MinibatchSize',4);

Evaluate the object detector using the average precision metric.

[ap, recall, precision] = evaluateDetectionPrecision(detectionResults,testData);

The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. The
ideal precision is 1 at all recall levels. The use of more data can help improve the average precision
but might require more training time. Plot the PR curve.

figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', ap))

 Object Detection Using Faster R-CNN Deep Learning

3-431

Supporting Functions

function data = augmentData(data)
% Randomly flip images and bounding boxes horizontally.
tform = randomAffine2d('XReflection',true);
sz = size(data{1});
rout = affineOutputView(sz,tform);
data{1} = imwarp(data{1},tform,'OutputView',rout);

% Sanitize boxes, if needed. This helper function is attached as a
% supporting file. Open the example in MATLAB to open this function.
data{2} = helperSanitizeBoxes(data{2});

% Warp boxes.
data{2} = bboxwarp(data{2},tform,rout);
end

function data = preprocessData(data,targetSize)
% Resize image and bounding boxes to targetSize.
sz = size(data{1},[1 2]);
scale = targetSize(1:2)./sz;
data{1} = imresize(data{1},targetSize(1:2));

% Sanitize boxes, if needed. This helper function is attached as a
% supporting file. Open the example in MATLAB to open this function.
data{2} = helperSanitizeBoxes(data{2});

% Resize boxes.
data{2} = bboxresize(data{2},scale);
end

References

[1] Ren, S., K. He, R. Gershick, and J. Sun. "Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks." IEEE Transactions of Pattern Analysis and Machine Intelligence. Vol. 39,
Issue 6, June 2017, pp. 1137-1149.

[2] Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation." Proceedings of the 2014 IEEE Conference on Computer
Vision and Pattern Recognition. Columbus, OH, June 2014, pp. 580-587.

[3] Girshick, R. "Fast R-CNN." Proceedings of the 2015 IEEE International Conference on Computer
Vision. Santiago, Chile, Dec. 2015, pp. 1440-1448.

[4] Zitnick, C. L., and P. Dollar. "Edge Boxes: Locating Object Proposals from Edges." European
Conference on Computer Vision. Zurich, Switzerland, Sept. 2014, pp. 391-405.

[5] Uijlings, J. R. R., K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. "Selective Search for
Object Recognition." International Journal of Computer Vision. Vol. 104, Number 2, Sept. 2013, pp.
154-171.

See Also
rcnnObjectDetector | trainingOptions | trainNetwork | trainRCNNObjectDetector |
fastRCNNObjectDetector | fasterRCNNObjectDetector | trainFastRCNNObjectDetector |
trainFasterRCNNObjectDetector | detect | insertObjectAnnotation |
evaluateDetectionMissRate | evaluateDetectionPrecision

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-432

More About
• “Train Object Detector Using R-CNN Deep Learning” on page 3-411
• “Deep Learning in MATLAB” (Deep Learning Toolbox)

 Object Detection Using Faster R-CNN Deep Learning

3-433

Train Classification Network to Classify Object in 3-D Point
Cloud

This example demontrates the approach outlined in [1 on page 3-440] in which point cloud data is
preprocessed into a voxelized encoding and then used directly with a simple 3-D convolutional neural
network architecture to perform object classification. In more recent approaches such as [2 on page
3-440], encodings of point cloud data can be more complicated and can be learned encodings that are
trained end-to-end along with a network performing a classification/object detection/segmentation
task. However, the general pattern of moving from irregular unordered points to a gridded structure
that can be fed into convnets remains similar in all of these appraoches.

Import and Analyze Data

In this example, we work with the Sydney Urban Objects Dataset. In this example, we use folds 1-3
from the data as the training set and fold 4 as the validation set.

dataPath = downloadSydneyUrbanObjects(tempdir);
dsTrain = loadSydneyUrbanObjectsData(dataPath,[1 2 3]);
dsVal = loadSydneyUrbanObjectsData(dataPath,4);

Analyze the training set to understand the labels present in the data and the overall distribution of
labels.

dsLabels = transform(dsTrain,@(data) data{2});
labels = readall(dsLabels);
figure
histogram(labels)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-434

From the histogram, it is apparent that there is a class imbalance issue in the training data in which
certain object classes like Car and Pedestrian are much more common than less frequent classes
like Ute.

Data augmentation pipeline

To avoid overfitting and add robustness to a classifier, some amount of randomized data
augmentation is generally a good idea when training a network. The functions randomAffine2d and
pctransform make it easy to define randomized affine transformations on point cloud data. We
additionally add some randomized per-point jitter to each point in every point cloud. The function
augmentPointCloudData is included in the supporting functions section below.

dsTrain = transform(dsTrain,@augmentPointCloudData);

Verify that augmentation of point cloud data looks reasonable.

dataOut = preview(dsTrain);
figure
pcshow(dataOut{1});
title(dataOut{2});

 Train Classification Network to Classify Object in 3-D Point Cloud

3-435

We next add a simple voxelization transform to each input point cloud as discussed in the previous
example, to transform our input point cloud into a pseudo-image that can be used with a
convolutional neural network. Use a simple occupancy grid.

dsTrain = transform(dsTrain,@formOccupancyGrid);
dsVal = transform(dsVal,@formOccupancyGrid);

Examine a sample of the final voxelized volume that we will feed into the network to verify that
voxelixation is working correctly.

data = preview(dsTrain);
figure
p = patch(isosurface(data{1},0.5));
p.FaceColor = 'red';
p.EdgeColor = 'none';
daspect([1 1 1])
view(45,45)
camlight;
lighting phong
title(data{2});

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-436

Define network architecture

In this example, we use a simple 3-D classification architecture as described in [1].

layers = [image3dInputLayer([32 32 32],'Name','inputLayer','Normalization','none'),...
 convolution3dLayer(5,32,'Stride',2,'Name','Conv1'),...
 leakyReluLayer(0.1,'Name','leakyRelu1'),...
 convolution3dLayer(3,32,'Stride',1,'Name','Conv2'),...
 leakyReluLayer(0.1,'Name','leakyRulu2'),...
 maxPooling3dLayer(2,'Stride',2,'Name','maxPool'),...
 fullyConnectedLayer(128,'Name','fc1'),...
 reluLayer('Name','relu'),...
 dropoutLayer(0.5,'Name','dropout1'),...
 fullyConnectedLayer(14,'Name','fc2'),...
 softmaxLayer('Name','softmax'),...
 classificationLayer('Name','crossEntropyLoss')];

voxnet = layerGraph(layers);
figure
plot(voxnet);

 Train Classification Network to Classify Object in 3-D Point Cloud

3-437

Setup training options

Use stochastic gradient descent with momentum with a piecewise adjustment to the learning rate
schedule. This example was run on a TitanX GPU, for GPUs with less memory, it may be necessary to
reduce the batch size. Though 3D convnets have an advantage of conceptual simplicity, they have the
drawback of large amounts of memory useage at training time.

miniBatchSize = 32;
dsLength = length(dsTrain.UnderlyingDatastore.Files);
iterationsPerEpoch = floor(dsLength/miniBatchSize);
dropPeriod = floor(8000/iterationsPerEpoch);

options = trainingOptions('sgdm','InitialLearnRate',0.01,'MiniBatchSize',miniBatchSize,...
 'LearnRateSchedule','Piecewise',...
 'LearnRateDropPeriod',dropPeriod,...
 'ValidationData',dsVal,'MaxEpochs',60,...
 'DispatchInBackground',false,...
 'Shuffle','never');

Train network
voxnet = trainNetwork(dsTrain,voxnet,options);

Training on single CPU.
|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Validation | Mini-batch | Validation | Base Learning |
| | | (hh:mm:ss) | Accuracy | Accuracy | Loss | Loss | Rate |
|==|

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-438

1	1	00:00:12	0.00%	3.23%	2.6579	2.6466	0.0100
4	50	00:01:53	31.25%	29.03%	2.1520	2.3095	0.0100
8	100	00:03:33	28.12%	36.77%	2.2633	2.1510	0.0100
12	150	00:05:11	43.75%	46.45%	2.0506	1.9057	0.0100
16	200	00:06:49	37.50%	52.26%	1.8627	1.6161	0.0100
20	250	00:08:35	50.00%	59.35%	1.8573	1.4587	0.0100
24	300	00:10:14	34.38%	58.06%	1.8636	1.4360	0.0100
27	350	00:11:51	62.50%	61.94%	1.4174	1.3093	0.0100
31	400	00:13:31	65.62%	64.52%	1.1966	1.2727	0.0100
35	450	00:15:09	56.25%	61.94%	1.3562	1.2473	0.0100
39	500	00:16:49	62.50%	66.45%	1.2819	1.1354	0.0100
43	550	00:18:27	56.25%	65.16%	1.4563	1.1351	0.0100
47	600	00:20:05	56.25%	66.45%	1.3096	1.1142	0.0100
50	650	00:21:40	56.25%	65.16%	1.0104	1.1023	0.0100
54	700	00:23:21	75.00%	70.32%	0.9403	1.0848	0.0100
58	750	00:25:00	65.62%	71.61%	1.0909	1.1003	0.0100
60	780	00:25:59	65.62%	72.26%	0.9628	1.0406	0.0100
==							

Evaluate network

Following the structure of [1 on page 3-440], this example only forms a training and validation set
from Sydney Urban Objects. Evaluate the performance of the trained network using the validation,
since it was not used to train the network.

valLabelSet = transform(dsVal,@(data) data{2});
valLabels = readall(valLabelSet);
outputLabels = classify(voxnet,dsVal);
accuracy = nnz(outputLabels == valLabels) / numel(outputLabels);
disp(accuracy)

 0.7226

View the confusion matrix to study the accuracy across the various label categories

confusionchart(valLabels,outputLabels)

 Train Classification Network to Classify Object in 3-D Point Cloud

3-439

The label imbalance noted in the training set is an issue in the classification accuracy. The confusion
chart illustrates higher precision and recall for pedestrian, the most common class, than for less
common classes like van. Since the purpose of this example is to demonstate a basic classification
network training approach with point cloud data, possible next steps that could be taken to improve
classification performance such as resampling the training set or achieve better label balance or
using a loss function more robust to label imbalance (e.g. weighted cross-entropy) will not be
explored.

References

1) Voxnet: A 3d convolutional neural network for real-time object recognition, Daniel Maturana,
Sebastian Scherer, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)

2) PointPillars: Fast Encoders for Object Detection from Point Clouds, Alex H. Lang, Sourabh Vora, et
al, CVPR 2019

3) Sydney Urban Objects Dataset, Alastair Quadros, James Underwood, Bertrand Douillard, Sydney
Urban Objects

Supporting Functions
function datasetPath = downloadSydneyUrbanObjects(dataLoc)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-440

https://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml
https://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml

if nargin == 0
 dataLoc = pwd();
end

dataLoc = string(dataLoc);

url = "http://www.acfr.usyd.edu.au/papers/data/";
name = "sydney-urban-objects-dataset.tar.gz";

if ~exist(fullfile(dataLoc,'sydney-urban-objects-dataset'),'dir')
 disp('Downloading Sydney Urban Objects Dataset...');
 untar(url+name,dataLoc);
end

datasetPath = dataLoc.append('sydney-urban-objects-dataset');

end

function ds = loadSydneyUrbanObjectsData(datapath,folds)
% loadSydneyUrbanObjectsData Datastore with point clouds and
% associated categorical labels for Sydney Urban Objects dataset.
%
% ds = loadSydneyUrbanObjectsData(datapath) constructs a datastore that
% represents point clouds and associated categories for the Sydney Urban
% Objects dataset. The input, datapath, is a string or char array which
% represents the path to the root directory of the Sydney Urban Objects
% Dataset.
%
% ds = loadSydneyUrbanObjectsData(___,folds) optionally allows
% specification of desired folds that you wish to be included in the
% output ds. For example, [1 2 4] specifies that you want the first,
% second, and fourth folds of the Dataset. Default: [1 2 3 4].

if nargin < 2
 folds = 1:4;
end

datapath = string(datapath);
path = fullfile(datapath,'objects',filesep);

% For now, include all folds in Datastore
foldNames{1} = importdata(fullfile(datapath,'folds','fold0.txt'));
foldNames{2} = importdata(fullfile(datapath,'folds','fold1.txt'));
foldNames{3} = importdata(fullfile(datapath,'folds','fold2.txt'));
foldNames{4} = importdata(fullfile(datapath,'folds','fold3.txt'));
names = foldNames(folds);
names = vertcat(names{:});

fullFilenames = append(path,names);
ds = fileDatastore(fullFilenames,'ReadFcn',@extractTrainingData,'FileExtensions','.bin');

% Shuffle
ds.Files = ds.Files(randperm(length(ds.Files)));

end

function dataOut = extractTrainingData(fname)

 Train Classification Network to Classify Object in 3-D Point Cloud

3-441

[pointData,intensity] = readbin(fname);

[~,name] = fileparts(fname);
name = string(name);
name = extractBefore(name,'.');
name = replace(name,'_',' ');

labelNames = ["4wd","building","bus","car","pedestrian","pillar",...
 "pole","traffic lights","traffic sign","tree","truck","trunk","ute","van"];

label = categorical(name,labelNames);

dataOut = {pointCloud(pointData,'Intensity',intensity),label};

end

function [pointData,intensity] = readbin(fname)
% readbin Read point and intensity data from Sydney Urban Object binary
% files.

% names = ['t','intensity','id',...
% 'x','y','z',...
% 'azimuth','range','pid']
%
% formats = ['int64', 'uint8', 'uint8',...
% 'float32', 'float32', 'float32',...
% 'float32', 'float32', 'int32']

fid = fopen(fname, 'r');
c = onCleanup(@() fclose(fid));

fseek(fid,10,-1); % Move to the first X point location 10 bytes from beginning
X = fread(fid,inf,'single',30);
fseek(fid,14,-1);
Y = fread(fid,inf,'single',30);
fseek(fid,18,-1);
Z = fread(fid,inf,'single',30);

fseek(fid,8,-1);
intensity = fread(fid,inf,'uint8',33);

pointData = [X,Y,Z];

end

function dataOut = formOccupancyGrid(data)

grid = pcbin(data{1},[32 32 32]);
occupancyGrid = zeros(size(grid),'single');
for ii = 1:numel(grid)
 occupancyGrid(ii) = ~isempty(grid{ii});
end
label = data{2};
dataOut = {occupancyGrid,label};

end

function dataOut = augmentPointCloudData(data)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-442

ptCloud = data{1};
label = data{2};

% Apply randomized rotation about Z axis.
tform = randomAffine3d('Rotation',@() deal([0 0 1],360*rand),'Scale',[0.98,1.02],'XReflection',true,'YReflection',true); % Randomized rotation about z axis
ptCloud = pctransform(ptCloud,tform);

% Apply jitter to each point in point cloud
amountOfJitter = 0.01;
numPoints = size(ptCloud.Location,1);
D = zeros(size(ptCloud.Location),'like',ptCloud.Location);
D(:,1) = diff(ptCloud.XLimits)*rand(numPoints,1);
D(:,2) = diff(ptCloud.YLimits)*rand(numPoints,1);
D(:,3) = diff(ptCloud.ZLimits)*rand(numPoints,1);
D = amountOfJitter.*D;
ptCloud = pctransform(ptCloud,D);

dataOut = {ptCloud,label};

end

 Train Classification Network to Classify Object in 3-D Point Cloud

3-443

Estimate Body Pose Using Deep Learning

This example shows how to estimate the body pose of one or more people using the OpenPose
algorithm and a pretrained network.

The goal of body pose estimation is to identify the location of people in an image and the orientation
of their body parts. When multiple people are present in a scene, pose estimation can be more
difficult because of occlusion, body contact, and proximity of similar body parts.

There are two strategies to estimating body pose. A top-down strategy first identifies individual
people using object detection and then estimates the pose of each person. A bottom-up strategy first
identifies body parts in an image, such as noses and left elbows, and then assembles individuals
based on likely pairings of body parts. The bottom-up strategy is more robust to occlusion and body
contact, but the strategy is more difficult to implement. OpenPose is a multi-person human pose
estimation algorithm that uses a bottom-up strategy [1 on page 3-451].

To identify body parts in an image, OpenPose uses a pretrained neural network that predicts
heatmaps and part affinity fields (PAFs) for body parts in an input image [2 on page 3-451]. Each
heatmap shows the probability that a particular type of body part is located at each pixel in the
image. The PAFs are vector fields that indicate whether two body parts are connected. For each
defined type of body part pairing, such as neck to left shoulder, there are two PAFs that show the x-
and y-component of the vector field between instances of the body parts.

To assemble body parts into individual people, the OpenPose algorithm performs a series of post-
processing operations. The first operation identifies and localized body parts using the heatmaps
returned by the network. Subsequent operations identify actual connections between body parts,
resulting in the individual poses. For more details about the algorithm, see Identify Poses from
Heatmaps and PAFs on page 3-449.

Import the Network

Import a pretrained network from an ONNX file.

dataDir = fullfile(tempdir,'OpenPose');
trainedOpenPoseNet_url = 'https://ssd.mathworks.com/supportfiles/vision/data/human-pose-estimation.zip';
downloadTrainedOpenPoseNet(trainedOpenPoseNet_url,dataDir)

Pretrained OpenPose network already exists.

unzip(fullfile(dataDir,'human-pose-estimation.zip'),dataDir);

Download and install the Deep Learning Toolbox™ Converter for ONNX Model Format support
package.

If Deep Learning Toolbox Converter™ for ONNX Model Format is not installed, then the function
provides a link to the required support package in the Add-On Explorer. To install the support
package, click the link, and then click Install. If the support package is installed, then the
importONNXLayers function returns a LayerGraph object.

modelfile = fullfile(dataDir,'human-pose-estimation.onnx');
layers = importONNXLayers(modelfile,"ImportWeights",true);

Remove the unused output layers.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-444

layers = removeLayers(layers,layers.OutputNames);
net = dlnetwork(layers);

Predict Heatmaps and PAFs of Test Image

Read and display a test image.

im = imread("visionteam.jpg");
imshow(im)

The network expects image data of data type single in the range [-0.5, 0.5]. Shift and rescale the
data to this range.

netInput = im2single(im)-0.5;

The network expects the color channels in the order blue, green, red. Switch the order of the image
color channels.

netInput = netInput(:,:,[3 2 1]);

Store the image data as a dlarray.

 Estimate Body Pose Using Deep Learning

3-445

netInput = dlarray(netInput,"SSC");

Predict the heatmaps and part affinity fields (PAFs) , which are output from the 2-D output
convolutional layers.

[heatmaps,pafs] = predict(net,netInput);

Get the numeric heatmap data stored in the dlarray. The data has 19 channels. Each channel
corresponds to a heatmap for a unique body part, with one additional heatmap for the background.

heatmaps = extractdata(heatmaps);

Display the heatmaps in a montage, rescaling the data to the range [0, 1] expected of images of data
type single. The scene has six people, and there are six bright spots in each heatmap.

montage(rescale(heatmaps),"BackgroundColor","b","BorderSize",3)

To visualize the correspondence of bright spots with the bodies, display the first heatmap in falsecolor
over the test image.

idx = 1;
hmap = heatmaps(:,:,idx);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-446

hmap = imresize(hmap,size(im,[1 2]));
imshowpair(hmap,im);

The OpenPose algorithm does not use the background heatmap to determine the location of body
parts. Remove the background heatmap.

heatmaps = heatmaps(:,:,1:end-1);

Get the numeric PAF data stored in the dlarray. The data has 38 channels. There are two channels
for each type of body part pairing, which represent the x- and y-component of the vector field.

pafs = extractdata(pafs);

Display the PAFs in a montage, rescaling the data to the range [0, 1] expected of images of data type
single. The two columns show the x- and y-components of the vector field, respectively. The body
part pairings are in the order determined by the params.PAF_INDEX value.

• Pairs of body parts with a mostly vertical connection have large magnitudes for the y-component
pairings and negligible values for the x-component pairings. One example is the right hip to right
knee connection, which appears in the second row. Note that the PAFs depend on the actual poses

 Estimate Body Pose Using Deep Learning

3-447

in the image. An image with a body in a different orientation, such as lying down, will not
necessarily have a large y-component magnitude for the right hip to right knee connection.

• Pairs of body parts with a mostly horizontal connection have large magnitudes for the x-
component pairings and negligible values for the y-component pairings. One example is the neck
to left shoulder connection, which appears in the seventh row.

• Pairs of body part at an angle have values for both x- and y-components of the vector field. One
example is the neck to left hip, which appears in the first row.

montage(rescale(pafs),"Size",[19 2],"BackgroundColor","b","BorderSize",3)

To visualize the correspondence of the PAFs with the bodies, display the x- and y-component of the
first type of body part pair in falsecolor over the test image.

idx = 1;
impair = horzcat(im,im);
pafpair = horzcat(pafs(:,:,2*idx-1),pafs(:,:,2*idx));
pafpair = imresize(pafpair,size(impair,[1 2]));
imshowpair(pafpair,impair);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-448

Identify Poses from Heatmaps and PAFs

The post-processing part of the algorithm identifies the individual poses of the people in the image
using the heatmaps and PAFs returned by the neural network.

Get parameters of the OpenPose algorithm using the getBodyPoseParameters helper function. The
function is attached to the example as a supporting file. The function returns a struct with
parameters such as the number of body parts and connections between body part types to consider.
The parameters also include thresholds that you can adjust to improve the performance of the
algorithm.

params = getBodyPoseParameters;

Identify individual people and their poses by using the getBodyPoses helper function. This function
is attached to the example as a supporting file. The helper function performs all post-processing steps
for pose estimation:

1 Detect the precise body part locations from the heatmaps using nonmaximum suppression.

 Estimate Body Pose Using Deep Learning

3-449

2 For each type of body part pairing, generate all possible pairs between detected body parts. For
instance, generate all possible pairs between the six necks and the six left shoulders. The result
is a bipartite graph.

3 Score the pairs by computing the line integral of the straight line connecting the two detected
body parts through the PAF vector field. A large score indicates a strong connection between
detected body parts.

4 Sort the possible pairs by their scores and find the valid pairs. Valid body part pairs are pairs that
connect two body parts that belong to the same person. Typically, pairs with the largest score are
considered first because they are most likely to be a valid pair. However, the algorithm
compensates for occlusion and proximity using additional constraints. For example, the same
person cannot have duplicate pairs of body parts, and one body part cannot belong to two
different people.

5 Knowing which body parts are connected, assemble the body parts into separate poses for each
individual person.

The helper function returns a 3-D matrix. The first dimension represents the number of identified
people in the image. The second dimension represents the number of body part types. The third
dimension indicates the x- and y-coordinates for each body part of each person. If a body part is not
detected in the image, then the coordinates for that part are [NaN NaN].

poses = getBodyPoses(heatmaps,pafs,params);

Display the body poses using the renderBodyPoses helper function. This function is attached to the
example as a supporting file.

renderBodyPoses(im,poses,size(heatmaps,1),size(heatmaps,2),params);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-450

References

[1] Cao, Zhe, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. “OpenPose: Realtime
Multi-Person 2D Pose Estimation Using Part Affinity Fields.” ArXiv:1812.08008 [Cs], May 30, 2019.
https://arxiv.org/abs/1812.08008.

[2] Osokin, Daniil. “Real-Time 2D Multi-Person Pose Estimation on CPU: Lightweight OpenPose.”
ArXiv:1811.12004 [Cs], November 29, 2018. https://arxiv.org/abs/1811.12004.

See Also
importONNXLayers | dlnetwork | predict

 Estimate Body Pose Using Deep Learning

3-451

https://arxiv.org/abs/1812.08008
https://arxiv.org/abs/1811.12004

Generate Image from Segmentation Map Using Deep Learning

This example shows how to generate a synthetic image of a scene from a semantic segmentation map
using a pix2pixHD conditional generative adversarial network (CGAN).

Pix2pixHD [1 on page 3-465] consists of two networks that are trained simultaneously to maximize
the performance of both.

1 The generator is an encoder-decoder style neural network that generates a scene image from a
semantic segmentation map. A CGAN network trains the generator to generate a scene image
that the discriminator misclassifies as real.

2 The discriminator is a fully convolutional neural network that compares a generated scene image
and the corresponding real image and attempts to classify them as fake and real, respectively. A
CGAN network trains the discriminator to correctly distinguish between generated and real
image.

The generator and discriminator networks compete against each other during training. The training
converges when neither network can improve further.

Download CamVid Data Set

This example uses the CamVid data set [2 on page 3-465] from the University of Cambridge for
training. This data set is a collection of 701 images containing street-level views obtained while
driving. The data set provides pixel labels for 32 semantic classes including car, pedestrian, and road.

Download the CamVid data set from these URLs. The download time depends on your internet
connection.

imageURL = "http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/files/701_StillsRaw_full.zip";
labelURL = "http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/LabeledApproved_full.zip";

dataDir = fullfile(tempdir,"CamVid");
downloadCamVidData(dataDir,imageURL,labelURL);
imgDir = fullfile(dataDir,"images","701_StillsRaw_full");
labelDir = fullfile(dataDir,"labels");

Preprocess Training Data

Create an imageDatastore to store the images in the CamVid data set.

imds = imageDatastore(imgDir);
imageSize = [576 768];

Define the class names and pixel label IDs of the 32 classes in the CamVid data set using the helper
function defineCamVid32ClassesAndPixelLabelIDs. Get a standard colormap for the CamVid
data set using the helper function camvid32ColorMap. The helper functions are attached to the
example as supporting files.

numClasses = 32;
[classes,labelIDs] = defineCamVid32ClassesAndPixelLabelIDs;
cmap = camvid32ColorMap;

Create a pixelLabelDatastore to store the pixel label images.

pxds = pixelLabelDatastore(labelDir,classes,labelIDs);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-452

http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/

Preview a pixel label image and the corresponding ground truth scene image. Convert the labels from
categorical labels to RGB colors by using the label2rgb function, then display the pixel label image
and ground truth image in a montage.

im = preview(imds);
px = preview(pxds);
px = label2rgb(px,cmap);
montage({px,im})

Partition the data into training and test sets using the helper function
partitionCamVidForPix2PixHD. This function is attached to the example as a supporting file. The
helper function splits the data into 648 training files and 32 test files.

[imdsTrain,imdsTest,pxdsTrain,pxdsTest] = partitionCamVidForPix2PixHD(imds,pxds,classes,labelIDs);

Use the combine function to combine the pixel label images and ground truth scene images into a
single datastore.

dsTrain = combine(pxdsTrain,imdsTrain);

Augment the training data by using the transform function with custom preprocessing operations
specified by the helper function preprocessCamVidForPix2PixHD. This helper function is attached
to the example as a supporting file.

The preprocessCamVidForPix2PixHD function performs these operations:

1 Scale the ground truth data to the range [-1, 1]. This range matches the range of the final
tanhLayer (Deep Learning Toolbox) in the generator network.

2 Resize the image and labels to the output size of the network, 576-by-768 pixels, using bicubic
and nearest neighbor downsampling, respectively.

3 Convert the single channel segmentation map to a 32-channel one-hot encoded segmentation
map using the onehotencode (Deep Learning Toolbox) function.

4 Randomly flip image and pixel label pairs in the horizontal direction.

dsTrain = transform(dsTrain,@(x) preprocessCamVidForPix2PixHD(x,imageSize));

 Generate Image from Segmentation Map Using Deep Learning

3-453

Preview the channels of a one-hot encoded segmentation map in a montage. Each channel represents
a one-hot map corresponding to pixels of a unique class.

map = preview(dsTrain);
montage(map{1},"Size",[4 8],"Bordersize",5,"BackgroundColor","b")

Create Generator Network

Define a pix2pixHD generator network that generates a scene image from a depth-wise one-hot
encoded segmentation map. This input has same height and width as the original segmentation map
and the same number of channels as classes.

generatorInputSize = [imageSize numClasses];

Create the pix2pixHD generator network using the pix2pixHDGlobalGenerator function.

dlnetGenerator = pix2pixHDGlobalGenerator(generatorInputSize);

Display the network architecture.

analyzeNetwork(dlnetGenerator)

Note that this example shows the use of pix2pixHD global generator for generating images of size
576-by-768 pixels. To create local enhancer networks that generate images at higher resolution such
as 1152-by-1536 pixels or even higher, you can use the addPix2PixHDLocalEnhancer function. The
local enhancer networks help generate fine level details at very high resolutions.

Create Discriminator Network

Define the patch GAN discriminator networks that classifies an input image as either real (1) or fake
(0). This example uses two discriminator networks at different input scales, also known as multiscale
discriminators. The first scale is the same size as the image size, and the second scale is half the size
of image size.

The input to the discriminator is the depth-wise concatenation of the one-hot encoded segmentation
maps and the scene image to be classified. Specify the number of channels input to the discriminator
as the total number of labeled classes and image color channels.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-454

numImageChannels = 3;
numChannelsDiscriminator = numClasses + numImageChannels;

Specify the input size of the first discriminator. Create the patch GAN discriminator with instance
normalization using the patchGANDiscriminator function.

discriminatorInputSizeScale1 = [imageSize numChannelsDiscriminator];
dlnetDiscriminatorScale1 = patchGANDiscriminator(discriminatorInputSizeScale1,NormalizationLayer="instance");

Specify the input size of the second discriminator as half the image size, then create the second patch
GAN discriminator.

discriminatorInputSizeScale2 = [floor(imageSize)./2 numChannelsDiscriminator];
dlnetDiscriminatorScale2 = patchGANDiscriminator(discriminatorInputSizeScale2,NormalizationLayer="instance");

Visualize the networks.

analyzeNetwork(dlnetDiscriminatorScale1);
analyzeNetwork(dlnetDiscriminatorScale2);

Define Model Gradients and Loss Functions

The helper function modelGradients calculates the gradients and adversarial loss for the generator
and discriminator. The function also calculates the feature matching loss and VGG loss for the
generator. This function is defined in Supporting Functions on page 3-462 section of this example.

Generator Loss

The objective of the generator is to generate images that the discriminator classifies as real (1). The
generator loss consists of three losses.

• The adversarial loss is computed as the squared difference between a vector of ones and the
discriminator predictions on the generated image. Ygenerated are discriminator predictions on the
image generated by the generator. This loss is implemented using part of the
pix2pixhdAdversarialLoss helper function defined in the Supporting Functions on page 3-
462 section of this example.

lossAdversarialGenerator = (1− Ygenerated)2

• The feature matching loss penalises the L1 distance between the real and generated feature maps
obtained as predictions from the discriminator network. T is total number of discriminator feature
layers. Yreal and Ygenerated are the ground truth images and generated images, respectively. This
loss is implemented using the pix2pixhdFeatureMatchingLoss helper function defined in the
Supporting Functions on page 3-462 section of this example

lossFeatureMatching = ∑
i = 1

T
| |Yreal− Ygenerated | |1

• The perceptual loss penalises the L1 distance between real and generated feature maps obtained
as predictions from a feature extraction network. T is total number of feature layers. YVggReal and
YVggGenerated are network predictions for ground truth images and generated images, respectively.
This loss is implemented using the pix2pixhdVggLoss helper function defined in the Supporting
Functions on page 3-462 section of this example. The feature extraction network is created in
Load Feature Extraction Network on page 3-456.

 Generate Image from Segmentation Map Using Deep Learning

3-455

lossVgg = ∑
i = 1

T
| |YVggReal− YVggGenerated | |1

The overall generator loss is a weighted sum of all three losses. λ1, λ2, and λ3 are the weight factors
for adversarial loss, feature matching loss, and perceptual loss, respectively.

lossGenerator = λ1 * lossAdversarialGenerator + λ2 * lossFeatureMatching + λ3 * lossPerceptual

Note that the adversarial loss and feature matching loss for the generator are computed for two
different scales.

Discriminator Loss

The objective of the discriminator is to correctly distinguish between ground truth images and
generated images. The discriminator loss is a sum of two components:

• The squared difference between a vector of ones and the predictions of the discriminator on real
images

• The squared difference between a vector of zeros and the predictions of the discriminator on
generated images

lossDiscriminator = (1− Yreal)2 + (0− Ygenerated)2

The discriminator loss is implemented using part of the pix2pixhdAdversarialLoss helper
function defined in the Supporting Functions on page 3-462 section of this example. Note that
adversarial loss for the discriminator is computed for two different discriminator scales.

Load Feature Extraction Network

This example modifies a pretrained VGG-19 deep neural network to extract the features of the real
and generated images at various layers. These multilayer features are used to compute the
perceptual loss of the generator.

To get a pretrained VGG-19 network, install vgg19 (Deep Learning Toolbox). If you do not have the
required support packages installed, then the software provides a download link.

netVGG = vgg19;

Visualize the network architecture using the Deep Network Designer (Deep Learning Toolbox) app.

deepNetworkDesigner(netVGG)

To make the VGG-19 network suitable for feature extraction, keep the layers up to "pool5" and
remove all of the fully connected layers from the network. The resulting network is a fully
convolutional network.

netVGG = layerGraph(netVGG.Layers(1:38));

Create a new image input layer with no normalization. Replace the original image input layer with
the new layer.

inp = imageInputLayer([imageSize 3],Normalization="None",Name="Input");
netVGG = replaceLayer(netVGG,"input",inp);
netVGG = dlnetwork(netVGG);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-456

Specify Training Options

Specify the options for Adam optimization. Train for 60 epochs. Specify identical options for the
generator and discriminator networks.

• Specify an equal learning rate of 0.0002.
• Initialize the trailing average gradient and trailing average gradient-square decay rates with [].
• Use a gradient decay factor of 0.5 and a squared gradient decay factor of 0.999.
• Use a mini-batch size of 1 for training.

numEpochs = 60;
learningRate = 0.0002;
trailingAvgGenerator = [];
trailingAvgSqGenerator = [];
trailingAvgDiscriminatorScale1 = [];
trailingAvgSqDiscriminatorScale1 = [];
trailingAvgDiscriminatorScale2 = [];
trailingAvgSqDiscriminatorScale2 = [];
gradientDecayFactor = 0.5;
squaredGradientDecayFactor = 0.999;
miniBatchSize = 1;

Create a minibatchqueue (Deep Learning Toolbox) object that manages the mini-batching of
observations in a custom training loop. The minibatchqueue object also casts data to a dlarray
(Deep Learning Toolbox) object that enables auto differentiation in deep learning applications.

Specify the mini-batch data extraction format as SSCB (spatial, spatial, channel, batch). Set the
DispatchInBackground name-value pair argument as the boolean returned by canUseGPU. If a
supported GPU is available for computation, then the minibatchqueue object preprocesses mini-
batches in the background in a parallel pool during training.

mbqTrain = minibatchqueue(dsTrain,MiniBatchSiz=miniBatchSize, ...
 MiniBatchFormat="SSCB",DispatchInBackground=canUseGPU);

Train the Network

By default, the example downloads a pretrained version of the pix2pixHD generator network for the
CamVid data set by using the helper function downloadTrainedPix2PixHDNet. The helper function
is attached to the example as a supporting file. The pretrained network enables you to run the entire
example without waiting for training to complete.

To train the network, set the doTraining variable in the following code to true. Train the model in
a custom training loop. For each iteration:

• Read the data for current mini-batch using the next (Deep Learning Toolbox) function.
• Evaluate the model gradients using the dlfeval (Deep Learning Toolbox) function and the

modelGradients helper function.
• Update the network parameters using the adamupdate (Deep Learning Toolbox) function.
• Update the training progress plot for every iteration and display various computed losses.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox).

 Generate Image from Segmentation Map Using Deep Learning

3-457

Training takes about 22 hours on an NVIDIA™ Titan RTX and can take even longer depending on your
GPU hardware. If your GPU device has less memory, try reducing the size of the input images by
specifying the imageSize variable as [480 640] in the Preprocess Training Data on page 3-452
section of the example.

doTraining = false;
if doTraining
 fig = figure;

 lossPlotter = configureTrainingProgressPlotter(fig);
 iteration = 0;

 % Loop over epochs
 for epoch = 1:numEpochs

 % Reset and shuffle the data
 reset(mbqTrain);
 shuffle(mbqTrain);

 % Loop over each image
 while hasdata(mbqTrain)
 iteration = iteration + 1;

 % Read data from current mini-batch
 [dlInputSegMap,dlRealImage] = next(mbqTrain);

 % Evaluate the model gradients and the generator state using
 % dlfeval and the GANLoss function listed at the end of the
 % example
 [gradParamsG,gradParamsDScale1,gradParamsDScale2,lossGGAN,lossGFM,lossGVGG,lossD] = dlfeval(...
 @modelGradients,dlInputSegMap,dlRealImage,dlnetGenerator,dlnetDiscriminatorScale1,dlnetDiscriminatorScale2,netVGG);

 % Update the generator parameters
 [dlnetGenerator,trailingAvgGenerator,trailingAvgSqGenerator] = adamupdate(...
 dlnetGenerator,gradParamsG, ...
 trailingAvgGenerator,trailingAvgSqGenerator,iteration, ...
 learningRate,gradientDecayFactor,squaredGradientDecayFactor);

 % Update the discriminator scale1 parameters
 [dlnetDiscriminatorScale1,trailingAvgDiscriminatorScale1,trailingAvgSqDiscriminatorScale1] = adamupdate(...
 dlnetDiscriminatorScale1,gradParamsDScale1, ...
 trailingAvgDiscriminatorScale1,trailingAvgSqDiscriminatorScale1,iteration, ...
 learningRate,gradientDecayFactor,squaredGradientDecayFactor);

 % Update the discriminator scale2 parameters
 [dlnetDiscriminatorScale2,trailingAvgDiscriminatorScale2,trailingAvgSqDiscriminatorScale2] = adamupdate(...
 dlnetDiscriminatorScale2,gradParamsDScale2, ...
 trailingAvgDiscriminatorScale2,trailingAvgSqDiscriminatorScale2,iteration, ...
 learningRate,gradientDecayFactor,squaredGradientDecayFactor);

 % Plot and display various losses
 lossPlotter = updateTrainingProgressPlotter(lossPlotter,iteration, ...
 epoch,numEpochs,lossD,lossGGAN,lossGFM,lossGVGG);
 end
 end
 save("trainedPix2PixHDNet.mat","dlnetGenerator");

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-458

else
 trainedPix2PixHDNet_url = "https://ssd.mathworks.com/supportfiles/vision/data/trainedPix2PixHDv2.zip";
 netDir = fullfile(tempdir,"CamVid");
 downloadTrainedPix2PixHDNet(trainedPix2PixHDNet_url,netDir);
 load(fullfile(netDir,"trainedPix2PixHDv2.mat"));
end

Evaluate Generated Images from Test Data

The performance of this trained Pix2PixHD network is limited because the number of CamVid
training images is relatively small. Additionally, some images belong to an image sequence and
therefore are correlated with other images in the training set. To improve the effectiveness of the
Pix2PixHD network, train the network using a different data set that has a larger number of training
images without correlation.

Because of the limitations, this Pix2PixHD network generates more realistic images for some test
images than for others. To demonstrate the difference in results, compare the generated images for
the first and third test image. The camera angle of the first test image has an uncommon vantage
point that faces more perpendicular to the road than the typical training image. In contrast, the
camera angle of the third test image has a typical vantage point that faces along the road and shows
two lanes with lane markers. The network has significantly better performance generating a realistic
image for the third test image than for the first test image.

Get the first ground truth scene image from the test data. Resize the image using bicubic
interpolation.

idxToTest = 1;
gtImage = readimage(imdsTest,idxToTest);
gtImage = imresize(gtImage,imageSize,"bicubic");

Get the corresponding pixel label image from the test data. Resize the pixel label image using nearest
neighbor interpolation.

segMap = readimage(pxdsTest,idxToTest);
segMap = imresize(segMap,imageSize,"nearest");

Convert the pixel label image to a multichannel one-hot segmentation map by using the
onehotencode (Deep Learning Toolbox) function.

segMapOneHot = onehotencode(segMap,3,"single");

Create dlarray objects that inputs data to the generator. If a supported GPU is available for
computation, then perform inference on a GPU by converting the data to a gpuArray object.

dlSegMap = dlarray(segMapOneHot,"SSCB");
if canUseGPU
 dlSegMap = gpuArray(dlSegMap);
end

Generate a scene image from the generator and one-hot segmentation map using the predict (Deep
Learning Toolbox) function.

dlGeneratedImage = predict(dlnetGenerator,dlSegMap);
generatedImage = extractdata(gather(dlGeneratedImage));

The final layer of the generator network produces activations in the range [-1, 1]. For display, rescale
the activations to the range [0, 1].

 Generate Image from Segmentation Map Using Deep Learning

3-459

generatedImage = rescale(generatedImage);

For display, convert the labels from categorical labels to RGB colors by using the label2rgb
function.

coloredSegMap = label2rgb(segMap,cmap);

Display the RGB pixel label image, generated scene image, and ground truth scene image in a
montage.

figure
montage({coloredSegMap generatedImage gtImage},Size=[1 3])
title("Test Pixel Label Image " + idxToTest + " with Generated and Ground Truth Scene Images")

Get the third ground truth scene image from the test data. Resize the image using bicubic
interpolation.

idxToTest = 3;
gtImage = readimage(imdsTest,idxToTest);
gtImage = imresize(gtImage,imageSize,"bicubic");

To get the third pixel label image from the test data and to generate the corresponding scene image,
you can use the helper function evaluatePix2PixHD. This helper function is attached to the
example as a supporting file.

The evaluatePix2PixHD function performs the same operations as the evaluation of the first test
image:

• Get a pixel label image from the test data. Resize the pixel label image using nearest neighbor
interpolation.

• Convert the pixel label image to a multichannel one-hot segmentation map using the
onehotencode (Deep Learning Toolbox) function.

• Create a dlarray object to input data to the generator. For GPU inference, convert the data to a
gpuArray object.

• Generate a scene image from the generator and one-hot segmentation map using the predict
(Deep Learning Toolbox) function.

• Rescale the activations to the range [0, 1].

[generatedImage,segMap] = evaluatePix2PixHD(pxdsTest,idxToTest,imageSize,dlnetGenerator);

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-460

For display, convert the labels from categorical labels to RGB colors by using the label2rgb
function.

coloredSegMap = label2rgb(segMap,cmap);

Display the RGB pixel label image, generated scene image, and ground truth scene image in a
montage.

figure
montage({coloredSegMap generatedImage gtImage},Size=[1 3])
title("Test Pixel Label Image " + idxToTest + " with Generated and Ground Truth Scene Images")

Evaluate Generated Images from Custom Pixel Label Images

To evaluate how well the network generalizes to pixel label images outside the CamVid data set,
generate scene images from custom pixel label images. This example uses pixel label images that
were created using the Image Labeler app. The pixel label images are attached to the example as
supporting files. No ground truth images are available.

Create a pixel label datastore that reads and processes the pixel label images in the current example
directory.

cpxds = pixelLabelDatastore(pwd,classes,labelIDs);

For each pixel label image in the datastore, generate a scene image using the helper function
evaluatePix2PixHD.

for idx = 1:length(cpxds.Files)

 % Get the pixel label image and generated scene image
 [generatedImage,segMap] = evaluatePix2PixHD(cpxds,idx,imageSize,dlnetGenerator);

 % For display, convert the labels from categorical labels to RGB colors
 coloredSegMap = label2rgb(segMap);

 % Display the pixel label image and generated scene image in a montage
 figure
 montage({coloredSegMap generatedImage})
 title("Custom Pixel Label Image " + num2str(idx) + " and Generated Scene Image")

end

 Generate Image from Segmentation Map Using Deep Learning

3-461

Supporting Functions

Model Gradients Function

The modelGradients helper function calculates the gradients and adversarial loss for the generator
and discriminator. The function also calculates the feature matching loss and VGG loss for the
generator.

function [gradParamsG,gradParamsDScale1,gradParamsDScale2,lossGGAN,lossGFM,lossGVGG,lossD] = modelGradients(inputSegMap,realImage,generator,discriminatorScale1,discriminatorScale2,netVGG)

 % Compute the image generated by the generator given the input semantic
 % map.
 generatedImage = forward(generator,inputSegMap);

 % Define the loss weights
 lambdaDiscriminator = 1;

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-462

 lambdaGenerator = 1;
 lambdaFeatureMatching = 5;
 lambdaVGG = 5;

 % Concatenate the image to be classified and the semantic map
 inpDiscriminatorReal = cat(3,inputSegMap,realImage);
 inpDiscriminatorGenerated = cat(3,inputSegMap,generatedImage);

 % Compute the adversarial loss for the discriminator and the generator
 % for first scale.
 [DLossScale1,GLossScale1,realPredScale1D,fakePredScale1G] = pix2pixHDAdverserialLoss(inpDiscriminatorReal,inpDiscriminatorGenerated,discriminatorScale1);

 % Scale the generated image, the real image, and the input semantic map to
 % half size
 resizedRealImage = dlresize(realImage,Scale=0.5,Method="linear");
 resizedGeneratedImage = dlresize(generatedImage,Scale=0.5,Method="linear");
 resizedinputSegMap = dlresize(inputSegMap,Scale=0.5,Method="nearest");

 % Concatenate the image to be classified and the semantic map
 inpDiscriminatorReal = cat(3,resizedinputSegMap,resizedRealImage);
 inpDiscriminatorGenerated = cat(3,resizedinputSegMap,resizedGeneratedImage);

 % Compute the adversarial loss for the discriminator and the generator
 % for second scale.
 [DLossScale2,GLossScale2,realPredScale2D,fakePredScale2G] = pix2pixHDAdverserialLoss(inpDiscriminatorReal,inpDiscriminatorGenerated,discriminatorScale2);

 % Compute the feature matching loss for first scale.
 FMLossScale1 = pix2pixHDFeatureMatchingLoss(realPredScale1D,fakePredScale1G);
 FMLossScale1 = FMLossScale1 * lambdaFeatureMatching;

 % Compute the feature matching loss for second scale.
 FMLossScale2 = pix2pixHDFeatureMatchingLoss(realPredScale2D,fakePredScale2G);
 FMLossScale2 = FMLossScale2 * lambdaFeatureMatching;

 % Compute the VGG loss
 VGGLoss = pix2pixHDVGGLoss(realImage,generatedImage,netVGG);
 VGGLoss = VGGLoss * lambdaVGG;

 % Compute the combined generator loss
 lossGCombined = GLossScale1 + GLossScale2 + FMLossScale1 + FMLossScale2 + VGGLoss;
 lossGCombined = lossGCombined * lambdaGenerator;

 % Compute gradients for the generator
 gradParamsG = dlgradient(lossGCombined,generator.Learnables,RetainData=true);

 % Compute the combined discriminator loss
 lossDCombined = (DLossScale1 + DLossScale2)/2 * lambdaDiscriminator;

 % Compute gradients for the discriminator scale1
 gradParamsDScale1 = dlgradient(lossDCombined,discriminatorScale1.Learnables,RetainData=true);

 % Compute gradients for the discriminator scale2
 gradParamsDScale2 = dlgradient(lossDCombined,discriminatorScale2.Learnables);

 % Log the values for displaying later
 lossD = gather(extractdata(lossDCombined));
 lossGGAN = gather(extractdata(GLossScale1 + GLossScale2));
 lossGFM = gather(extractdata(FMLossScale1 + FMLossScale2));

 Generate Image from Segmentation Map Using Deep Learning

3-463

 lossGVGG = gather(extractdata(VGGLoss));
end

Adversarial Loss Function

The helper function pix2pixHDAdverserialLoss computes the adversarial loss gradients for the
generator and the discriminator. The function also returns feature maps of the real image and
synthetic images.

function [DLoss,GLoss,realPredFtrsD,genPredFtrsD] = pix2pixHDAdverserialLoss(inpReal,inpGenerated,discriminator)

 % Discriminator layer names containing feature maps
 featureNames = {"act_top","act_mid_1","act_mid_2","act_tail","conv2d_final"};

 % Get the feature maps for the real image from the discriminator
 realPredFtrsD = cell(size(featureNames));
 [realPredFtrsD{:}] = forward(discriminator,inpReal,Outputs=featureNames);

 % Get the feature maps for the generated image from the discriminator
 genPredFtrsD = cell(size(featureNames));
 [genPredFtrsD{:}] = forward(discriminator,inpGenerated,Outputs=featureNames);

 % Get the feature map from the final layer to compute the loss
 realPredD = realPredFtrsD{end};
 genPredD = genPredFtrsD{end};

 % Compute the discriminator loss
 DLoss = (1 - realPredD).^2 + (genPredD).^2;
 DLoss = mean(DLoss,"all");

 % Compute the generator loss
 GLoss = (1 - genPredD).^2;
 GLoss = mean(GLoss,"all");
end

Feature Matching Loss Function

The helper function pix2pixHDFeatureMatchingLoss computes the feature matching loss
between a real image and a synthetic image generated by the generator.

function featureMatchingLoss = pix2pixHDFeatureMatchingLoss(realPredFtrs,genPredFtrs)

 % Number of features
 numFtrsMaps = numel(realPredFtrs);

 % Initialize the feature matching loss
 featureMatchingLoss = 0;

 for i = 1:numFtrsMaps
 % Get the feature maps of the real image
 a = extractdata(realPredFtrs{i});
 % Get the feature maps of the synthetic image
 b = genPredFtrs{i};

 % Compute the feature matching loss
 featureMatchingLoss = featureMatchingLoss + mean(abs(a - b),"all");
 end
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-464

Perceptual VGG Loss Function

The helper function pix2pixHDVGGLoss computes the perceptual VGG loss between a real image
and a synthetic image generated by the generator.

function vggLoss = pix2pixHDVGGLoss(realImage,generatedImage,netVGG)

 featureWeights = [1.0/32 1.0/16 1.0/8 1.0/4 1.0];

 % Initialize the VGG loss
 vggLoss = 0;

 % Specify the names of the layers with desired feature maps
 featureNames = ["relu1_1","relu2_1","relu3_1","relu4_1","relu5_1"];

 % Extract the feature maps for the real image
 activReal = cell(size(featureNames));
 [activReal{:}] = forward(netVGG,realImage,Outputs=featureNames);

 % Extract the feature maps for the synthetic image
 activGenerated = cell(size(featureNames));
 [activGenerated{:}] = forward(netVGG,generatedImage,Outputs=featureNames);

 % Compute the VGG loss
 for i = 1:numel(featureNames)
 vggLoss = vggLoss + featureWeights(i)*mean(abs(activReal{i} - activGenerated{i}),"all");
 end
end

References

[1] Wang, Ting-Chun, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. "High-
Resolution Image Synthesis and Semantic Manipulation with Conditional GANs." In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 8798–8807, 2018. https://doi.org/10.1109/
CVPR.2018.00917.

[2] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic Object Classes in Video: A
High-Definition Ground Truth Database." Pattern Recognition Letters. Vol. 30, Issue 2, 2009, pp
88-97.

See Also
vgg19 | imageDatastore | pixelLabelDatastore | trainingOptions | trainNetwork |
transform | combine

More About
• “Preprocess Images for Deep Learning” (Deep Learning Toolbox)
• “Datastores for Deep Learning” (Deep Learning Toolbox)
• “List of Deep Learning Layers” (Deep Learning Toolbox)
• “Define Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox)

 Generate Image from Segmentation Map Using Deep Learning

3-465

Train Simple Semantic Segmentation Network in Deep Network
Designer

This example shows how to create and train a simple semantic segmentation network using Deep
Network Designer.

Semantic segmentation describes the process of associating each pixel of an image with a class label
(such as flower, person, road, sky, ocean, or car). Applications for semantic segmentation include
road segmentation for autonomous driving and cancer cell segmentation for medical diagnosis. To
learn more, see “Getting Started with Semantic Segmentation Using Deep Learning” on page 17-75.

Preprocess Training Data

To train a semantic segmentation network, you need a collection of images and its corresponding
collection of pixel-labeled images. A pixel-labeled image is an image where every pixel value
represents the categorical label of that pixel. This example uses a simple data set of 32-by-32 images
of triangles for illustration purposes. You can interactively label pixels and export the label data for
computer vision applications using Image Labeler. For more information on creating training data for
semantic segmentation applications, see “Label Pixels for Semantic Segmentation” on page 9-19.

Load the training data.

dataFolder = fullfile(toolboxdir('vision'), ...
'visiondata','triangleImages');

imageDir = fullfile(dataFolder,'trainingImages');
labelDir = fullfile(dataFolder,'trainingLabels');

Create an ImageDatastore containing the images.

imds = imageDatastore(imageDir);

Create a PixelLabelDatastore containing the ground truth pixel labels. This data set has two
classes: "triangle" and "background".

classNames = ["triangle","background"];
labelIDs = [255 0];

pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);

Combine the image datastore and the pixel label datastore into a CombinedDatastore object using
the combine function. A combined datastore maintains parity between the pair of images in the
underlying datastores.

cds = combine(imds,pxds);

Build Network

Open Deep Network Designer.

deepNetworkDesigner

In Deep Network Designer, you can build, edit, and train deep learning networks. Pause on Blank
Network and click New.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-466

Create a semantic segmentation network by dragging layers from the Layer Library to the Designer
pane.

Connect the layers in this order:

1 imageInputLayer with InputSize set to 32,32,1
2 convolution2dLayer with FilterSize set to 3,3, NumFilters set to 64, and Padding set

to 1,1,1,1
3 reluLayer
4 maxPooling2dLayer with PoolSize set to 2,2, Stride set to 2,2, and Padding set to

0,0,0,0
5 convolution2dLayer with FilterSize set to 3,3, NumFilters set to 64, and Padding set

to 1,1,1,1
6 reluLayer
7 transposedConv2dLayer with FilterSize set to 4,4, NumFilters set to 64, Stride set to

2,2, and Cropping set to 1,1,1,1
8 convolution2dLayer with FilterSize set to 1,1, NumFilters set to 2, and Padding set to

0,0,0,0
9 softmaxLayer
10 pixelClassificationLayer

You can also create this network at the command line and then import the network into Deep
Network Designer using deepNetworkDesigner(layers).

layers = [
 imageInputLayer([32 32 1])
 convolution2dLayer([3,3],64,'Padding',[1,1,1,1])
 reluLayer
 maxPooling2dLayer([2,2],'Stride',[2,2])
 convolution2dLayer([3,3],64,'Padding',[1,1,1,1])
 reluLayer
 transposedConv2dLayer([4,4],64,'Stride',[2,2],'Cropping',[1,1,1,1])

 Train Simple Semantic Segmentation Network in Deep Network Designer

3-467

 convolution2dLayer([1,1],2)
 softmaxLayer
 pixelClassificationLayer
];

This network is a simple semantic segmentation network based on a downsampling and upsampling
design. For more information on constructing a semantic segmentation network, see “Create a
Semantic Segmentation Network”.

Import Data

To import the training datastore, on the Data tab, select Import Data > Import Custom Data.
Select the CombinedDatastore object cds as the training data. For the validation data, select None.
Import the training data by clicking Import.

Deep Network Designer displays a preview of the imported semantic segmentation data. The preview
displays the training images and the ground truth pixel labels. The network requires input images
(left) and returns a classification for each pixel as either triangle or background (right).

Train Network

Set the training options and train the network.

On the Training tab, click Training Options. Set InitialLearnRate to 0.001, MiniBatchSize to
64, and MaxEpochs to 100. Set the training options by clicking OK.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-468

Train the network by clicking Train.

Once training is complete, click Export to export the trained network to the workspace. The trained
network is stored in the variable trainedNetwork_1.

Test Network

Make predictions using test data and the trained network.

Segment the test image using semanticseg. Display the labels over the image by using the
labeloverlay function.

imgTest = imread('triangleTest.jpg');
testSeg = semanticseg(imgTest,trainedNetwork_1);
testImageSeg = labeloverlay(imgTest,testSeg);

Display the results.

 Train Simple Semantic Segmentation Network in Deep Network Designer

3-469

figure
imshow(testImageSeg)

The network successfully labels the triangles in the test image.

The semantic segmentation network trained in this example is very simple. To construct more
complex semantic segmentation networks, you can use the Computer Vision Toolbox functions
segnetLayers, deeplabv3plusLayers, and unetLayers. For an example showing how to use the
deeplabv3plusLayers function to create a DeepLab v3+ network, see “Semantic Segmentation
With Deep Learning”.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-470

Train ACF-Based Stop Sign Detector

Use training data to train an ACF-based object detector for stop signs

Add the folder containing images to the MATLAB path.

imageDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata', 'stopSignImages');
addpath(imageDir);

Load ground truth data, which contains data for stops signs and cars.

load('stopSignsAndCarsGroundTruth.mat','stopSignsAndCarsGroundTruth')

View the label definitions to see the label types in the ground truth.

stopSignsAndCarsGroundTruth.LabelDefinitions

ans=3×3 table
 Name Type Group
 ____________ _________ ________

 {'stopSign'} Rectangle {'None'}
 {'carRear' } Rectangle {'None'}
 {'carFront'} Rectangle {'None'}

Select the stop sign data for training.

stopSignGroundTruth = selectLabelsByName(stopSignsAndCarsGroundTruth,'stopSign');

Create the training data for a stop sign object detector.

trainingData = objectDetectorTrainingData(stopSignGroundTruth);
summary(trainingData)

Variables:

 imageFilename: 41x1 cell array of character vectors

 stopSign: 41x1 cell

Train an ACF-based object detector.

acfDetector = trainACFObjectDetector(trainingData,'NegativeSamplesFactor',2);

ACF Object Detector Training
The training will take 4 stages. The model size is 34x31.
Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
--
Stage 1:
Sample negative examples(~100% Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 19 weak learners.
--

 Train ACF-Based Stop Sign Detector

3-471

Stage 2:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 20 weak learners.
--
Stage 3:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 54 weak learners.
--
Stage 4:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 61 weak learners.
--
ACF object detector training is completed. Elapsed time is 20.8928 seconds.

Test the ACF-based detector on a sample image.

I = imread('stopSignTest.jpg');
bboxes = detect(acfDetector,I);

Display the detected object.

annotation = acfDetector.ModelName;
I = insertObjectAnnotation(I,'rectangle',bboxes,annotation);

figure
imshow(I)

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-472

Remove the image folder from the path.

rmpath(imageDir);

 Train ACF-Based Stop Sign Detector

3-473

Train Fast R-CNN Stop Sign Detector

Load training data.

data = load('rcnnStopSigns.mat', 'stopSigns', 'fastRCNNLayers');
stopSigns = data.stopSigns;
fastRCNNLayers = data.fastRCNNLayers;

Add fullpath to image files.

stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
 stopSigns.imageFilename);

Randomly shuffle data for training.

rng(0);
shuffledIdx = randperm(height(stopSigns));
stopSigns = stopSigns(shuffledIdx,:);

Create an imageDatastore using the files from the table.

imds = imageDatastore(stopSigns.imageFilename);

Create a boxLabelDatastore using the label columns from the table.

blds = boxLabelDatastore(stopSigns(:,2:end));

Combine the datastores.

ds = combine(imds, blds);

The stop sign training images have different sizes. Preprocess the data to resize the image and boxes
to a predefined size.

ds = transform(ds,@(data)preprocessData(data,[920 968 3]));

Set the network training options.

options = trainingOptions('sgdm', ...
 'MiniBatchSize', 10, ...
 'InitialLearnRate', 1e-3, ...
 'MaxEpochs', 10, ...
 'CheckpointPath', tempdir);

Train the Fast R-CNN detector. Training can take a few minutes to complete.

frcnn = trainFastRCNNObjectDetector(ds, fastRCNNLayers , options, ...
 'NegativeOverlapRange', [0 0.1], ...
 'PositiveOverlapRange', [0.7 1]);

Training a Fast R-CNN Object Detector for the following object classes:

* stopSign

--> Extracting region proposals from training datastore...done.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-474

Training on single GPU.
|===|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |
|===|
| 1 | 1 | 00:00:29 | 0.3787 | 93.59% | 0.96 | 0.0010 |
| 10 | 10 | 00:05:14 | 0.3032 | 98.52% | 0.95 | 0.0010 |
|===|

Detector training complete.

Test the Fast R-CNN detector on a test image.

img = imread('stopSignTest.jpg');

Run the detector.

[bbox, score, label] = detect(frcnn, img);

Display detection results.

detectedImg = insertObjectAnnotation(img,'rectangle',bbox,score);
figure
imshow(detectedImg)

Supporting Functions

function data = preprocessData(data,targetSize)
% Resize image and bounding boxes to the targetSize.
scale = targetSize(1:2)./size(data{1},[1 2]);

 Train Fast R-CNN Stop Sign Detector

3-475

data{1} = imresize(data{1},targetSize(1:2));
bboxes = round(data{2});
data{2} = bboxresize(bboxes,scale);
end

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-476

Perform Instance Segmentation Using Mask R-CNN

This example shows how to segment individual instances of people and cars using a multiclass mask
region-based convolutional neural network (R-CNN).

Instance segmentation is a computer vision technique in which you detect and localize objects while
simultaneously generating a segmentation map for each of the detected instances.

This example first shows how to perform instance segmentation using a pretrained Mask R-CNN that
detects two classes. Then, you can optionally download a data set and train a multiclass Mask R-CNN
using transfer learning.

Perform Instance Segmentation Using Pretrained Mask R-CNN

Specify dataFolder as the desired location of the pretrained network and data.

dataFolder = fullfile(tempdir,"coco");

Download the pretrained Mask R-CNN. The network is stored as a maskrcnn object.

trainedMaskRCNN_url = "https://www.mathworks.com/supportfiles/vision/data/maskrcnn_object_person_car_v2.mat";
downloadTrainedMaskRCNN(trainedMaskRCNN_url,dataFolder);
load(fullfile(dataFolder,"maskrcnn_object_person_car_v2.mat"));

Read a test image that contains objects of the target classes.

imTest = imread("visionteam.jpg");

Segment the objects and their masks using the segmentObjects function. The segmentObjects
function performs these preprocessing steps on the input image before performing prediction.

1 Zero center the images using the COCO data set mean.
2 Resize the image to the input size of the network, while maintaining the aspect ratio (letter

boxing).

[masks,labels,scores,boxes] = segmentObjects(net,imTest,Threshold=0.98);

Visualize the predictions by overlaying the detected masks on the image using the
insertObjectMask function.

overlayedImage = insertObjectMask(imTest,masks);
imshow(overlayedImage)

Show the bounding boxes and labels on the objects.

showShape("rectangle",gather(boxes),Label=labels,LineColor="r")

 Perform Instance Segmentation Using Mask R-CNN

3-477

Download Training Data

Create directories to store the COCO training images and annotation data.

imageFolder = fullfile(dataFolder,"images");
captionsFolder = fullfile(dataFolder,"annotations");
if ~exist(imageFolder,"dir")
 mkdir(imageFolder)
 mkdir(captionsFolder)
end

The COCO 2014 training images data set [2] on page 3-481 consists of 82,783 images. The
annotations data contains at least five captions corresponding to each image. Download the COCO
2014 training images and captions from https://cocodataset.org/#download by clicking the "2014
Train images" and "2014 Train/Val annotations" links, respectively. Extract the image files into the
folder specified by imageFolder. Extract the annotation files into the folder specified by
captionsFolder.

annotationFile = fullfile(captionsFolder,"instances_train2014.json");
str = fileread(annotationFile);

Read and Preprocess Training Data

To train a Mask R-CNN, you need this data.

• RGB images that serve as input to the network, specified as H-by-W-by-3 numeric arrays.
• Bounding boxes for objects in the RGB images, specified as NumObjects-by-4 matrices, with rows

in the format [x y w h]).
• Instance labels, specified as NumObjects-by-1 string vectors.
• Instance masks. Each mask is the segmentation of one instance in the image. The COCO data set
specifies object instances using polygon coordinates formatted as NumObjects-by-2 cell arrays.
Each row of the array contains the (x,y) coordinates of a polygon along the boundary of one
instance in the image. However, the Mask R-CNN in this example requires binary masks specified
as logical arrays of size H-by-W-by-NumObjects.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-478

https://cocodataset.org/#download

Initialize Training Data Parameters
trainClassNames = ["person","car"];
numClasses = length(trainClassNames);
imageSizeTrain = [800 800 3];

Format COCO Annotation Data as MAT Files

The COCO API for MATLAB enables you to access the annotation data. Download the COCO API for
MATLAB from https://github.com/cocodataset/cocoapi by clicking the "Code" button and selecting
"Download ZIP." Extract the cocoapi-master directory and its contents to the folder specified by
dataFolder. If needed for your operating system, compile the gason parser by following the
instructions in the gason.m file within the MatlabAPI subdirectory.

Specify the directory location for the COCO API for MATLAB and add the directory to the path.

cocoAPIDir = fullfile(dataFolder,"cocoapi-master","MatlabAPI");
addpath(cocoAPIDir);

Specify the folder in which to store the MAT files.

unpackAnnotationDir = fullfile(dataFolder,"annotations_unpacked","matFiles");
if ~exist(unpackAnnotationDir,'dir')
 mkdir(unpackAnnotationDir)
end

Extract the COCO annotations to MAT files using the unpackAnnotations helper function, which is
attached to this example as a supporting file. Each MAT file corresponds to a single training image
and contains the file name, bounding boxes, instance labels, and instance masks for each training
image. The function converts object instances specified as polygon coordinates to binary masks using
the poly2mask function.

unpackAnnotations(trainClassNames,annotationFile,imageFolder,unpackAnnotationDir);

Create Datastore

The Mask R-CNN expects input data as a 1-by-4 cell array containing the RGB training image,
bounding boxes, instance labels, and instance masks.

Create a file datastore with a custom read function, cocoAnnotationMATReader, that reads the
content of the unpacked annotation MAT files, converts grayscale training images to RGB, and
returns the data as a 1-by-4 cell array in the required format. The custom read function is attached to
this example as a supporting file.

ds = fileDatastore(unpackAnnotationDir, ...
 ReadFcn=@(x)cocoAnnotationMATReader(x,imageFolder));

Preview the data returned by the transformed datastore.

data = preview(ds)

data=1×4 cell array
 {428×640×3 uint8} {16×4 double} {16×1 categorical} {428×640×16 logical}

Create Mask R-CNN Network Layers

The Mask R-CNN builds upon a Faster R-CNN with a ResNet-50 base network. To transfer learn on
the pretrained Mask R-CNN network, use the maskrcnn object to load the pretrained network and

 Perform Instance Segmentation Using Mask R-CNN

3-479

https://github.com/cocodataset/cocoapi

customize the network for the new set of classes and input size. By default, the maskrcnn object uses
the same anchor boxes as used for training with COCO data set.

net = maskrcnn("resnet50-coco",trainClassNames,InputSize=imageSizeTrain)

net =
 maskrcnn with properties:

 ModelName: 'maskrcnn'
 ClassNames: {'person' 'car'}
 InputSize: [800 800 3]
 AnchorBoxes: [15×2 double]

If you want to use custom anchor boxes specific to the training data set, you can estimate the anchor
boxes using the estimateAnchorBoxes function. Then, specify the anchor boxes using the
AnchorBoxes name-value argument when you create the maskrcnn object.

Train Network

Specify the options for SGDM optimization and train the network for 10 epochs.

Specify the ExecutionEnvironment name-value argument as "gpu" to train on a GPU. It is
recommended to train on a GPU with at least 12 GB of available memory. Using a GPU requires
Parallel Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU. For more information, see “GPU
Computing Requirements” (Parallel Computing Toolbox).

options = trainingOptions("sgdm", ...
 InitialLearnRate=0.001, ...
 LearnRateSchedule="piecewise", ...
 LearnRateDropPeriod=1, ...
 LearnRateDropFactor=0.95, ...
 Plot="none", ...
 Momentum=0.9, ...
 MaxEpochs=10, ...
 MiniBatchSize=2, ...
 BatchNormalizationStatistics="moving", ...
 ResetInputNormalization=false, ...
 ExecutionEnvironment="gpu", ...
 VerboseFrequency=50);

To train the Mask R-CNN network, set the doTraining variable in the following code to true. Train
the network using the trainMaskRCNN function. Because the training data set is similar to the data
that the pretrained network is trained on, you can freeze the weights of the feature extraction
backbone using the FreezeSubNetwork name-value argument.

doTraining = true;
if doTraining
 [net,info] = trainMaskRCNN(ds,net,options,FreezeSubNetwork="backbone");
 modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
 save("trainedMaskRCNN-"+modelDateTime+".mat","net");
end

Using the trained network, you can perform instance segmentation on test images, such as
demonstrated in the section Perform Instance Segmentation Using Pretrained Mask R-CNN on page
3-477.

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-480

References

[1] He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. “Mask R-CNN.” Preprint,
submitted January 24, 2018. https://arxiv.org/abs/1703.06870.

[2] Lin, Tsung-Yi, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. “Microsoft COCO: Common Objects in
Context,” May 1, 2014. https://arxiv.org/abs/1405.0312v3.

See Also
maskrcnn | trainMaskRCNN | segmentObjects | transform | insertObjectMask

More About
• “Getting Started with Mask R-CNN for Instance Segmentation” on page 17-67
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Datastores for Deep Learning” (Deep Learning Toolbox)

 Perform Instance Segmentation Using Mask R-CNN

3-481

https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1405.0312v3

Object Detection Using YOLO v4 Deep Learning

This example shows how to detect objects in images using you only look once version 4 (YOLO v4)
deep learning network. In this example, you will

• Configure a dataset for training, validation, and testing of YOLO v4 object detection network. You
will also perform data augmentation on the training dataset to improve the network efficiency.

• Compute anchor boxes from the training data to use for training the YOLO v4 object detection
network.

• Create a YOLO v4 object detector by using the yolov4ObjectDetector function and train the
detector using trainYOLOv4ObjectDetector function.

This example also provides a pretrained YOLO v4 object detector to use for detecting vehicles in an
image. The pretrained network uses CSPDarkNet-53 as the backbone network and is trained on a
vehicle dataset. For information about YOLO v4 object detection network, see “Getting Started with
YOLO v4” on page 17-56.

Load Dataset

This example uses a small vehicle dataset that contains 295 images. Many of these images come from
the Caltech Cars 1999 and 2001 datasets, available at the Caltech Computational Vision website
created by Pietro Perona and used with permission. Each image contain one or two labeled instances
of a vehicle. A small dataset is useful for exploring the YOLO v4 training procedure, but in practice,
more labeled images are needed to train a robust detector.

Unzip the vehicle images and load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load("vehicleDatasetGroundTruth.mat");
vehicleDataset = data.vehicleDataset;

The vehicle data is stored in a two-column table. The first column contain the image file paths and the
second column contain the bounding boxes.

% Display first few rows of the data set.
vehicleDataset(1:4,:)

ans=4×2 table
 imageFilename vehicle
 _________________________________ _________________

 {'vehicleImages/image_00001.jpg'} {[220 136 35 28]}
 {'vehicleImages/image_00002.jpg'} {[175 126 61 45]}
 {'vehicleImages/image_00003.jpg'} {[108 120 45 33]}
 {'vehicleImages/image_00004.jpg'} {[124 112 38 36]}

% Add the fullpath to the local vehicle data folder.
vehicleDataset.imageFilename = fullfile(pwd,vehicleDataset.imageFilename);

Split the dataset into training, validation, and test sets. Select 60% of the data for training, 10% for
validation, and the rest for testing the trained detector.

rng("default");
shuffledIndices = randperm(height(vehicleDataset));

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-482

idx = floor(0.6 * length(shuffledIndices));

trainingIdx = 1:idx;
trainingDataTbl = vehicleDataset(shuffledIndices(trainingIdx),:);

validationIdx = idx+1 : idx + 1 + floor(0.1 * length(shuffledIndices));
validationDataTbl = vehicleDataset(shuffledIndices(validationIdx),:);

testIdx = validationIdx(end)+1 : length(shuffledIndices);
testDataTbl = vehicleDataset(shuffledIndices(testIdx),:);

Use imageDatastore and boxLabelDatastore to create datastores for loading the image and
label data during training and evaluation.

imdsTrain = imageDatastore(trainingDataTbl{:,"imageFilename"});
bldsTrain = boxLabelDatastore(trainingDataTbl(:,"vehicle"));

imdsValidation = imageDatastore(validationDataTbl{:,"imageFilename"});
bldsValidation = boxLabelDatastore(validationDataTbl(:,"vehicle"));

imdsTest = imageDatastore(testDataTbl{:,"imageFilename"});
bldsTest = boxLabelDatastore(testDataTbl(:,"vehicle"));

Combine image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
validationData = combine(imdsValidation,bldsValidation);
testData = combine(imdsTest,bldsTest);

Use validateInputData to detect invalid images, bounding boxes or labels i.e.,

• Samples with invalid image format or containing NaNs
• Bounding boxes containing zeros/NaNs/Infs/empty
• Missing/non-categorical labels.

The values of the bounding boxes must be finite positive integers and must not be NaN. The height
and the width of the bounding box values must be positive and lie within the image boundary.

validateInputData(trainingData);
validateInputData(validationData);
validateInputData(testData);

Display one of the training images and box labels.

data = read(trainingData);
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,"Rectangle",bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

 Object Detection Using YOLO v4 Deep Learning

3-483

reset(trainingData);

Create a YOLO v4 Object Detector Network

Specify the network input size to be used for training.

inputSize = [608 608 3];

Specify the name of the object class to detect.

className = "vehicle";

Use the estimateAnchorBoxes function to estimate anchor boxes based on the size of objects in
the training data. To account for the resizing of the images prior to training, resize the training data
for estimating anchor boxes. Use transform to preprocess the training data, then define the number
of anchor boxes and estimate the anchor boxes. Resize the training data to the input size of the
network by using the preprocessData helper function.

rng("default")
trainingDataForEstimation = transform(trainingData,@(data)preprocessData(data,inputSize));
numAnchors = 9;
[anchors,meanIoU] = estimateAnchorBoxes(trainingDataForEstimation,numAnchors);

area = anchors(:, 1).*anchors(:,2);
[~,idx] = sort(area,"descend");

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-484

anchors = anchors(idx,:);
anchorBoxes = {anchors(1:3,:)
 anchors(4:6,:)
 anchors(7:9,:)
 };

For more information on choosing anchor boxes, see “Estimate Anchor Boxes From Training Data” on
page 3-377 (Computer Vision Toolbox™) and “Anchor Boxes for Object Detection” on page 17-44.

Create the YOLO v4 object detector by using the yolov4ObjectDetector function. specify the
name of the pretrained YOLO v4 detection network trained on COCO dataset. Specify the class name
and the estimated anchor boxes.

detector = yolov4ObjectDetector("csp-darknet53-coco",className,anchorBoxes,InputSize=inputSize);

Perform Data Augmentation

Perform data augmentation to improve training accuracy. Use the transform function to apply
custom data augmentations to the training data. The augmentData helper function applies the
following augmentations to the input data:

• Color jitter augmentation in HSV space
• Random horizontal flip
• Random scaling by 10 percent

Note that data augmentation is not applied to the test and validation data. Ideally, test and validation
data should be representative of the original data and is left unmodified for unbiased evaluation.

augmentedTrainingData = transform(trainingData,@augmentData);

Read and display samples of augmented training data.

augmentedData = cell(4,1);
for k = 1:4
 data = read(augmentedTrainingData);
 augmentedData{k} = insertShape(data{1},"rectangle",data{2});
 reset(augmentedTrainingData);
end
figure
montage(augmentedData,BorderSize=10)

 Object Detection Using YOLO v4 Deep Learning

3-485

Specify Training Options

Use trainingOptions to specify network training options. Train the object detector using the Adam
solver for 70 epochs with a constant learning rate 0.001. "ResetInputNormalization" should be
set to false and "BatchNormalizationStatistics" should be set to "moving". Set
"ValidationData" to the validation data and "ValidationFrequency" to 1000. To validate the
data more often, you can reduce the “ValidationFrequency” which also increases the training
time. Use "ExecutionEnvironment" to determine what hardware resources will be used to train
the network. Default value for this is "auto" which selects a GPU if it is available, otherwise selects
the CPU. Set "CheckpointPath" to a temporary location. This enables the saving of partially trained
detectors during the training process. If training is interrupted, such as by a power outage or system
failure, you can resume training from the saved checkpoint.

options = trainingOptions("adam",...
 GradientDecayFactor=0.9,...
 SquaredGradientDecayFactor=0.999,...
 InitialLearnRate=0.001,...
 LearnRateSchedule="none",...
 MiniBatchSize=4,...
 L2Regularization=0.0005,...
 MaxEpochs=70,...
 BatchNormalizationStatistics="moving",...
 DispatchInBackground=true,...
 ResetInputNormalization=false,...
 Shuffle="every-epoch",...

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-486

 VerboseFrequency=20,...
 ValidationFrequency=1000,...
 CheckpointPath=tempdir,...
 ValidationData=validationData);

Train YOLO v4 Object Detector

Use the trainYOLOv4ObjectDetector function to train YOLO v4 object detector. This example is
run on an NVIDIA™ Titan RTX GPU with 24 GB of memory. Training this network took approximately
6 hours using this setup. The training time will vary depending on the hardware you use. Instead of
training the network, you can also use a pretrained YOLO v4 object detector in the Computer Vision
Toolbox ™.

Download the pretrained detector by using the downloadPretrainedYOLOv4Detector helper
function. Set the doTraining value to false. If you want to train the detector on the augmented
training data, set the doTraining value to true.

doTraining = false;
if doTraining
 % Train the YOLO v4 detector.
 [detector,info] = trainYOLOv4ObjectDetector(augmentedTrainingData,detector,options);
else
 % Load pretrained detector for the example.
 detector = downloadPretrainedYOLOv4Detector();
end

Run the detector on a test image.

I = imread("highway.png");
[bboxes,scores,labels] = detect(detector,I);

Display the results.

I = insertObjectAnnotation(I,"rectangle",bboxes,scores);
figure
imshow(I)

 Object Detection Using YOLO v4 Deep Learning

3-487

Evaluate Detector Using Test Set

Evaluate the trained object detector on a large set of images to measure the performance. Computer
Vision Toolbox™ provides object detector evaluation functions to measure common metrics such as
average precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all relevant
objects (recall).

Run the detector on all the test images.

detectionResults = detect(detector,testData);

Evaluate the object detector using average precision metric.

[ap,recall,precision] = evaluateDetectionPrecision(detectionResults,testData);

The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. The
ideal precision is 1 at all recall levels. The use of more data can help improve the average precision
but might require more training time. Plot the PR curve.

figure
plot(recall,precision)
xlabel("Recall")
ylabel("Precision")
grid on
title(sprintf("Average Precision = %.2f",ap))

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-488

Supporting Functions

Helper function for performing data augmentation.

function data = augmentData(A)
% Apply random horizontal flipping, and random X/Y scaling. Boxes that get
% scaled outside the bounds are clipped if the overlap is above 0.25. Also,
% jitter image color.

data = cell(size(A));
for ii = 1:size(A,1)
 I = A{ii,1};
 bboxes = A{ii,2};
 labels = A{ii,3};
 sz = size(I);

 if numel(sz) == 3 && sz(3) == 3
 I = jitterColorHSV(I,...
 contrast=0.0,...
 Hue=0.1,...
 Saturation=0.2,...
 Brightness=0.2);
 end

 % Randomly flip image.
 tform = randomAffine2d(XReflection=true,Scale=[1 1.1]);
 rout = affineOutputView(sz,tform,BoundsStyle="centerOutput");
 I = imwarp(I,tform,OutputView=rout);

 Object Detection Using YOLO v4 Deep Learning

3-489

 % Apply same transform to boxes.
 [bboxes,indices] = bboxwarp(bboxes,tform,rout,OverlapThreshold=0.25);
 labels = labels(indices);

 % Return original data only when all boxes are removed by warping.
 if isempty(indices)
 data(ii,:) = A(ii,:);
 else
 data(ii,:) = {I,bboxes,labels};
 end
end
end

function data = preprocessData(data,targetSize)
% Resize the images and scale the pixels to between 0 and 1. Also scale the
% corresponding bounding boxes.

for ii = 1:size(data,1)
 I = data{ii,1};
 imgSize = size(I);

 bboxes = data{ii,2};

 I = im2single(imresize(I,targetSize(1:2)));
 scale = targetSize(1:2)./imgSize(1:2);
 bboxes = bboxresize(bboxes,scale);

 data(ii,1:2) = {I,bboxes};
end
end

Helper function for downloading the pretrained YOLO v4 object detector.

function detector = downloadPretrainedYOLOv4Detector()
% Download a pretrained yolov4 detector.
if ~exist("yolov4CSPDarknet53VehicleExample_22a.mat", "file")
 if ~exist("yolov4CSPDarknet53VehicleExample_22a.zip", "file")
 disp("Downloading pretrained detector...");
 pretrainedURL = "https://ssd.mathworks.com/supportfiles/vision/data/yolov4CSPDarknet53VehicleExample_22a.zip";
 websave("yolov4CSPDarknet53VehicleExample_22a.zip", pretrainedURL);
 end
 unzip("yolov4CSPDarknet53VehicleExample_22a.zip");
end
pretrained = load("yolov4CSPDarknet53VehicleExample_22a.mat");
detector = pretrained.detector;
end

References
[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4: Optimal Speed and

Accuracy of Object Detection.” 2020, arXiv:2004.10934. https://arxiv.org/abs/2004.10934.

See Also
yolov4ObjectDetector | trainYOLOv4ObjectDetector | detect |
evaluateDetectionPrecision | trainingOptions | transform

3 Deep Learning, Semantic Segmentation, and Detection Examples

3-490

Related Examples
• “Object Detection Using YOLO v3 Deep Learning” on page 3-381
• “Multiclass Object Detection Using YOLO v2 Deep Learning” on page 3-62

More About
• “Getting Started with YOLO v4” on page 17-56
• “Anchor Boxes for Object Detection” on page 17-44
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

 Object Detection Using YOLO v4 Deep Learning

3-491

Feature Detection and Extraction
Examples

• “Automatically Detect and Recognize Text Using MSER and OCR” on page 4-2
• “Automatically Detect and Recognize Text Using Pretrained CRAFT Network and OCR”

on page 4-14
• “Digit Classification Using HOG Features” on page 4-17
• “Find Image Rotation and Scale Using Automated Feature Matching” on page 4-25
• “Feature Based Panoramic Image Stitching” on page 4-30
• “Cell Counting” on page 4-36
• “Object Counting” on page 4-39
• “Pattern Matching” on page 4-41
• “Recognize Text Using Optical Character Recognition (OCR)” on page 4-46
• “Cell Counting” on page 4-59

4

Automatically Detect and Recognize Text Using MSER and OCR

This example shows how to detect regions in an image that contain text by using maximally stable
extremal regions (MSER) feature detector. This is a common task performed on unstructured scenes.
Unstructured scenes are images that contain undetermined or random scenarios. For example, you
can detect and recognize text automatically from captured video to alert a driver about a road sign.
This is different than structured scenes, which contain known scenarios where the position of text is
known beforehand.

Segmenting text from an unstructured scene greatly helps with additional tasks such as optical
character recognition (OCR). The automated text detection algorithm in this example detects a large
number of text region candidates and progressively removes those less likely to contain text.

Step 1: Detect Candidate Text Regions Using MSER

The MSER feature detector works well for finding text regions [1]. It works well for text because the
consistent color and high contrast of text leads to stable intensity profiles.

Use the detectMSERFeatures function to find all the regions within the image and plot these
results. Notice that there are many non-text regions detected alongside the text.

colorImage = imread("handicapSign.jpg");
I = im2gray(colorImage);

% Detect MSER regions.
[mserRegions, mserConnComp] = detectMSERFeatures(I, ...
 "RegionAreaRange",[200 8000],"ThresholdDelta",4);

figure
imshow(I)
hold on
plot(mserRegions, "showPixelList", true,"showEllipses",false)
title("MSER regions")
hold off

4 Feature Detection and Extraction Examples

4-2

Step 2: Remove Non-Text Regions Based On Basic Geometric Properties

Although the MSER algorithm picks out most of the text, it also detects many other stable regions in
the image that are not text. You can use a rule-based approach to remove non-text regions. For
example, geometric properties of text can be used to filter out non-text regions using simple
thresholds. Alternatively, you can use a machine learning approach to train a text vs. non-text
classifier. Typically, a combination of the two approaches produces better results [4]. This example
uses a simple rule-based approach to filter non-text regions based on geometric properties.

There are several geometric properties that are good for discriminating between text and non-text
regions [2,3], including:

• Aspect ratio
• Eccentricity
• Euler number
• Extent
• Solidity

Use regionprops to measure a few of these properties and then remove regions based on their
property values.

 Automatically Detect and Recognize Text Using MSER and OCR

4-3

% Use regionprops to measure MSER properties
mserStats = regionprops(mserConnComp, "BoundingBox", "Eccentricity", ...
 "Solidity", "Extent", "Euler", "Image");

% Compute the aspect ratio using bounding box data.
bbox = vertcat(mserStats.BoundingBox);
w = bbox(:,3);
h = bbox(:,4);
aspectRatio = w./h;

% Threshold the data to determine which regions to remove. These thresholds
% may need to be tuned for other images.
filterIdx = aspectRatio' > 3;
filterIdx = filterIdx | [mserStats.Eccentricity] > .995 ;
filterIdx = filterIdx | [mserStats.Solidity] < .3;
filterIdx = filterIdx | [mserStats.Extent] < 0.2 | [mserStats.Extent] > 0.9;
filterIdx = filterIdx | [mserStats.EulerNumber] < -4;

% Remove regions
mserStats(filterIdx) = [];
mserRegions(filterIdx) = [];

% Show remaining regions
figure
imshow(I)
hold on
plot(mserRegions, "showPixelList", true,"showEllipses",false)
title("After Removing Non-Text Regions Based On Geometric Properties")
hold off

4 Feature Detection and Extraction Examples

4-4

Step 3: Remove Non-Text Regions Based On Stroke Width Variation

Another common metric used to discriminate between text and non-text is stroke width. Stroke width
is a measure of the width of the curves and lines that make up a character. Text regions tend to have
little stroke width variation, whereas non-text regions tend to have larger variations.

To help understand how the stroke width can be used to remove non-text regions, estimate the stroke
width of one of the detected MSER regions. You can do this by using a distance transform and binary
thinning operation [3].

% Get a binary image of the a region, and pad it to avoid boundary effects
% during the stroke width computation.
regionImage = mserStats(6).Image;
regionImage = padarray(regionImage, [1 1]);

% Compute the stroke width image.
distanceImage = bwdist(~regionImage);
skeletonImage = bwmorph(regionImage, "thin", inf);

strokeWidthImage = distanceImage;
strokeWidthImage(~skeletonImage) = 0;

 Automatically Detect and Recognize Text Using MSER and OCR

4-5

% Show the region image alongside the stroke width image.
figure
subplot(1,2,1)
imagesc(regionImage)
title("Region Image")

subplot(1,2,2)
imagesc(strokeWidthImage)
title("Stroke Width Image")

In the images shown above, notice how the stroke width image has very little variation over most of
the region. This indicates that the region is more likely to be a text region because the lines and
curves that make up the region all have similar widths, which is a common characteristic of human
readable text.

In order to use stroke width variation to remove non-text regions using a threshold value, the
variation over the entire region must be quantified into a single metric as follows:

% Compute the stroke width variation metric
strokeWidthValues = distanceImage(skeletonImage);
strokeWidthMetric = std(strokeWidthValues)/mean(strokeWidthValues);

Then, a threshold can be applied to remove the non-text regions. Note that this threshold value may
require tuning for images with different font styles.

% Threshold the stroke width variation metric
strokeWidthThreshold = 0.4;
strokeWidthFilterIdx = strokeWidthMetric > strokeWidthThreshold;

4 Feature Detection and Extraction Examples

4-6

The procedure shown above must be applied separately to each detected MSER region. The following
for-loop processes all the regions, and then shows the results of removing the non-text regions using
stroke width variation.

% Process the remaining regions
for j = 1:numel(mserStats)

 regionImage = mserStats(j).Image;
 regionImage = padarray(regionImage, [1 1], 0);

 distanceImage = bwdist(~regionImage);
 skeletonImage = bwmorph(regionImage, "thin", inf);

 strokeWidthValues = distanceImage(skeletonImage);

 strokeWidthMetric = std(strokeWidthValues)/mean(strokeWidthValues);

 strokeWidthFilterIdx(j) = strokeWidthMetric > strokeWidthThreshold;

end

% Remove regions based on the stroke width variation
mserRegions(strokeWidthFilterIdx) = [];
mserStats(strokeWidthFilterIdx) = [];

% Show remaining regions
figure
imshow(I)
hold on
plot(mserRegions, "showPixelList", true,"showEllipses",false)
title("After Removing Non-Text Regions Based On Stroke Width Variation")
hold off

 Automatically Detect and Recognize Text Using MSER and OCR

4-7

Step 4: Merge Text Regions For Final Detection Result

At this point, all the detection results are composed of individual text characters. To use these results
for recognition tasks, such as OCR, the individual text characters must be merged into words or text
lines. This enables recognition of the actual words in an image, which carry more meaningful
information than just the individual characters. For example, recognizing the string 'EXIT' vs. the set
of individual characters {'X','E','T','I'}, where the meaning of the word is lost without the correct
ordering.

One approach for merging individual text regions into words or text lines is to first find neighboring
text regions and then form a bounding box around these regions. To find neighboring regions, expand
the bounding boxes computed earlier with regionprops. This makes the bounding boxes of
neighboring text regions overlap such that text regions that are part of the same word or text line
form a chain of overlapping bounding boxes.

% Get bounding boxes for all the regions
bboxes = vertcat(mserStats.BoundingBox);

% Convert from the [x y width height] bounding box format to the [xmin ymin
% xmax ymax] format for convenience.
xmin = bboxes(:,1);

4 Feature Detection and Extraction Examples

4-8

ymin = bboxes(:,2);
xmax = xmin + bboxes(:,3) - 1;
ymax = ymin + bboxes(:,4) - 1;

% Expand the bounding boxes by a small amount.
expansionAmount = 0.02;
xmin = (1-expansionAmount) * xmin;
ymin = (1-expansionAmount) * ymin;
xmax = (1+expansionAmount) * xmax;
ymax = (1+expansionAmount) * ymax;

% Clip the bounding boxes to be within the image bounds
xmin = max(xmin, 1);
ymin = max(ymin, 1);
xmax = min(xmax, size(I,2));
ymax = min(ymax, size(I,1));

% Show the expanded bounding boxes
expandedBBoxes = [xmin ymin xmax-xmin+1 ymax-ymin+1];
IExpandedBBoxes = insertShape(colorImage,"rectangle",expandedBBoxes,"LineWidth",3);

figure
imshow(IExpandedBBoxes)
title("Expanded Bounding Boxes Text")

 Automatically Detect and Recognize Text Using MSER and OCR

4-9

Now, the overlapping bounding boxes can be merged together to form a single bounding box around
individual words or text lines. To do this, compute the overlap ratio between all bounding box pairs.
This quantifies the distance between all pairs of text regions so that it is possible to find groups of
neighboring text regions by looking for non-zero overlap ratios. Once the pair-wise overlap ratios are
computed, use a graph to find all the text regions "connected" by a non-zero overlap ratio.

Use the bboxOverlapRatio function to compute the pair-wise overlap ratios for all the expanded
bounding boxes, then use graph to find all the connected regions.

% Compute the overlap ratio
overlapRatio = bboxOverlapRatio(expandedBBoxes, expandedBBoxes);

% Set the overlap ratio between a bounding box and itself to zero to
% simplify the graph representation.
n = size(overlapRatio,1);
overlapRatio(1:n+1:n^2) = 0;

% Create the graph
g = graph(overlapRatio);

% Find the connected text regions within the graph
componentIndices = conncomp(g);

4 Feature Detection and Extraction Examples

4-10

The output of conncomp are indices to the connected text regions to which each bounding box
belongs. Use these indices to merge multiple neighboring bounding boxes into a single bounding box
by computing the minimum and maximum of the individual bounding boxes that make up each
connected component.

% Merge the boxes based on the minimum and maximum dimensions.
xmin = accumarray(componentIndices', xmin, [], @min);
ymin = accumarray(componentIndices', ymin, [], @min);
xmax = accumarray(componentIndices', xmax, [], @max);
ymax = accumarray(componentIndices', ymax, [], @max);

% Compose the merged bounding boxes using the [x y width height] format.
textBBoxes = [xmin ymin xmax-xmin+1 ymax-ymin+1];

Finally, before showing the final detection results, suppress false text detections by removing
bounding boxes made up of just one text region. This removes isolated regions that are unlikely to be
actual text given that text is usually found in groups (words and sentences).

% Remove bounding boxes that only contain one text region
numRegionsInGroup = histcounts(componentIndices);
textBBoxes(numRegionsInGroup == 1, :) = [];

% Show the final text detection result.
ITextRegion = insertShape(colorImage, "rectangle", textBBoxes,"LineWidth",3);

figure
imshow(ITextRegion)
title("Detected Text")

 Automatically Detect and Recognize Text Using MSER and OCR

4-11

Step 5: Recognize Detected Text Using OCR

After detecting the text regions, use the ocr function to recognize the text within each bounding box.
Note that without first finding the text regions, the output of the ocr function would be considerably
more noisy.

ocrtxt = ocr(I, textBBoxes);
[ocrtxt.Text]

ans =
 'HANDICAPPED
 PARKING
 SPECIAL PLATE
 REQUIRED
 UNAUTHORIZED
 VEHICLES
 MAY BE TOWED
 AT OWNERS
 EXPENSE

 ie os i uu

4 Feature Detection and Extraction Examples

4-12

 '

This example showed you how to detect text in an image using the MSER feature detector to first find
candidate text regions, and then it described how to use geometric measurements to remove all the
non-text regions. This example code is a good starting point for developing more robust text detection
algorithms. Note that without further enhancements this example can produce reasonable results for
a variety of other images, for example, posters.jpg or licensePlates.jpg.

References

[1] Chen, Huizhong, et al. "Robust Text Detection in Natural Images with Edge-Enhanced Maximally
Stable Extremal Regions." Image Processing (ICIP), 2011 18th IEEE International Conference on.
IEEE, 2011.

[2] Gonzalez, Alvaro, et al. "Text location in complex images." Pattern Recognition (ICPR), 2012 21st
International Conference on. IEEE, 2012.

[3] Li, Yao, and Huchuan Lu. "Scene text detection via stroke width." Pattern Recognition (ICPR),
2012 21st International Conference on. IEEE, 2012.

[4] Neumann, Lukas, and Jiri Matas. "Real-time scene text localization and recognition." Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012.

References
[1] Chen, Huizhong, et al. "Robust Text Detection in Natural Images with Edge-Enhanced Maximally

Stable Extremal Regions." Image Processing (ICIP), 2011 18th IEEE International Conference
on. IEEE, 2011.

[2] Gonzalez, Alvaro, et al. "Text location in complex images." Pattern Recognition (ICPR), 2012 21st
International Conference on. IEEE, 2012.

[3] Li, Yao, and Huchuan Lu. "Scene text detection via stroke width." Pattern Recognition (ICPR),
2012 21st International Conference on. IEEE, 2012.

[4] Neumann, Lukas, and Jiri Matas. "Real-time scene text localization and recognition." Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012.

See Also

Related Examples
• “Recognize Text Using Optical Character Recognition (OCR)” on page 4-46
• “Automatically Detect and Recognize Text Using Pretrained CRAFT Network and OCR” on page

4-14

 Automatically Detect and Recognize Text Using MSER and OCR

4-13

Automatically Detect and Recognize Text Using Pretrained
CRAFT Network and OCR

This example shows how to perform text recognition by using a deep learning based text detector and
OCR. In the example, you use a pretrained CRAFT (character region awareness for text) deep
learning network to detect the text regions in the input image. You can modify the region threshold
and the affinity threshold values of the CRAFT model to localise an entire paragraph, a sentence, or a
word. Then, you use OCR to recognize the characters in the detected text regions.

Read Image

Read an image into the MATLAB® workspace.

I = imread("handicapSign.jpg");

Detect Text Regions

Detect text regions in the input image by using the detectTextCRAFT function. The
CharacterThreshold value is the region threshold to use for localizing each character in the
image. The LinkThreshold value is the affinity threshold that defines the score for grouping two
detected texts into a single instance. You can fine-tune the detection results by modifying the region
and affinity threshold values. Increase the value of the affinity threshold for more word-level and
character-level detections. For information about the effect of the affinity threshold on the detection
results, see the “Detect Characters by Modifying Affinity Threshold” example.

To detect each word on the parking sign, set the value of the region threshold to 0.3. The default
value for the affinity threshold is 0.4. The output is a set of bounding boxes that localize the words in
the image scene. The bounding box specifies the spatial coordinates of the detected text regions in
the image.

bbox = detectTextCRAFT(I,CharacterThreshold=0.3);

Draw the output bounding boxes on the image by using the insertShape function.

Iout = insertShape(I,"rectangle",bbox,LineWidth=4);

Display the input image and the output text detections.

figure(Position=[1 1 600 600]);
ax = gca;
montage({I;Iout},Parent=ax);
title("Input Image | Detected Text Regions")

4 Feature Detection and Extraction Examples

4-14

Recognize Text

The ocr function performs best on images that contain dark text on light background. Convert the
input image to a binary image and invert it to obtain an image that contains dark text on a light
background.

Igray = im2gray(I);
Ibinary = imbinarize(Igray);
Icomplement = imcomplement(Ibinary);

Display the binary image and the inverted binary image.

figure(Position=[1 1 600 600]);
ax = gca;
montage({Ibinary;Icomplement},Parent=ax);
title("Binary Image | Inverted Binary Image")

Recognize the text within the bounding boxes by using the ocr function. Set the LayoutAnalysis
Name-Value argument to "Word" as the word regions are manually provided in the ROI input.

output = ocr(Icomplement,bbox,LayoutAnalysis="Word");

 Automatically Detect and Recognize Text Using Pretrained CRAFT Network and OCR

4-15

Display the recognized words.

recognizedWords = cat(1,output(:).Words);

figure
imshow(I)
zoom(2)
showShape("rectangle",bbox,Label=recognizedWords,Color="yellow")

See Also
detectTextCRAFT | ocr | insertObjectAnnotation | insertShape | ocrText | deblank |
imbinarize

Related Examples
• “Recognize Text Using Optical Character Recognition (OCR)” on page 4-46
• “Automatically Detect and Recognize Text Using MSER and OCR” on page 4-2

4 Feature Detection and Extraction Examples

4-16

Digit Classification Using HOG Features

This example shows how to classify digits using HOG features and a multiclass SVM classifier.

Object classification is an important task in many computer vision applications, including
surveillance, automotive safety, and image retrieval. For example, in an automotive safety application,
you may need to classify nearby objects as pedestrians or vehicles. Regardless of the type of object
being classified, the basic procedure for creating an object classifier is:

• Acquire a labeled data set with images of the desired object.
• Partition the data set into a training set and a test set.
• Train the classifier using features extracted from the training set.
• Test the classifier using features extracted from the test set.

To illustrate, this example shows how to classify numerical digits using HOG (Histogram of Oriented
Gradient) features [1] and a multiclass SVM (Support Vector Machine) classifier. This type of
classification is often used in many Optical Character Recognition (OCR) applications.

The example uses the fitcecoc function from the Statistics and Machine Learning Toolbox™ and
the extractHOGFeatures function from the Computer Vision Toolbox™.

Digit Data Set

Synthetic digit images are used for training. The training images each contain a digit surrounded by
other digits, which mimics how digits are normally seen together. Using synthetic images is
convenient and it enables the creation of a variety of training samples without having to manually
collect them. For testing, scans of handwritten digits are used to validate how well the classifier
performs on data that is different than the training data. Although this is not the most representative
data set, there is enough data to train and test a classifier, and show the feasibility of the approach.

% Load training and test data using |imageDatastore|.
syntheticDir = fullfile(toolboxdir('vision'),'visiondata','digits','synthetic');
handwrittenDir = fullfile(toolboxdir('vision'),'visiondata','digits','handwritten');

% |imageDatastore| recursively scans the directory tree containing the
% images. Folder names are automatically used as labels for each image.
trainingSet = imageDatastore(syntheticDir,'IncludeSubfolders',true,'LabelSource','foldernames');
testSet = imageDatastore(handwrittenDir,'IncludeSubfolders',true,'LabelSource','foldernames');

Use countEachLabel to tabulate the number of images associated with each label. In this example,
the training set consists of 101 images for each of the 10 digits. The test set consists of 12 images per
digit.

countEachLabel(trainingSet)

ans=10×2 table
 Label Count
 _____ _____

 0 101
 1 101
 2 101
 3 101
 4 101

 Digit Classification Using HOG Features

4-17

 5 101
 6 101
 7 101
 8 101
 9 101

countEachLabel(testSet)

ans=10×2 table
 Label Count
 _____ _____

 0 12
 1 12
 2 12
 3 12
 4 12
 5 12
 6 12
 7 12
 8 12
 9 12

Show a few of the training and test images

figure;

subplot(2,3,1);
imshow(trainingSet.Files{102});

subplot(2,3,2);
imshow(trainingSet.Files{304});

subplot(2,3,3);
imshow(trainingSet.Files{809});

subplot(2,3,4);
imshow(testSet.Files{13});

subplot(2,3,5);
imshow(testSet.Files{37});

subplot(2,3,6);
imshow(testSet.Files{97});

4 Feature Detection and Extraction Examples

4-18

Prior to training and testing a classifier, a pre-processing step is applied to remove noise artifacts
introduced while collecting the image samples. This provides better feature vectors for training the
classifier.

% Show pre-processing results
exTestImage = readimage(testSet,37);
processedImage = imbinarize(im2gray(exTestImage));

figure;

subplot(1,2,1)
imshow(exTestImage)

subplot(1,2,2)
imshow(processedImage)

 Digit Classification Using HOG Features

4-19

Using HOG Features

The data used to train the classifier are HOG feature vectors extracted from the training images.
Therefore, it is important to make sure the HOG feature vector encodes the right amount of
information about the object. The extractHOGFeatures function returns a visualization output that
can help form some intuition about just what the "right amount of information" means. By varying the
HOG cell size parameter and visualizing the result, you can see the effect the cell size parameter has
on the amount of shape information encoded in the feature vector:

img = readimage(trainingSet, 206);

% Extract HOG features and HOG visualization
[hog_2x2, vis2x2] = extractHOGFeatures(img,'CellSize',[2 2]);
[hog_4x4, vis4x4] = extractHOGFeatures(img,'CellSize',[4 4]);
[hog_8x8, vis8x8] = extractHOGFeatures(img,'CellSize',[8 8]);

% Show the original image
figure;
subplot(2,3,1:3); imshow(img);

% Visualize the HOG features
subplot(2,3,4);
plot(vis2x2);
title({'CellSize = [2 2]'; ['Length = ' num2str(length(hog_2x2))]});

subplot(2,3,5);
plot(vis4x4);

4 Feature Detection and Extraction Examples

4-20

title({'CellSize = [4 4]'; ['Length = ' num2str(length(hog_4x4))]});

subplot(2,3,6);
plot(vis8x8);
title({'CellSize = [8 8]'; ['Length = ' num2str(length(hog_8x8))]});

The visualization shows that a cell size of [8 8] does not encode much shape information, while a cell
size of [2 2] encodes a lot of shape information but increases the dimensionality of the HOG feature
vector significantly. A good compromise is a 4-by-4 cell size. This size setting encodes enough spatial
information to visually identify a digit shape while limiting the number of dimensions in the HOG
feature vector, which helps speed up training. In practice, the HOG parameters should be varied with
repeated classifier training and testing to identify the optimal parameter settings.

cellSize = [4 4];
hogFeatureSize = length(hog_4x4);

Train a Digit Classifier

Digit classification is a multiclass classification problem, where you have to classify an image into one
out of the ten possible digit classes. In this example, the fitcecoc function from the Statistics and
Machine Learning Toolbox™ is used to create a multiclass classifier using binary SVMs.

Start by extracting HOG features from the training set. These features will be used to train the
classifier.

% Loop over the trainingSet and extract HOG features from each image. A
% similar procedure will be used to extract features from the testSet.

 Digit Classification Using HOG Features

4-21

numImages = numel(trainingSet.Files);
trainingFeatures = zeros(numImages,hogFeatureSize,'single');

for i = 1:numImages
 img = readimage(trainingSet,i);

 img = im2gray(img);

 % Apply pre-processing steps
 img = imbinarize(img);

 trainingFeatures(i, :) = extractHOGFeatures(img,'CellSize',cellSize);
end

% Get labels for each image.
trainingLabels = trainingSet.Labels;

Next, train a classifier using the extracted features.

% fitcecoc uses SVM learners and a 'One-vs-One' encoding scheme.
classifier = fitcecoc(trainingFeatures, trainingLabels);

Evaluate the Digit Classifier

Evaluate the digit classifier using images from the test set, and generate a confusion matrix to
quantify the classifier accuracy.

As in the training step, first extract HOG features from the test images. These features will be used to
make predictions using the trained classifier.

% Extract HOG features from the test set. The procedure is similar to what
% was shown earlier and is encapsulated as a helper function for brevity.
[testFeatures, testLabels] = helperExtractHOGFeaturesFromImageSet(testSet, hogFeatureSize, cellSize);

% Make class predictions using the test features.
predictedLabels = predict(classifier, testFeatures);

% Tabulate the results using a confusion matrix.
confMat = confusionmat(testLabels, predictedLabels);

helperDisplayConfusionMatrix(confMat)

digit | 0 1 2 3 4 5 6 7 8 9

0 | 0.25 0.00 0.08 0.00 0.00 0.00 0.58 0.00 0.08 0.00
1 | 0.00 0.75 0.00 0.00 0.08 0.00 0.00 0.08 0.08 0.00
2 | 0.00 0.00 0.67 0.17 0.00 0.00 0.08 0.00 0.00 0.08
3 | 0.00 0.00 0.00 0.58 0.00 0.00 0.33 0.00 0.00 0.08
4 | 0.00 0.08 0.00 0.17 0.75 0.00 0.00 0.00 0.00 0.00
5 | 0.00 0.00 0.00 0.00 0.00 0.33 0.58 0.00 0.08 0.00
6 | 0.00 0.00 0.00 0.00 0.25 0.00 0.67 0.00 0.08 0.00
7 | 0.00 0.08 0.08 0.33 0.00 0.00 0.17 0.25 0.00 0.08
8 | 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.08 0.67 0.17
9 | 0.00 0.08 0.00 0.25 0.17 0.00 0.08 0.00 0.00 0.42

The table shows the confusion matrix in percentage form. The columns of the matrix represent the
predicted labels, while the rows represent the known labels. For this test set, digit 0 is often

4 Feature Detection and Extraction Examples

4-22

misclassified as 6, most likely due to their similar shapes. Similar errors are seen for 9 and 3.
Training with a more representative data set like MNIST [2] or SVHN [3], which contain thousands of
handwritten characters, is likely to produce a better classifier compared with the one created using
this synthetic data set.

Summary

This example illustrated the basic procedure for creating a multiclass object classifier using the
extractHOGfeatures function from the Computer Vision Toolbox and the fitcecoc function from
the Statistics and Machine Learning Toolbox™. Although HOG features and an ECOC classifier were
used here, other features and machine learning algorithms can be used in the same way. For
instance, you can explore using different feature types for training the classifier; or you can see the
effect of using other machine learning algorithms available in the Statistics and Machine Learning
Toolbox™ such as k-nearest neighbors.

Supporting Functions

function helperDisplayConfusionMatrix(confMat)
% Display the confusion matrix in a formatted table.

% Convert confusion matrix into percentage form
confMat = bsxfun(@rdivide,confMat,sum(confMat,2));

digits = '0':'9';
colHeadings = arrayfun(@(x)sprintf('%d',x),0:9,'UniformOutput',false);
format = repmat('%-9s',1,11);
header = sprintf(format,'digit |',colHeadings{:});
fprintf('\n%s\n%s\n',header,repmat('-',size(header)));
for idx = 1:numel(digits)
 fprintf('%-9s', [digits(idx) ' |']);
 fprintf('%-9.2f', confMat(idx,:));
 fprintf('\n')
end
end

function [features, setLabels] = helperExtractHOGFeaturesFromImageSet(imds, hogFeatureSize, cellSize)
% Extract HOG features from an imageDatastore.

setLabels = imds.Labels;
numImages = numel(imds.Files);
features = zeros(numImages,hogFeatureSize,'single');

% Process each image and extract features
for j = 1:numImages
 img = readimage(imds,j);
 img = im2gray(img);

 % Apply pre-processing steps
 img = imbinarize(img);

 features(j, :) = extractHOGFeatures(img,'CellSize',cellSize);

 Digit Classification Using HOG Features

4-23

end
end

References
[1] N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human Detection", Proc. IEEE Conf.

Computer Vision and Pattern Recognition, vol. 1, pp. 886-893, 2005.

[2] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86, 2278-2324.

[3] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A.Y. Ng, Reading Digits in Natural Images with
Unsupervised Feature Learning NIPS Workshop on Deep Learning and Unsupervised Feature
Learning 2011.

See Also

Related Examples
• “Automatically Detect and Recognize Text Using MSER and OCR” on page 4-2
• “Recognize Text Using Optical Character Recognition (OCR)” on page 4-46

4 Feature Detection and Extraction Examples

4-24

Find Image Rotation and Scale Using Automated Feature
Matching

This example shows how to automatically determine the geometric transformation between a pair of
images. When one image is distorted relative to another by rotation and scale, use
detectSURFFeatures and estgeotform2d to find the rotation angle and scale factor. You can then
transform the distorted image to recover the original image.

Step 1: Read Image

Bring an image into the workspace.

original = imread('cameraman.tif');
imshow(original);
text(size(original,2),size(original,1)+15, ...
 'Image courtesy of Massachusetts Institute of Technology', ...
 FontSize=7,HorizontalAlignment='right');

Step 2: Resize and Rotate the Image

scale = 0.7;
J = imresize(original,scale); % Try varying the scale factor.

theta = 30;
% Note that imrotate rotates images in a counterclockwise direction when
% you specify a positive angle of rotation. To rotate the image clockwise,
% specify a negative theta.
distorted = imrotate(J,-theta); % Try varying the angle, theta.
figure
imshow(distorted)

 Find Image Rotation and Scale Using Automated Feature Matching

4-25

You can experiment by varying the scale and rotation of the input image. However, note that there is
a limit to the amount you can vary the scale before the feature detector fails to find enough features.

Step 3: Find Matching Features Between Images

Detect features in both images.

ptsOriginal = detectSURFFeatures(original);
ptsDistorted = detectSURFFeatures(distorted);

Extract feature descriptors.

[featuresOriginal,validPtsOriginal] = extractFeatures(original,ptsOriginal);
[featuresDistorted,validPtsDistorted] = extractFeatures(distorted,ptsDistorted);

Match features by using their descriptors.

indexPairs = matchFeatures(featuresOriginal,featuresDistorted);

Retrieve locations of corresponding points for each image.

matchedOriginal = validPtsOriginal(indexPairs(:,1));
matchedDistorted = validPtsDistorted(indexPairs(:,2));

Show putative point matches.

figure
showMatchedFeatures(original,distorted,matchedOriginal,matchedDistorted);
title('Putatively matched points (including outliers)');

4 Feature Detection and Extraction Examples

4-26

Step 4: Estimate Transformation

Find a transformation corresponding to the matching point pairs using the statistically robust M-
estimator SAmple Consensus (MSAC) algorithm, which is a variant of the RANSAC algorithm. It
removes outliers while computing the transformation matrix. You may see varying results of the
transformation computation because of the random sampling employed by the MSAC algorithm.

[tform, inlierIdx] = estgeotform2d(matchedDistorted,matchedOriginal,'similarity');
inlierDistorted = matchedDistorted(inlierIdx,:);
inlierOriginal = matchedOriginal(inlierIdx,:);

Display matching point pairs used in the computation of the transformation.

figure;
showMatchedFeatures(original,distorted,inlierOriginal,inlierDistorted);
title('Matching points (inliers only)');
legend('ptsOriginal','ptsDistorted');

 Find Image Rotation and Scale Using Automated Feature Matching

4-27

Step 5: Solve for Scale and Angle

Use the geometric transform, tform, to recover the scale and angle. Since we computed the
transformation from the distorted to the original image, we need to compute its inverse to recover
the distortion.

Let sc = s*cos(theta)
Let ss = s*sin(theta)

Then, Ainv = [sc ss tx;
 -ss sc ty;
 0 0 1]

where tx and ty are x and y translations, respectively.

Compute the inverse transformation matrix.

invTform = invert(tform);
Ainv = invTform.A;

ss = Ainv(1,2);
sc = Ainv(1,1);
scaleRecovered = hypot(ss,sc);
disp(['Recovered scale: ', num2str(scaleRecovered)])

% Recover the rotation in which a positive value represents a rotation in
% the clockwise direction.
thetaRecovered = atan2d(-ss,sc);
disp(['Recovered theta: ', num2str(thetaRecovered)])

Recovered scale: 0.70255
Recovered theta: 29.7616

4 Feature Detection and Extraction Examples

4-28

The recovered values should match your scale and angle values selected in Step 2: Resize and
Rotate the Image.

Note that the scale and rotation angle are also available in the Scale and RotationAngle properties of
the simtform2d object.

disp(['Scale: ' num2str(invTform.Scale)])
disp(['RotationAngle: ' num2str(invTform.RotationAngle)])

Scale: 0.70255
RotationAngle: 29.7616

Step 6: Recover the Original Image

Recover the original image by transforming the distorted image.

outputView = imref2d(size(original));
recovered = imwarp(distorted,tform,OutputView=outputView);

Compare recovered to original by looking at them side-by-side in a montage.

figure, imshowpair(original,recovered,'montage')

The recovered (right) image quality does not match the original (left) image because of the
distortion and recovery process. In particular, the image shrinking causes loss of information. The
artifacts around the edges are due to the limited accuracy of the transformation. If you were to detect
more points in Step 3: Find Matching Features Between Images, the transformation would be
more accurate. For example, we could have used a corner detector, detectFASTFeatures, to
complement the SURF feature detector which finds blobs. Image content and image size also impact
the number of detected features.

 Find Image Rotation and Scale Using Automated Feature Matching

4-29

Feature Based Panoramic Image Stitching

This example shows how to automatically create a panorama using feature based image registration
techniques.

Overview

Feature detection and matching are powerful techniques used in many computer vision applications
such as image registration, tracking, and object detection. In this example, feature based techniques
are used to automatically stitch together a set of images. The procedure for image stitching is an
extension of feature based image registration. Instead of registering a single pair of images, multiple
image pairs are successively registered relative to each other to form a panorama.

Step 1 - Load Images

The image set used in this example contains pictures of a building. These were taken with an
uncalibrated smart phone camera by sweeping the camera from left to right along the horizon,
capturing all parts of the building.

As seen below, the images are relatively unaffected by any lens distortion so camera calibration was
not required. However, if lens distortion is present, the camera should be calibrated and the images
undistorted prior to creating the panorama. You can use the Camera Calibrator App to calibrate a
camera if needed.

% Load images.
buildingDir = fullfile(toolboxdir('vision'),'visiondata','building');
buildingScene = imageDatastore(buildingDir);

% Display images to be stitched.
montage(buildingScene.Files)

4 Feature Detection and Extraction Examples

4-30

Step 2 - Register Image Pairs

To create the panorama, start by registering successive image pairs using the following procedure:

1 Detect and match features between I(n) and I(n− 1).
2 Estimate the geometric transformation, T(n), that maps I(n) to I(n− 1).
3 Compute the transformation that maps I(n) into the panorama image as

T(1) * T(2) * . . . * T(n− 1) * T(n).

 Feature Based Panoramic Image Stitching

4-31

% Read the first image from the image set.
I = readimage(buildingScene,1);

% Initialize features for I(1)
grayImage = im2gray(I);
points = detectSURFFeatures(grayImage);
[features, points] = extractFeatures(grayImage,points);

% Initialize all the transformations to the identity matrix. Note that the
% projective transformation is used here because the building images are fairly
% close to the camera. For scenes captured from a further distance, you can use
% affine transformations.
numImages = numel(buildingScene.Files);
tforms(numImages) = projtform2d;

% Initialize variable to hold image sizes.
imageSize = zeros(numImages,2);

% Iterate over remaining image pairs
for n = 2:numImages
 % Store points and features for I(n-1).
 pointsPrevious = points;
 featuresPrevious = features;

 % Read I(n).
 I = readimage(buildingScene, n);

 % Convert image to grayscale.
 grayImage = im2gray(I);

 % Save image size.
 imageSize(n,:) = size(grayImage);

 % Detect and extract SURF features for I(n).
 points = detectSURFFeatures(grayImage);
 [features, points] = extractFeatures(grayImage, points);

 % Find correspondences between I(n) and I(n-1).
 indexPairs = matchFeatures(features, featuresPrevious, 'Unique', true);

 matchedPoints = points(indexPairs(:,1), :);
 matchedPointsPrev = pointsPrevious(indexPairs(:,2), :);

 % Estimate the transformation between I(n) and I(n-1).
 tforms(n) = estgeotform2d(matchedPoints, matchedPointsPrev,...
 'projective', 'Confidence', 99.9, 'MaxNumTrials', 2000);

 % Compute T(1) * T(2) * ... * T(n-1) * T(n).
 tforms(n).A = tforms(n-1).A * tforms(n).A;
end

At this point, all the transformations in tforms are relative to the first image. This was a convenient
way to code the image registration procedure because it allowed sequential processing of all the
images. However, using the first image as the start of the panorama does not produce the most
aesthetically pleasing panorama because it tends to distort most of the images that form the
panorama. A nicer panorama can be created by modifying the transformations such that the center of

4 Feature Detection and Extraction Examples

4-32

the scene is the least distorted. This is accomplished by inverting the transformation for the center
image and applying that transformation to all the others.

Start by using the projtform2d outputLimits method to find the output limits for each
transformation. The output limits are then used to automatically find the image that is roughly in the
center of the scene.

% Compute the output limits for each transformation.
for i = 1:numel(tforms)
 [xlim(i,:), ylim(i,:)] = outputLimits(tforms(i), [1 imageSize(i,2)], [1 imageSize(i,1)]);
end

Next, compute the average X limits for each transformation and find the image that is in the center.
Only the X limits are used here because the scene is known to be horizontal. If another set of images
are used, both the X and Y limits may need to be used to find the center image.

avgXLim = mean(xlim, 2);
[~,idx] = sort(avgXLim);
centerIdx = floor((numel(tforms)+1)/2);
centerImageIdx = idx(centerIdx);

Finally, apply the center image's inverse transformation to all the others.

Tinv = invert(tforms(centerImageIdx));
for i = 1:numel(tforms)
 tforms(i).A = Tinv.A * tforms(i).A;
end

Step 3 - Initialize the Panorama

Now, create an initial, empty, panorama into which all the images are mapped.

Use the outputLimits method to compute the minimum and maximum output limits over all
transformations. These values are used to automatically compute the size of the panorama.

for i = 1:numel(tforms)
 [xlim(i,:), ylim(i,:)] = outputLimits(tforms(i), [1 imageSize(i,2)], [1 imageSize(i,1)]);
end

maxImageSize = max(imageSize);

% Find the minimum and maximum output limits.
xMin = min([1; xlim(:)]);
xMax = max([maxImageSize(2); xlim(:)]);

yMin = min([1; ylim(:)]);
yMax = max([maxImageSize(1); ylim(:)]);

% Width and height of panorama.
width = round(xMax - xMin);
height = round(yMax - yMin);

% Initialize the "empty" panorama.
panorama = zeros([height width 3], 'like', I);

 Feature Based Panoramic Image Stitching

4-33

Step 4 - Create the Panorama

Use imwarp to map images into the panorama and use vision.AlphaBlender to overlay the
images together.

blender = vision.AlphaBlender('Operation', 'Binary mask', ...
 'MaskSource', 'Input port');

% Create a 2-D spatial reference object defining the size of the panorama.
xLimits = [xMin xMax];
yLimits = [yMin yMax];
panoramaView = imref2d([height width], xLimits, yLimits);

% Create the panorama.
for i = 1:numImages

 I = readimage(buildingScene, i);

 % Transform I into the panorama.
 warpedImage = imwarp(I, tforms(i), 'OutputView', panoramaView);

 % Generate a binary mask.
 mask = imwarp(true(size(I,1),size(I,2)), tforms(i), 'OutputView', panoramaView);

 % Overlay the warpedImage onto the panorama.
 panorama = step(blender, panorama, warpedImage, mask);
end

figure
imshow(panorama)

Conclusion

This example showed you how to automatically create a panorama using feature based image
registration techniques. Additional techniques can be incorporated into the example to improve the
blending and alignment of the panorama images[1].

4 Feature Detection and Extraction Examples

4-34

References

[1] Matthew Brown and David G. Lowe. 2007. Automatic Panoramic Image Stitching using Invariant
Features. Int. J. Comput. Vision 74, 1 (August 2007), 59-73.

 Feature Based Panoramic Image Stitching

4-35

Cell Counting

This example shows how to use a combination of basic morphological operators and blob analysis to
extract information from a video stream. In this case, the example counts the number of E. Coli
bacteria in each video frame. Note that the cells are of varying brightness, which makes the task of
segmentation more challenging.

Initialization

Use these next sections of code to initialize the required variables and objects.

VideoSize = [432 528];

Create a System object to read video from avi file.

filename = 'ecolicells.avi';
hvfr = VideoReader(filename);

Create a BlobAnalysis System object to find the centroid of the segmented cells in the video.

hblob = vision.BlobAnalysis(...
 'AreaOutputPort', false, ...
 'BoundingBoxOutputPort', false, ...
 'OutputDataType', 'single', ...
 'MinimumBlobArea', 7, ...
 'MaximumBlobArea', 300, ...
 'MaximumCount', 1500);

% Acknowledgement
ackText = ['Data set courtesy of Jonathan Young and Michael Elowitz, ' ...
 'California Institute of Technology'];

Create a System object to display the video.

hVideo = vision.VideoPlayer;
hVideo.Name = 'Results';
hVideo.Position(1) = round(hVideo.Position(1));
hVideo.Position(2) = round(hVideo.Position(2));
hVideo.Position([4 3]) = 30+VideoSize;

Stream Processing Loop

Create a processing loop to count the number of cells in the input video. This loop uses the System
objects you instantiated above.

frameCount = int16(1);
while hasFrame(hvfr)
 % Read input video frame
 image = im2gray(im2single(readFrame(hvfr)));

 % Apply a combination of morphological dilation and image arithmetic
 % operations to remove uneven illumination and to emphasize the
 % boundaries between the cells.
 y1 = 2*image - imdilate(image, strel('square',7));
 y1(y1<0) = 0;
 y1(y1>1) = 1;

4 Feature Detection and Extraction Examples

4-36

 y2 = imdilate(y1, strel('square',7)) - y1;

 th = multithresh(y2); % Determine threshold using Otsu's method
 y3 = (y2 <= th*0.7); % Binarize the image.

 Centroid = step(hblob, y3); % Calculate the centroid
 numBlobs = size(Centroid,1); % and number of cells.
 % Display the number of frames and cells.
 frameBlobTxt = sprintf('Frame %d, Count %d', frameCount, numBlobs);
 image = insertText(image, [1 1], frameBlobTxt, ...
 'FontSize', 16, 'BoxOpacity', 0, 'TextColor', 'white');
 image = insertText(image, [1 size(image,1)], ackText, ...
 'FontSize', 10, 'AnchorPoint', 'LeftBottom', ...
 'BoxOpacity', 0, 'TextColor', 'white');

 % Display video
 image_out = insertMarker(image, Centroid, '*', 'Color', 'green');
 step(hVideo, image_out);

 frameCount = frameCount + 1;
 pause(1);
end

 Cell Counting

4-37

Summary

In the Results window the original video is shown and the green markers indicate the centroid
locations of the cells. The frame number and the number of cells are displayed in the upper left
corner.

Data Set Credits

The data set for this example was provided by Jonathan Young and Michael Elowitz from California
Institute of Technology. It is used with permission. For additional information about this data, see

N. Rosenfeld, J. Young, U. Alon, P. Swain, and M.B. Elowitz, "Gene Regulation at the Single-Cell Level,
" Science 2005, Vol. 307, pp. 1962-1965.

4 Feature Detection and Extraction Examples

4-38

Object Counting

This example shows how to use morphological operations to count objects in a video stream.

Introduction

The input video stream contains images of staples. In this example, you use the top-hat morphological
operation to remove uneven illumination, and the opening morphological operation to remove gaps
between the staples. You then convert the images to binary, using a different threshold for each
frame. Once this threshold is applied, you count the number of staples and calculate the centroid of
each staple.

Initialization

Use these next sections of code to initialize the required variables and System objects.

Create a System object to read video from avi file.

filename = 'staples.mp4';
hVideoSrc = VideoReader(filename);

Create a blob analysis System object to count the staples and find their centroids.

hBlob = vision.BlobAnalysis(...
 'AreaOutputPort',false, ...
 'BoundingBoxOutputPort',false, ...
 'OutputDataType','single');

Create a System object to display the output video.

hVideoOut = vision.VideoPlayer('Name','Counted Staples');
hVideoOut.Position(3:4) = [650 350];

Stream Processing Loop

Here you call the processing loop to count the staples in the input video. This loop uses the System
objects you instantiated.

The loop is stopped when you reach the end of the input file, which is detected by the
BinaryFileReader System object.

while hasFrame(hVideoSrc)
 I = im2gray(readFrame(hVideoSrc));
 Im = imtophat(I, strel('square',18));
 Im = imopen(Im, strel('rect',[15 3]));
 th = multithresh(Im); % Determine threshold using Otsu's method
 BW = Im > th;
 Centroids = step(hBlob,BW); % Blob Analysis

 StaplesCount = int32(size(Centroids,1));
 txt = sprintf('Staple count: %d', StaplesCount);
 It = insertText(I,[10 280],txt,'FontSize',22); % Display staples count

 Centroids(:, 2) = Centroids(1,2); % Align markers horizontally

 It = insertMarker(It,Centroids,'o','Size',6,'Color','r');

 Object Counting

4-39

 It = insertMarker(It,Centroids,'o','Size',5,'Color','r');
 It = insertMarker(It,Centroids,'+','Size',5,'Color','r');

 step(hVideoOut,It);
 pause(1);
end

Summary

The output video shows the individual staples marked with a circle and plus sign. It also displays the
number of staples that appear in each frame.

4 Feature Detection and Extraction Examples

4-40

Pattern Matching

This example shows how to use the 2-D normalized cross-correlation for pattern matching and target
tracking. The example uses predefined or user specified target and number of similar targets to be
tracked. The normalized cross correlation plot shows that when the value exceeds the set threshold,
the target is identified.

Introduction

In this example you use normalized cross correlation to track a target pattern in a video. The pattern
matching algorithm involves the following steps:

• The input video frame and the template are reduced in size to minimize the amount of
computation required by the matching algorithm.

• Normalized cross correlation, in the frequency domain, is used to find a template in the video
frame.

• The location of the pattern is determined by finding the maximum cross correlation value.

Initialize Parameters and Create a Template

Initialize required variables such as the threshold value for the cross correlation and the
decomposition level for Gaussian Pyramid decomposition.

threshold = single(0.99);
level = 2;

Prepare a video file reader.

hVideoSrc = VideoReader('vipboard.mp4');

Specify the target image and number of similar targets to be tracked. By default, the example uses a
predefined target and finds up to 2 similar patterns. You can set the variable useDefaultTarget to
false to specify a new target and the number of similar targets to match.

useDefaultTarget = true;
[Img, numberOfTargets, target_image] = ...
 videopattern_gettemplate(useDefaultTarget);

% Downsample the target image by a predefined factor. You do this
% to reduce the amount of computation needed by cross correlation.
target_image = single(target_image);
target_dim_nopyramid = size(target_image);
target_image_gp = multilevelPyramid(target_image, level);
target_energy = sqrt(sum(target_image_gp(:).^2));

% Rotate the target image by 180 degrees, and perform zero padding so that
% the dimensions of both the target and the input image are the same.
target_image_rot = imrotate(target_image_gp, 180);
[rt, ct] = size(target_image_rot);
Img = single(Img);
Img = multilevelPyramid(Img, level);
[ri, ci]= size(Img);
r_mod = 2^nextpow2(rt + ri);
c_mod = 2^nextpow2(ct + ci);
target_image_p = [target_image_rot zeros(rt, c_mod-ct)];

 Pattern Matching

4-41

target_image_p = [target_image_p; zeros(r_mod-rt, c_mod)];

% Compute the 2-D FFT of the target image
target_fft = fft2(target_image_p);

% Initialize constant variables used in the processing loop.
target_size = repmat(target_dim_nopyramid, [numberOfTargets, 1]);
gain = 2^(level);
Im_p = zeros(r_mod, c_mod, 'single'); % Used for zero padding
C_ones = ones(rt, ct, 'single'); % Used to calculate mean using conv

Create a System object to calculate the local maximum value for the normalized cross correlation.

hFindMax = vision.LocalMaximaFinder(...
 'Threshold', single(-1), ...
 'MaximumNumLocalMaxima', numberOfTargets, ...
 'NeighborhoodSize', floor(size(target_image_gp)/2)*2 - 1);

Create a System object to display the tracking of the pattern.

sz = get(0,'ScreenSize');
pos = [20 sz(4)-400 400 300];
hROIPattern = vision.VideoPlayer('Name', 'Overlay the ROI on the target', ...
 'Position', pos);

Initialize figure window for plotting the normalized cross correlation value

hPlot = videopatternplots('setup',numberOfTargets, threshold);

Search for a Template in Video

Create a processing loop to perform pattern matching on the input video. This loop uses the System
objects you instantiated above. The loop is stopped when you reach the end of the input file, which is
detected by the VideoReader object.

while hasFrame(hVideoSrc)
 Im = im2gray(im2single(readFrame(hVideoSrc)));

 % Reduce the image size to speed up processing
 Im_gp = multilevelPyramid(Im, level);

 % Frequency domain convolution.
 Im_p(1:ri, 1:ci) = Im_gp; % Zero-pad
 img_fft = fft2(Im_p);
 corr_freq = img_fft .* target_fft;
 corrOutput_f = ifft2(corr_freq);
 corrOutput_f = corrOutput_f(rt:ri, ct:ci);

 % Calculate image energies and block run tiles that are size of
 % target template.
 IUT_energy = (Im_gp).^2;
 IUT = conv2(IUT_energy, C_ones, 'valid');
 IUT = sqrt(IUT);

 % Calculate normalized cross correlation.
 norm_Corr_f = (corrOutput_f) ./ (IUT * target_energy);
 xyLocation = step(hFindMax, norm_Corr_f);

4 Feature Detection and Extraction Examples

4-42

 % Calculate linear indices.
 linear_index = sub2ind([ri-rt, ci-ct]+1, xyLocation(:,2),...
 xyLocation(:,1));

 norm_Corr_f_linear = norm_Corr_f(:);
 norm_Corr_value = norm_Corr_f_linear(linear_index);
 detect = (norm_Corr_value > threshold);
 target_roi = zeros(length(detect), 4);
 ul_corner = (gain.*(xyLocation(detect, :)-1))+1;
 target_roi(detect, :) = [ul_corner, fliplr(target_size(detect, :))];

 % Draw bounding box.
 Imf = insertShape(Im, 'Rectangle', target_roi, 'Color', 'green');
 % Plot normalized cross correlation.
 videopatternplots('update',hPlot,norm_Corr_value);
 step(hROIPattern, Imf);
end

snapnow

% Function to compute pyramid image at a particular level.
function outI = multilevelPyramid(inI, level)

I = inI;
outI = I;

for i=1:level
 outI = impyramid(I, 'reduce');
 I = outI;
end

end

 Pattern Matching

4-43

4 Feature Detection and Extraction Examples

4-44

Summary

This example shows use of Computer Vision Toolbox™ to find a user defined pattern in a video and
track it. The algorithm is based on normalized frequency domain cross correlation between the target
and the image under test. The video player window displays the input video with the identified target
locations. Also a figure displays the normalized correlation between the target and the image which is
used as a metric to match the target. As can be seen whenever the correlation value exceeds the
threshold (indicated by the blue line), the target is identified in the input video and the location is
marked by the green bounding box.

Appendix

The following helper functions are used in this example.

• videopattern_gettemplate.m
• videopatternplots.m

 Pattern Matching

4-45

Recognize Text Using Optical Character Recognition (OCR)

This example shows how to use the ocr function from the Computer Vision Toolbox™ to perform
optical character recognition.

Text Recognition Using the ocr Function

Recognizing text in images is useful in many computer vision applications such as image search,
document analysis, and robot navigation. The ocr function provides an easy way to add text
recognition functionality to a wide range of applications.

% Load an image.
I = imread("businessCard.png");

% Perform OCR.
results = ocr(I);

% Display one of the recognized words.
word = results.Words{2}

word =
'MathWorks:'

% Location of the word in I
wordBBox = results.WordBoundingBoxes(2,:)

wordBBox = 1×4

 173 66 376 82

% Show the location of the word in the original image.
figure
Iname = insertObjectAnnotation(I,"rectangle",wordBBox,word);
imshow(Iname)

4 Feature Detection and Extraction Examples

4-46

Information Returned by the ocr Function

The ocr functions returns the recognized text, the recognition confidence, and the location of the
text in the original image. You can use this information to identify the location of misclassified text
within the image.

% Find 5 characters with least confidences.
[~ ,idx] = sort(results.CharacterConfidences);
lowConfidenceIdx = idx(1:5);

% Get the bounding box locations of the low confidence characters.
lowConfBBoxes = results.CharacterBoundingBoxes(lowConfidenceIdx,:);

% Get recognized characters.
lowConfChars = results.Text(lowConfidenceIdx)';

% Annotate image with low confidence characters.
str = "Character = '" + lowConfChars + "'";
Ilowconf = insertObjectAnnotation(I,"rectangle",lowConfBBoxes,str);

figure
imshow(Ilowconf)
title("Character recognitions with the least confidence")

 Recognize Text Using Optical Character Recognition (OCR)

4-47

Here, the logo in the business card is incorrectly classified as a text character. These kind of OCR
errors can be identified using the confidence values before any further processing takes place.

Challenges Obtaining Accurate Results

ocr performs best when the text is located on a uniform background and is formatted like a
document with dark text on a light background. When the text appears on a non-uniform dark
background, additional pre-processing steps are required to get the best OCR results. In this part of
the example, you will try to locate the digits on a keypad. Although, the keypad image may appear to
be easy for OCR, it is actually quite challenging because the text is on a non-uniform dark
background.

I = imread("keypad.jpg");
I = im2gray(I);

figure
imshow(I)

4 Feature Detection and Extraction Examples

4-48

% Run OCR on the image
results = ocr(I);

results.Text

ans =
 '

 '

The empty results.Text indicates that no text is recognized. In the keypad image, the text is
sparse and located on an irregular background. In this case, the heuristics used for document layout
analysis within ocr might be failing to find blocks of text within the image, and, as a result, text
recognition fails. In this situation, disabling the automatic layout analysis, using the
LayoutAnalysis parameter, may help improve the results.

% Set LayoutAnalysis to "Block" to instruct ocr to assume the image
% contains just one block of text.
results = ocr(I,LayoutAnalysis="Block");

results.Text

 Recognize Text Using Optical Character Recognition (OCR)

4-49

ans =

 0×0 empty char array

What Went Wrong?

Adjusting the LayoutAnalysis parameter did not help. To understand why OCR continues to fail,
you have to investigate the initial binarization step performed within ocr. You can use imbinarize
to check this initial binarization step because both ocr and the default "global" method in
imbinarize use Otsu's method for image binarization.

BW = imbinarize(I);

figure
imshowpair(I,BW,"montage")

After thresholding, the binary image contains no text. This is why ocr failed to recognize any text in
the original image. You can help improve the results by pre-processing the image to improve text
segmentation. The next part of the example explores two useful pre-processing techniques.

Image Pre-processing Techniques To Improve Results

The poor text segmentation seen above is caused by the non-uniform background in the image, i.e.
the light-gray keys surrounded by dark gray. You can use the following pre-processing technique to
remove the background variations and improve the text segmentation. Additional details about this
technique are given in the example entitled “Correct Nonuniform Illumination and Analyze
Foreground Objects”.

% Remove keypad background.
Icorrected = imtophat(I,strel("disk",15));

BW1 = imbinarize(Icorrected);

figure
imshowpair(I,BW1,"montage")

4 Feature Detection and Extraction Examples

4-50

After removing the background variation, the digits are now visible in the binary image. However,
there are a few artifacts at the edge of the keys and the small text next to the digits that may
continue to hinder accurate OCR of the whole image. Additional pre-processing using morphological
reconstruction helps to remove these artifacts and produce a cleaner image for OCR.

% Perform morphological reconstruction and show binarized image.
marker = imerode(Icorrected,strel("line",10,0));
Iclean = imreconstruct(marker,Icorrected);

Ibinary = imbinarize(Iclean);

figure
imshowpair(Iclean,Ibinary,"montage")

Now invert the clean binarized image to produce an image containing dark text on a light background
for OCR.

 Recognize Text Using Optical Character Recognition (OCR)

4-51

https://blogs.mathworks.com/steve/2008/07/14/opening-by-reconstruction/
https://blogs.mathworks.com/steve/2008/07/14/opening-by-reconstruction/

BW2 = imcomplement(Ibinary);
figure
imshowpair(Ibinary,BW2,"montage")

After these pre-processing steps, the digits are now well segmented from the background and ocr
produces some results.

results = ocr(BW2,LayoutAnalysis="block");

results.Text

ans =
 'ww] 2 x 3
 md ud wb
 on/ wB wm?
 -* . 0 #)

 '

The results look largely inaccurate except for few characters. This is due to difference in sizes of
characters in the keypad which is causing the automatic layout analysis to fail.

One approach to improve the results is to leverage a priori knowledge about the text within the
image. In this example, the text you are interested in contains only numeric digits and , '*#'
characters. You can improve the results by constraining ocr to only select the best matches from the
set "0123456789*#".

% Use the "CharacterSet" parameter to constrain OCR
results = ocr(BW2,CharacterSet="0123456789*#");

results.Text

ans =
 '2 3
 4
 78

4 Feature Detection and Extraction Examples

4-52

 *0

 '

The results are now better and contain only characters from the given character set. However, there
are still few characters of interest in the image that are missing in the recognition results.

ROI-based Processing To Improve Results

To further improve the recognition results in this situation, identify specific regions in the image that
ocr should process. In the keypad example image, these regions would be those that just contain the
digits, *, and # characters. You may select the regions manually using imrect, or you can automate
the process. For information about how to automatically detect text regions, see “Automatically
Detect and Recognize Text Using MSER and OCR” on page 4-2 and “Automatically Detect and
Recognize Text Using Pretrained CRAFT Network and OCR” on page 4-14. In this example, you will
use regionprops to find the characters of interest on the keypad.

% Use regionprops to find bounding boxes around text regions and measure their area.
cc = bwconncomp(Ibinary);
stats = regionprops(cc, ["BoundingBox","Area"]);

% Extract bounding boxes and area from the output statistics.
roi = vertcat(stats(:).BoundingBox);
area = vertcat(stats(:).Area);

% Show all the connected regions.
img = insertObjectAnnotation(I,"rectangle",roi,area,"LineWidth",3);
figure;
imshow(img);

 Recognize Text Using Optical Character Recognition (OCR)

4-53

The smallest character of interest in this example is the digit "1". Use its area to filter any outliers.

% Define area constraint based on the area of smallest character of interest.
areaConstraint = area > 347;

% Keep regions that meet the area constraint.
roi = double(roi(areaConstraint,:));

% Show remaining bounding boxes after applying the area constraint.
img = insertShape(I,"rectangle",roi);
figure;
imshow(img);

4 Feature Detection and Extraction Examples

4-54

Further processing based on a region's aspect ratio is applied to identify regions that are likely to
contain a single character. This helps to remove the smaller text characters that are jumbled together
next to the digits. In general, the larger the text the easier it is for ocr to recognize.

% Compute the aspect ratio.
width = roi(:,3);
height = roi(:,4);
aspectRatio = width ./ height;

% An aspect ratio between 0.25 and 1.25 is typical for individual characters
% as they are usually not very short and wide or very tall and skinny.
roi = roi(aspectRatio > 0.25 & aspectRatio < 1.25 ,:);

% Show regions after applying the area and aspect ratio constraints.
img = insertShape(I,"rectangle",roi);
figure;
imshow(img);

 Recognize Text Using Optical Character Recognition (OCR)

4-55

The remaining regions can be passed into the ocr function, which accepts rectangular regions of
interest as input. The size of the regions are increased slightly to include additional background
pixels around the text characters. This helps to improve the internal heuristics used to determine the
polarity of the text on the background (e.g. light text on a dark background vs. dark text on a light
background).

numAdditionalPixels = 5;
roi(:,1:2) = roi(:,1:2) - numAdditionalPixels;
roi(:,3:4) = roi(:,3:4) + 2*numAdditionalPixels;

Disable the automatic layout analysis by setting LayoutAnalysis to "none". When ROI inputs are
provided manually, setting LayoutAnalysis to "block",“word”, “textline”, “character” or “none” may
help improve results. Empirical analysis is required to determine the optimal layout analysis value.

results = ocr(BW2,roi,CharacterSet="0123456789*#",LayoutAnalysis="none");

The recognized text can be displayed on the original image using insertObjectAnnotation. The
deblank function is used to remove any trailing characters, such as white space or new lines.

text = deblank({results.Text});
img = insertObjectAnnotation(I,"rectangle",roi,text);

4 Feature Detection and Extraction Examples

4-56

figure;
imshow(img)

Although regionprops enabled you to find the digits in the keypad image, it may not work as well
for images of natural scenes where there are many objects in addition to the text. For these types of
images, the technique shown in the example “Automatically Detect and Recognize Text Using
Pretrained CRAFT Network and OCR” on page 4-14 may provide better text detection results.

Summary

This example showed how the ocr function can be used to recognize text in images, and how a
seemingly easy image for OCR required extra pre-processing steps to produce good results.

References
[1] Ray Smith. Hybrid Page Layout Analysis via Tab-Stop Detection. Proceedings of the 10th

international conference on document analysis and recognition. 2009.

 Recognize Text Using Optical Character Recognition (OCR)

4-57

See Also

Related Examples
• “Automatically Detect and Recognize Text Using Pretrained CRAFT Network and OCR” on page

4-14
• “Automatically Detect and Recognize Text Using MSER and OCR” on page 4-2

4 Feature Detection and Extraction Examples

4-58

Cell Counting

This example shows how to use a combination of basic morphological operators and blob analysis to
extract information from a video stream. In this case, the example counts the number of E. Coli
bacteria in each video frame. Note that the cells are of varying brightness, which makes the task of
segmentation more challenging.

Example Model

The following figure shows the Cell Counting example model.

Segment Cells Subsystem

Inside the Isolate Cells subsystem, the example uses a combination of morphological dilation and
image arithmetic operations to remove uneven illumination and to emphasize the boundaries between
the cells. Due to changes in overall lighting intensity, the example cannot apply a single threshold
value to all of the video frames. The example uses the Autothreshold block to compute a threshold for
each frame.

Isolate Cells subsystem:

 Cell Counting

4-59

Cell Counting Results

After the example applies the threshold and separates the cells, it uses the Blob Analysis block to
count the number of cells in each frame and to calculate the centroid of each cell. The example
passes the total number of cells in each frame to the Insert Text block, which is in the Display Results
subsystem. This block embeds this information on each video frame.

The Cell division rate window shows the exponential growth of the bacteria.

The Results window displays one frame of the original video and green markers indicating centroid
locations of the found cells. The frame number and the number of cells are displayed in the upper left
corner.

4 Feature Detection and Extraction Examples

4-60

Data Set Credits

The data set for this example was provided by Jonathan Young and Michael Elowitz from California
Institute of Technology®. It is used with permission. For additional information about this data, see

N. Rosenfeld, J. Young, U. Alon, P. Swain, and M.B. Elowitz, "Gene Regulation at the Single-Cell Level,
" Science 2005, Vol. 307, pp. 1962-1965.

 Cell Counting

4-61

Lidar and Point Cloud Processing
Examples

• “Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment” on page 5-2
• “Ground Plane and Obstacle Detection Using Lidar” on page 5-12
• “Augment Point Cloud Data For Deep Learning” on page 5-21
• “Import Point Cloud Data For Deep Learning” on page 5-26
• “Encode Point Cloud Data For Deep Learning” on page 5-30
• “Build a Map from Lidar Data” on page 5-36
• “Build a Map from Lidar Data Using SLAM” on page 5-55
• “3-D Point Cloud Registration and Stitching” on page 5-71

5

Design Lidar SLAM Algorithm Using Unreal Engine Simulation
Environment

This example shows how to record synthetic lidar sensor data from a 3-D simulation environment, and
develop a simultaneous localization and mapping (SLAM) algorithm using the recorded data. The
simulation environment uses the Unreal Engine® by Epic Games®.

Introduction

Automated Driving Toolbox™ integrates an Unreal Engine simulation environment in Simulink®.
Simulink blocks related to this simulation environment can be found in the drivingsim3d library.
These blocks provide the ability to:

• Select different scenes in the 3D simulation environment
• Place and move vehicles in the scene
• Attach and configure sensors on the vehicles
• Simulate sensor data based on the environment around the vehicle

This powerful simulation tool can be used to supplement real data when developing, testing, and
verifying the performance of automated driving algorithms, making it possible to test scenarios that
are difficult to reproduce in the real world.

In this example, you evaluate a lidar perception algorithm using synthetic lidar data generated from
the simulation environment. The example walks you through the following steps:

• Record and visualize synthetic lidar sensor data from the simulation environment.
• Develop a perception algorithm to build a map using SLAM in MATLAB®.

Set Up Scenario in Simulation Environment

First, set up a scenario in the simulation environment that can be used to test the perception
algorithm. Use a scene depicting a typical city block with a single vehicle that is the vehicle under
test. You can use this scene to test the performance of the algorithm in an urban road setting.

Next, select a trajectory for the vehicle to follow in the scene. The “Select Waypoints for Unreal
Engine Simulation” (Automated Driving Toolbox) example describes how to interactively select a
sequence of waypoints from a scene and generate a vehicle trajectory. This example uses a recorded
drive segment obtained using the helperSelectSceneWaypoints function, as described in the
waypoint selection example.

% Load reference path for recorded drive segment
xData = load('refPosesX.mat');
yData = load('refPosesY.mat');
yawData = load('refPosesT.mat');

% Set up workspace variables used by model
refPosesX = xData.refPosesX;
refPosesY = yData.refPosesY;
refPosesT = yawData.refPosesT;

% Display path on scene image
sceneName = 'USCityBlock';

5 Lidar and Point Cloud Processing Examples

5-2

hScene = figure;
helperShowSceneImage(sceneName);
hold on
scatter(refPosesX(:,2),refPosesY(:,2),7,'filled')

% Adjust axes limits
xlim([-150 100])
ylim([-125 75])

The LidarSLAMIn3DSimulation Simulink model is configured with the US City Block (Automated
Driving Toolbox) scene using the Simulation 3D Scene Configuration (Automated Driving Toolbox)
block. The model places a vehicle on the scene using the Simulation 3D Vehicle with Ground
Following (Automated Driving Toolbox) block. A lidar sensor is attached to the vehicle using the
Simulation 3D Lidar (Automated Driving Toolbox) block. In the block dialog box, use the Mounting
tab to adjust the placement of the sensor. Use the Parameters tab to configure properties of the
sensor to simulate different lidar sensors. In this example, the lidar is mounted on the center of the
roof. The lidar sensor is configured to model a typical Velodyne® HDL-32E sensor.

close(hScene)

if ~ispc
 error(['3D Simulation is only supported on Microsoft',char(174),' Windows',char(174),'.']);
end

% Open the model
modelName = 'LidarSLAMIn3DSimulation';

 Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment

5-3

open_system(modelName);
snapnow;

The model records and visualizes the synthetic lidar data. The recorded data is available through the
simulation output, and can be used for prototyping your algorithm in MATLAB. Additionally, the
model uses a From Workspace (Simulink) block to load simulated measurements from an Inertial
Navigation Sensor (INS). The INS data was obtained by using an insSensor (Automated Driving
Toolbox) object, and saved in a MAT file.

The rest of the example follows these steps:

1 Simulate the model to record synthetic lidar data generated by the sensor and save it to the
workspace.

2 Use the sensor data saved to the workspace to develop a perception algorithm in MATLAB. The
perception algorithm builds a map of the surroundings using SLAM.

3 Visualize the results of the built map.

Record and Visualize Synthetic Lidar Sensor Data

The Record and Visualize subsystem records the synthetic lidar data to the workspace using a To
Workspace (Simulink) block. The Visualize Point Cloud MATLAB Function block uses a pcplayer
object to visualize the streaming point clouds. The Visualize INS Path MATLAB Function block
visualizes the streaming INS data.

Simulate the model. The streaming point cloud display shows the synthetic lidar sensor data. The
scene display shows the synthetic INS sensor data. Once the model has completed simulation, the
simOut variable holds a structure with variables written to the workspace. The
helperGetPointCloud function extracts the sensor data into an array of pointCloud objects. The

5 Lidar and Point Cloud Processing Examples

5-4

pointCloud object is the fundamental data structure used to hold lidar data and perform point cloud
processing in MATLAB. Additionally, INS data is loaded from a MAT file, which will later be used to
develop the perception algorithm. The INS data was obtained using the insSensor (Automated
Driving Toolbox) object. The INS data has been processed to contain [x, y, theta] poses in world
coordinates.

% Update simulation stop time to end when reference path is completed
simStopTime = refPosesX(end,1);
set_param(gcs,'StopTime',num2str(simStopTime));

% Load INS data from MAT file
data = load('insMeasurement.mat');
insData = data.insMeasurement.signals.values;

% Run the simulation
simOut = sim(modelName);

% Create a pointCloud array from the recorded data
ptCloudArr = helperGetPointCloud(simOut);

Use Recorded Data to Develop Perception Algorithm

The synthetic lidar sensor data can be used to develop, experiment with, and verify a perception
algorithm in different scenarios. This example uses an algorithm to build a 3-D map of the
environment from streaming lidar data. Such an algorithm is a building block for applications like
localization. It can also be used to create high-definition (HD) maps for geographic regions that can
then be used for online localization. The map building algorithm is encapsulated in the
helperLidarMapBuilder class. This class uses point cloud and lidar processing capabilities in
MATLAB. For more details, see “Point Cloud Processing”.

The helperLidarMapBuilder class takes incoming point clouds from a lidar sensor and
progressively builds a map using the following steps:

1 Preprocess point cloud: Downsamples each incoming point cloud. To improve accuracy and
efficiency of registration, pcdownsample is used to downsample the point cloud prior to
registration.

2 Register point clouds: Register the incoming point cloud with the last point cloud using the
Generalized Iterative Closest Point (G-ICP) registration algorithm. The pcregistericp function
performs the registration. An initial transformation estimate can substantially improve
registration performance. In this example, INS measurements are used to accomplish this.

3 Align point clouds: Use the estimated transformation obtained from registration to transform
the incoming point cloud to the frame of reference of the map.

4 Update view set: Add the incoming point cloud and the estimated absolute pose as a view in a
pcviewset object. Add a connection between the current and previous view with the relative
transformation between them.

The updateMap method of the helperLidarMapBuilder class accomplishes these steps. The
helperEstimateRelativeTransformationFromINS function computes an initial estimate for
registration from simulated INS sensor readings.

Such an algorithm is susceptible to drift while accumulating a map over long sequences. To reduce
the drift, it is typical to detect loop closures and use graph SLAM to correct the drift. See “Build a
Map from Lidar Data Using SLAM” (Automated Driving Toolbox) example for details. The
configureLoopDetector method of the helperLidarMapBuilder class configures loop closure

 Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment

5-5

detection. Once it is configured, loop closure detection takes place each time updateMap is invoked,
using the following functions and classes:

• pcviewset: Manages data associated with point cloud odometry like point clouds, poses and
connections.

• scanContextDescriptor: Extracts scan context descriptors from each incoming point cloud.
Scan context is a 2-D global feature descriptor that is used for loop closure detection.

• scanContextLoopDetector: Manages scan context descriptors and detects loop closures. It
uses scanContextDistance to compute the distance between scan context descriptors and
select the closest feature matches.

Then, the example uses point cloud registration to accept or reject loop closure candidates and to
find the loop closure transformation.

% Set the random seed for example reproducibility
rng(0);

% Create a lidar map builder
mapBuilder = helperLidarMapBuilder('DownsampleGridStep',0.25,'Verbose',true);

% Configure the map builder to detect loop closures
configureLoopDetector(mapBuilder,'LoopConfirmationRMSE',1.5, ...
 'SearchRadius',0.15,'DistanceThreshold',0.2);

% Loop through the point cloud array and progressively build a map
skipFrames = 10;
numFrames = numel(ptCloudArr);
exitLoop = false;

prevInsMeas = insData(1,:);
for n = 1:skipFrames:numFrames

 insMeas = insData(n,:);

 % Estimate initial transformation using INS
 initTform = helperEstimateRelativeTransformationFromINS(insMeas,prevInsMeas);

 % Update map with new lidar frame
 updateMap(mapBuilder,ptCloudArr(n),initTform);

 % Update top-view display
 isDisplayOpen = updateDisplay(mapBuilder,exitLoop);

 % Check and exit if needed
 exitLoop = ~isDisplayOpen;

 prevInsMeas = insMeas;
end

snapnow;

% Close display
closeDisplay = true;
updateDisplay(mapBuilder,closeDisplay);

Loop closure candidate found between view Id 45 and 3 with RMSE 2.441555...
Rejected

5 Lidar and Point Cloud Processing Examples

5-6

Loop closure candidate found between view Id 106 and 3 with RMSE 0.793361...
Accepted

The accumulated drift progressively increases over time.

Once sufficient loop closures are detected, the accumulated drift can be corrected using pose graph
optimization. This is accomplished by the optimizeMapPoses method of the
helperLidarMapBuilder class, which uses createPoseGraph to create a pose graph and
optimizePoseGraph (Navigation Toolbox) to optimize the pose graph.

After the pose graph has been optimized, rebuild the map using the updated poses. This is
accomplished by the rebuildMap method of helperLidarMapBuilder using pcalign.

Use optimizeMapPoses and rebuildMap to correct for the drift and rebuild the map. Visualize the
view set before and after pose graph optimization.

% Visualize viewset before pose graph optimization
hFigViewset = figure;
hG = plot(mapBuilder.ViewSet);
view(hG.Parent,2);
title('Viewset Display')

 Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment

5-7

% Get the estimated trajectory before pose graph optimization to evaluate
% its accuracy
estimatedTrajectoryBefore = vertcat(mapBuilder.ViewSet.Views.AbsolutePose.Translation);

% Optimize pose graph and rebuild map
optimizeMapPoses(mapBuilder);
rebuildMap(mapBuilder);

% Get the estimated trajectory after pose graph optimization to evaluate
% its accuracy
estimatedTrajectoryAfter = vertcat(mapBuilder.ViewSet.Views.AbsolutePose.Translation);

% Overlay viewset after pose graph optimization
hold(hG.Parent,'on');
plot(mapBuilder.ViewSet);
hold(hG.Parent,'off');

legend(hG.Parent,'before','after')

Optimizing pose graph...done
Rebuilding map...done

To evaluate the accuracy of the built map, compute the root-mean-square error (rmse) between the
estimated trajectory and the ground truth trajectory before and after pose graph optimization.

groundTruthTrajectory = squeeze(simOut.lidarLocation.signals.values)';
selectedGroundTruth = groundTruthTrajectory(1:skipFrames:numFrames,:);

5 Lidar and Point Cloud Processing Examples

5-8

% Apply an offset since the estimated trajectory starts at [0 0 0] with an
% angular offset of 90 degrees in the z-axis.
offsetTform = rigidtform3d([0 0 90],selectedGroundTruth(1,:));
selectedGroundTruth = transformPointsInverse(offsetTform,selectedGroundTruth);

rmseBefore = rmse(selectedGroundTruth,estimatedTrajectoryBefore,"all");
disp(['rmse before pose graph optimization: ' num2str(rmseBefore)])

rmseAfter = rmse(selectedGroundTruth,estimatedTrajectoryAfter,"all");
disp(['rmse after pose graph optimization: ' num2str(rmseAfter)])

rmse before pose graph optimization: 1.4301
rmse after pose graph optimization: 1.0605

Visualize the accumulated point cloud map computed using the recorded data.

close(hFigViewset)

hFigMap = figure;
pcshow(mapBuilder.Map)

% Customize axes labels and title
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')
title('Point Cloud Map')

helperMakeFigurePublishFriendly(hFigMap);

 Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment

5-9

By changing the scene, placing more vehicles in the scene, or updating the sensor mounting and
parameters, the perception algorithm can be stress-tested under different scenarios. This approach
can be used to increase coverage for scenarios that are difficult to reproduce in the real world.

% Close windows
close(hFigMap)
close_system(modelName)

Supporting Functions

helperGetPointCloud Extract an array of pointCloud objects.

function ptCloudArr = helperGetPointCloud(simOut)

% Extract signal
ptCloudData = simOut.ptCloudData.signals.values;

% Create a pointCloud array
ptCloudArr = pointCloud(ptCloudData(:,:,:,1));

for n = 2 : size(ptCloudData,4)

5 Lidar and Point Cloud Processing Examples

5-10

 ptCloudArr(end+1) = pointCloud(ptCloudData(:,:,:,n)); %#ok<AGROW>
end
end

helperMakeFigurePublishFriendly Adjust figure so that screenshot captured by publish is correct.

function helperMakeFigurePublishFriendly(hFig)

if ~isempty(hFig) && isvalid(hFig)
 hFig.HandleVisibility = 'callback';
end
end

Additional supporting functions or classes used in the example are included below.

helperLidarMapBuilder progressively builds a lidar map using point cloud scans. Each point cloud
is downsampled, and registered against the previous point cloud. A point cloud map is then
progressively built by aligning and merging the point clouds.

helperEstimateRelativeTransformationFromINS estimates a relative transformation from INS
data.

helperShowSceneImage displays top-view image of the Unreal scene.

helperUpdatePolyline updates a polyline position used in conjunction with helperShowSceneImage.

 Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment

5-11

Ground Plane and Obstacle Detection Using Lidar

This example shows how to process 3-D lidar data from a sensor mounted on a vehicle by segmenting
the ground plane and finding nearby obstacles. This can facilitate drivable path planning for vehicle
navigation. The example also shows how to visualize streaming lidar data.

Create a Velodyne File Reader

The lidar data used in this example was recorded using a Velodyne® HDL32E sensor mounted on a
vehicle. Set up a velodyneFileReader object to read the recorded PCAP file.

fileName = 'lidarData_ConstructionRoad.pcap';
deviceModel = 'HDL32E';

veloReader = velodyneFileReader(fileName, deviceModel);

Read a Lidar Scan

Each scan of lidar data is stored as a 3-D point cloud. Efficiently processing this data using fast
indexing and search is key to the performance of the sensor processing pipeline. This efficiency is
achieved using the pointCloud object, which internally organizes the data using a K-d tree data
structure.

The veloReader constructs an organized pointCloud for each lidar scan. The Location property
of the pointCloud is an M-by-N-by-3 matrix, containing the XYZ coordinates of points in meters. The
point intensities are stored in Intensity.

% Read a scan of lidar data
ptCloud = readFrame(veloReader) %#ok<NOPTS>

ptCloud =

 pointCloud with properties:

 Location: [32x1083x3 single]
 Count: 34656
 XLimits: [-80.0444 87.1780]
 YLimits: [-85.6287 92.8721]
 ZLimits: [-21.6060 14.3558]
 Color: []
 Normal: []
 Intensity: [32x1083 uint8]

Setup Streaming Point Cloud Display

The pcplayer can be used to visualize streaming point cloud data. Set up the region around the
vehicle to display by configuring pcplayer.

% Specify limits of point cloud display
xlimits = [-25 45]; % meters
ylimits = [-25 45];
zlimits = [-20 20];

% Create a pcplayer

5 Lidar and Point Cloud Processing Examples

5-12

lidarViewer = pcplayer(xlimits, ylimits, zlimits);

% Customize player axes labels
xlabel(lidarViewer.Axes, 'X (m)')
ylabel(lidarViewer.Axes, 'Y (m)')
zlabel(lidarViewer.Axes, 'Z (m)')

% Display the raw lidar scan
view(lidarViewer, ptCloud)

In this example, we will be segmenting points belonging to the ground plane, the ego vehicle and
nearby obstacles. Set the colormap for labeling these points.

% Define labels to use for segmented points
colorLabels = [...
 0 0.4470 0.7410; ... % Unlabeled points, specified as [R,G,B]
 0.4660 0.6740 0.1880; ... % Ground points
 0.9290 0.6940 0.1250; ... % Ego points
 0.6350 0.0780 0.1840]; % Obstacle points

% Define indices for each label

 Ground Plane and Obstacle Detection Using Lidar

5-13

colors.Unlabeled = 1;
colors.Ground = 2;
colors.Ego = 3;
colors.Obstacle = 4;

% Set the colormap
colormap(lidarViewer.Axes, colorLabels)

Segment the Ego Vehicle

The lidar is mounted on top of the vehicle, and the point cloud may contain points belonging to the
vehicle itself, such as on the roof or hood. Knowing the dimensions of the vehicle, we can segment out
points that are closest to the vehicle.

Create a vehicleDimensions (Automated Driving Toolbox) object for storing dimensions of
the vehicle.

vehicleDims = vehicleDimensions(); % Typical vehicle 4.7m by 1.8m by 1.4m

Specify the mounting location of the lidar in the vehicle coordinate system. The vehicle coordinate
system is centered at the center of the rear-axle, on the ground, with positive X direction pointing

5 Lidar and Point Cloud Processing Examples

5-14

forward, positive Y towards the left, and positive Z upwards. In this example, the lidar is mounted on
the top center of the vehicle, parallel to the ground.

mountLocation = [...
 vehicleDims.Length/2 - vehicleDims.RearOverhang, ... % x
 0, ... % y
 vehicleDims.Height]; % z

Segment the ego vehicle using the helper function helperSegmentEgoFromLidarData. This
function segments all points within the cuboid defined by the ego vehicle. Store the segmented points
in a struct points.

points = struct();
points.EgoPoints = helperSegmentEgoFromLidarData(ptCloud, vehicleDims, mountLocation);

Visualize the point cloud with segmented ego vehicle. Use the helperUpdateView helper function.

closePlayer = false;
helperUpdateView(lidarViewer, ptCloud, points, colors, closePlayer);

 Ground Plane and Obstacle Detection Using Lidar

5-15

Segment Ground Plane and Nearby Obstacles

In order to identify obstacles from the lidar data, first segment the ground plane using the
segmentGroundFromLidarData function to accomplish this. This function segments points
belonging to ground from organized lidar data.

elevationDelta = 10;
points.GroundPoints = segmentGroundFromLidarData(ptCloud, 'ElevationAngleDelta', elevationDelta);

% Visualize the segmented ground plane.
helperUpdateView(lidarViewer, ptCloud, points, colors, closePlayer);

Remove points belonging to the ego vehicle and the ground plane by using the select function on
the point cloud. Specify the 'OutputSize' as 'full' to retain the organized nature of the point
cloud.

nonEgoGroundPoints = ~points.EgoPoints & ~points.GroundPoints;
ptCloudSegmented = select(ptCloud, nonEgoGroundPoints, 'OutputSize', 'full');

5 Lidar and Point Cloud Processing Examples

5-16

Next, segment nearby obstacles by looking for all points that are not part of the ground or ego
vehicle within some radius from the ego vehicle. This radius can be determined based on the range of
the lidar and area of interest for further processing.

sensorLocation = [0, 0, 0]; % Sensor is at the center of the coordinate system
radius = 40; % meters

points.ObstaclePoints = findNeighborsInRadius(ptCloudSegmented, ...
 sensorLocation, radius);

% Visualize the segmented obstacles
helperUpdateView(lidarViewer, ptCloud, points, colors, closePlayer);

Process Lidar Sequence

Now that the point cloud processing pipeline for a single lidar scan has been laid out, put this all
together to process the sequence of recorded data. The code below is shortened since the key
parameters have been defined in the previous steps. Here, the parameters are used without further
explanation.

 Ground Plane and Obstacle Detection Using Lidar

5-17

% Rewind the |veloReader| to start from the beginning of the sequence
reset(veloReader);

isPlayerOpen = true;
while hasFrame(veloReader) && isPlayerOpen

 % Grab the next lidar scan
 ptCloud = readFrame(veloReader);

 % Segment points belonging to the ego vehicle
 points.EgoPoints = helperSegmentEgoFromLidarData(ptCloud, vehicleDims, mountLocation);

 % Segment points belonging to the ground plane
 points.GroundPoints = segmentGroundFromLidarData(ptCloud, 'ElevationAngleDelta', elevationDelta);

 % Remove points belonging to the ego vehicle and ground plane
 nonEgoGroundPoints = ~points.EgoPoints & ~points.GroundPoints;
 ptCloudSegmented = select(ptCloud, nonEgoGroundPoints, 'OutputSize', 'full');

 % Segment obstacles
 points.ObstaclePoints = findNeighborsInRadius(ptCloudSegmented, sensorLocation, radius);

 closePlayer = ~hasFrame(veloReader);

 % Update lidar display
 isPlayerOpen = helperUpdateView(lidarViewer, ptCloud, points, colors, closePlayer);
end
snapnow

Supporting Functions

helperSegmentEgoFromLidarData segments points belonging to the ego vehicle given the
dimensions of the vehicle and mounting location.

function egoPoints = helperSegmentEgoFromLidarData(ptCloud, vehicleDims, mountLocation)
%helperSegmentEgoFromLidarData segment ego vehicle points from lidar data
% egoPoints = helperSegmentEgoFromLidarData(ptCloud,vehicleDims,mountLocation)
% segments points belonging to the ego vehicle of dimensions vehicleDims
% from the lidar scan ptCloud. The lidar is mounted at location specified
% by mountLocation in the vehicle coordinate system. ptCloud is a
% pointCloud object. vehicleDimensions is a vehicleDimensions object.
% mountLocation is a 3-element vector specifying XYZ location of the
% lidar in the vehicle coordinate system.
%
% This function assumes that the lidar is mounted parallel to the ground
% plane, with positive X direction pointing ahead of the vehicle,
% positive Y direction pointing to the left of the vehicle in a
% right-handed system.

% Buffer around ego vehicle
bufferZone = [0.1, 0.1, 0.1]; % in meters

% Define ego vehicle limits in vehicle coordinates
egoXMin = -vehicleDims.RearOverhang - bufferZone(1);
egoXMax = egoXMin + vehicleDims.Length + bufferZone(1);
egoYMin = -vehicleDims.Width/2 - bufferZone(2);
egoYMax = egoYMin + vehicleDims.Width + bufferZone(2);
egoZMin = 0 - bufferZone(3);

5 Lidar and Point Cloud Processing Examples

5-18

egoZMax = egoZMin + vehicleDims.Height + bufferZone(3);

egoXLimits = [egoXMin, egoXMax];
egoYLimits = [egoYMin, egoYMax];
egoZLimits = [egoZMin, egoZMax];

% Transform to lidar coordinates
egoXLimits = egoXLimits - mountLocation(1);
egoYLimits = egoYLimits - mountLocation(2);
egoZLimits = egoZLimits - mountLocation(3);

% Use logical indexing to select points inside ego vehicle cube
egoPoints = ptCloud.Location(:,:,1) > egoXLimits(1) ...
 & ptCloud.Location(:,:,1) < egoXLimits(2) ...
 & ptCloud.Location(:,:,2) > egoYLimits(1) ...
 & ptCloud.Location(:,:,2) < egoYLimits(2) ...
 & ptCloud.Location(:,:,3) > egoZLimits(1) ...
 & ptCloud.Location(:,:,3) < egoZLimits(2);
end

helperUpdateView updates the streaming point cloud display with the latest point cloud and
associated color labels.

function isPlayerOpen = helperUpdateView(lidarViewer, ptCloud, points, colors, closePlayer)
%helperUpdateView update streaming point cloud display
% isPlayerOpen = helperUpdateView(lidarViewer, ptCloud, points, colors, closePlayers)
% updates the pcplayer object specified in lidarViewer with a new point
% cloud ptCloud. Points specified in the struct points are colored
% according to the colormap of lidarViewer using the labels specified by
% the struct colors. closePlayer is a flag indicating whether to close
% the lidarViewer.

if closePlayer
 hide(lidarViewer);
 isPlayerOpen = false;
 return;
end

scanSize = size(ptCloud.Location);
scanSize = scanSize(1:2);

% Initialize colormap
colormapValues = ones(scanSize, 'like', ptCloud.Location) * colors.Unlabeled;

if isfield(points, 'GroundPoints')
 colormapValues(points.GroundPoints) = colors.Ground;
end

if isfield(points, 'EgoPoints')
 colormapValues(points.EgoPoints) = colors.Ego;
end

if isfield(points, 'ObstaclePoints')
 colormapValues(points.ObstaclePoints) = colors.Obstacle;
end

% Update view
view(lidarViewer, ptCloud.Location, colormapValues)

 Ground Plane and Obstacle Detection Using Lidar

5-19

% Check if player is open
isPlayerOpen = isOpen(lidarViewer);

end

5 Lidar and Point Cloud Processing Examples

5-20

Augment Point Cloud Data For Deep Learning

This example demonstrates how to setup a basic randomized data augmentation pipeline when
working with point cloud data in deep learning based workflows. Data augmentation is almost always
desirable when working with deep learning because it helps to reduce overfitting during training and
can add robustness to types of data transformations which may not be well represented in the
original training data.

Import point cloud data

dataPath = downloadSydneyUrbanObjects(tempdir);
dsTrain = loadSydneyUrbanObjectsData(dataPath);
dataOut = preview(dsTrain)

dataOut=1×2 cell array
 {1×1 pointCloud} {[4wd]}

The datastore dsTrain yields a pointCloud object and an associated scalar categorical label for
each observation.

figure
pcshow(dataOut{1});
title(dataOut{2});

 Augment Point Cloud Data For Deep Learning

5-21

Define augmentation pipeline

The transform function of a datastore is a convenient tool for defining augmentation pipelines.

dsAugmented = transform(dsTrain,@augmentPointCloud);

The augmentPointCloud function shown below, applies randomized rotation, homogenous scale,
randomized reflection across the x- and y-axes, and randomized per point jitter to each observation
using the randomAffine3d function to construct randomized affine transformations and the
pctransform function to apply these transformations to each input point cloud.

dataOut = preview(dsAugmented)

dataOut=1×2 cell array
 {1×1 pointCloud} {[4wd]}

It is always a good idea to visually inspect the data that comes out of any augmentation that is done
on training data to make sure that the data looks as expected. The point cloud below is the same as
the original shown previously, but with randomized affine warping with per point jitter added.

5 Lidar and Point Cloud Processing Examples

5-22

figure
pcshow(dataOut{1});
title(dataOut{2});

The resulting TransformedDatastore and dsAugmented can be passed to deep learning functions
including trainNetwork, predict, and classify for use in training and inference.

Supporting Functions

function datasetPath = downloadSydneyUrbanObjects(dataLoc)

if nargin == 0
 dataLoc = pwd();
end

dataLoc = string(dataLoc);

url = "http://www.acfr.usyd.edu.au/papers/data/";
name = "sydney-urban-objects-dataset.tar.gz";

if ~exist(fullfile(dataLoc,'sydney-urban-objects-dataset'),'dir')

 Augment Point Cloud Data For Deep Learning

5-23

 disp('Downloading Sydney Urban Objects Dataset...');
 untar(url+name,dataLoc);
end

datasetPath = dataLoc.append('sydney-urban-objects-dataset');

end

function ds = loadSydneyUrbanObjectsData(datapath,folds)
% loadSydneyUrbanObjectsData Datastore with point clouds and
% associated categorical labels for Sydney Urban Objects dataset.
%
% ds = loadSydneyUrbanObjectsData(datapath) constructs a datastore that
% represents point clouds and associated categories for the Sydney Urban
% Objects dataset. The input, datapath, is a string or char array which
% represents the path to the root directory of the Sydney Urban Objects
% Dataset.
%
% ds = loadSydneyUrbanObjectsData(___,folds) optionally allows
% specification of desired folds that you wish to be included in the
% output ds. For example, [1 2 4] specifies that you want the first,
% second, and fourth folds of the Dataset. Default: [1 2 3 4].

if nargin < 2
 folds = 1:4;
end

datapath = string(datapath);
path = fullfile(datapath,'objects',filesep);

% For now, include all folds in Datastore
foldNames{1} = importdata(fullfile(datapath,'folds','fold0.txt'));
foldNames{2} = importdata(fullfile(datapath,'folds','fold1.txt'));
foldNames{3} = importdata(fullfile(datapath,'folds','fold2.txt'));
foldNames{4} = importdata(fullfile(datapath,'folds','fold3.txt'));
names = foldNames(folds);
names = vertcat(names{:});

fullFilenames = append(path,names);
ds = fileDatastore(fullFilenames,'ReadFcn',@extractTrainingData,'FileExtensions','.bin');

end

function dataOut = extractTrainingData(fname)

[pointData,intensity] = readbin(fname);

[~,name] = fileparts(fname);
name = string(name);
name = extractBefore(name,'.');

labelNames = ["4wd","bench","bicycle","biker",...
 "building","bus","car","cyclist","excavator","pedestrian","pillar",...
 "pole","post","scooter","ticket_machine","traffic_lights","traffic_sign",...
 "trailer","trash","tree","truck","trunk","umbrella","ute","van","vegetation"];

label = categorical(name,labelNames);

5 Lidar and Point Cloud Processing Examples

5-24

dataOut = {pointCloud(pointData,'Intensity',intensity),label};

end

function [pointData,intensity] = readbin(fname)
% readbin Read point and intensity data from Sydney Urban Object binary
% files.

% names = ['t','intensity','id',...
% 'x','y','z',...
% 'azimuth','range','pid']
%
% formats = ['int64', 'uint8', 'uint8',...
% 'float32', 'float32', 'float32',...
% 'float32', 'float32', 'int32']

fid = fopen(fname, 'r');
c = onCleanup(@() fclose(fid));

fseek(fid,10,-1); % Move to the first X point location 10 bytes from beginning
X = fread(fid,inf,'single',30);
fseek(fid,14,-1);
Y = fread(fid,inf,'single',30);
fseek(fid,18,-1);
Z = fread(fid,inf,'single',30);

fseek(fid,8,-1);
intensity = fread(fid,inf,'uint8',33);

pointData = [X,Y,Z];

end

function dataOut = augmentPointCloud(data)

ptCloud = data{1};
label = data{2};

% Apply randomized rotation about Z axis.
tform = randomAffine3d('Rotation',@() deal([0 0 1],360*rand),'Scale',[0.98,1.02],'XReflection',true,'YReflection',true); % Randomized rotation about z axis
ptCloud = pctransform(ptCloud,tform);

% Apply jitter to each point in point cloud
amountOfJitter = 0.01;
numPoints = size(ptCloud.Location,1);
D = zeros(size(ptCloud.Location),'like',ptCloud.Location);
D(:,1) = diff(ptCloud.XLimits)*rand(numPoints,1);
D(:,2) = diff(ptCloud.YLimits)*rand(numPoints,1);
D(:,3) = diff(ptCloud.ZLimits)*rand(numPoints,1);
D = amountOfJitter.*D;
ptCloud = pctransform(ptCloud,D);

dataOut = {ptCloud,label};

end

 Augment Point Cloud Data For Deep Learning

5-25

Import Point Cloud Data For Deep Learning

To use point cloud data in deep learning workflows, the data must be read in from its raw form in a
data set into MATLAB. In this example, we are working with the Sydney Urban Objects Dataset [1 on
page 5-27]. This example shows how to use MATLAB Datastores to read in and represent data for
deep learning.

Download Sydney Urban Objects Dataset

The Sydney Urban Objects data is 122 MB in its uncompressed form and may take a few moments to
download depending on your network connection speed.

sydneyUrbanObjectsPath = downloadSydneyUrbanObjects(tempdir());

Define Datastore For Point Cloud Data

Create a datastore to load point cloud data from Sydney Urban Objects, along with associated object
labels.

ds = loadSydneyUrbanObjectsData(sydneyUrbanObjectsPath);

Read and display the first observation from the Datastore.

data = preview(ds)

data=1×2 cell array
 {1×1 pointCloud} {[4wd]}

disp(data)

 {1×1 pointCloud} {[4wd]}

The output of the read and preview methods of the Datastore is a cell array in which the first column
is a pointCloud object and the second column is the associated class label. A pointCloud object can be
visualized using the pcshow function.

figure
pcshow(data{1})
title(string(data{2}))

5 Lidar and Point Cloud Processing Examples

5-26

https://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml

References

[1] Alastair Quadros, James Underwood, Bertrand Douillard; 2013. Sydney Urban Objects Dataset.

Supporting Functions

function datasetPath = downloadSydneyUrbanObjects(dataLoc)
% This function downloads the Sydney Urban Objects tar archive to tempdir
% provides as output the location of where the data was saved.

if nargin == 0
 dataLoc = pwd();
end

dataLoc = string(dataLoc);

url = "http://www.acfr.usyd.edu.au/papers/data/";
name = "sydney-urban-objects-dataset.tar.gz";

 Import Point Cloud Data For Deep Learning

5-27

if ~exist(fullfile(dataLoc,'sydney-urban-objects-dataset'),'dir')
 disp('Downloading Sydney Urban Objects Dataset...');
 untar(url+name,dataLoc);
end

datasetPath = dataLoc.append('sydney-urban-objects-dataset');

end

function ds = loadSydneyUrbanObjectsData(datapath,folds)
% loadSydneyUrbanObjectsData Create datastore with point clouds and
% associated categorical labels for Sydney Urban Objects dataset.
%
% ds = loadSydneyUrbanObjectsData(datapath) returns a datastore that
% represents point clouds and associated categories for the Sydney Urban
% Objects dataset. The input, datapath, is a string or char array which
% represents the path to the root directory of the Sydney Urban Objects
% Dataset.
%
% ds = loadSydneyUrbanObjectsData(___,folds) optionally allows
% specification of desired folds that you wish to be included in the
% output ds. For example, [1 2 4] specifies that you want the first,
% second, and fourth folds of the Dataset. Default: [1 2 3 4].

if nargin < 2
 folds = 1:4;
end

datapath = string(datapath);
path = fullfile(datapath,'objects',filesep);

% For now, include all folds in Datastore
foldNames{1} = importdata(fullfile(datapath,'folds','fold0.txt'));
foldNames{2} = importdata(fullfile(datapath,'folds','fold1.txt'));
foldNames{3} = importdata(fullfile(datapath,'folds','fold2.txt'));
foldNames{4} = importdata(fullfile(datapath,'folds','fold3.txt'));
names = foldNames(folds);
names = vertcat(names{:});

fullFilenames = append(path,names);
ds = fileDatastore(fullFilenames,'ReadFcn',@extractTrainingData,'FileExtensions','.bin');

end

function dataOut = extractTrainingData(fname)

[pointData,intensity] = readbin(fname);

[~,name] = fileparts(fname);
name = string(name);
name = extractBefore(name,'.');

labelNames = ["4wd","bench","bicycle","biker",...
 "building","bus","car","cyclist","excavator","pedestrian","pillar",...
 "pole","post","scooter","ticket_machine","traffic_lights","traffic_sign",...
 "trailer","trash","tree","truck","trunk","umbrella","ute","van","vegetation"];

label = categorical(name,labelNames);

5 Lidar and Point Cloud Processing Examples

5-28

dataOut = {pointCloud(pointData,'Intensity',intensity),label};

end

function [pointData,intensity] = readbin(fname)
% readbin Read point and intensity data from Sydney Urban Object binary
% files.

% names = ['t','intensity','id',...
% 'x','y','z',...
% 'azimuth','range','pid']
%
% formats = ['int64', 'uint8', 'uint8',...
% 'float32', 'float32', 'float32',...
% 'float32', 'float32', 'int32']

fid = fopen(fname, 'r');
c = onCleanup(@() fclose(fid));

fseek(fid,10,-1); % Move to the first X point location 10 bytes from beginning
X = fread(fid,inf,'single',30);
fseek(fid,14,-1);
Y = fread(fid,inf,'single',30);
fseek(fid,18,-1);
Z = fread(fid,inf,'single',30);

fseek(fid,8,-1);
intensity = fread(fid,inf,'uint8',33);

pointData = [X,Y,Z];

end

 Import Point Cloud Data For Deep Learning

5-29

Encode Point Cloud Data For Deep Learning

When using convolutional neural networks with point cloud data, certain core operations like
convolution require input data that is regularly sampled spatially. The irregular spatial sampling of
point cloud and lidar data must be transformed into some regularly sampled structure at some point
in the preprocessing pipeline. There are many different approaches to how point cloud data is
transformed into a dense, gridded structure [1 on page 5-32][2 on page 5-32][3 on page 5-32].
This example demonstrates a simple approach known as voxelization.

Voxelization of Point Cloud Data

Start by defining a datastore for working with the Sydney Urban Objects Dataset.

dataPath = downloadSydneyUrbanObjects(tempdir);
ds = loadSydneyUrbanObjectsData(dataPath);

Obtain sample output data from datastore.

data = preview(ds);
disp(data)

 {1×1 pointCloud} {[4wd]}

View sample output data from datastore

figure
ptCloud = data{1};
pcshow(ptCloud);
label = string(data{2});
title(label);

5 Lidar and Point Cloud Processing Examples

5-30

Use the pcbin function to define a desired regular 3-D gridding of the coordinate system of an input
pointCloud object. Use pcbin to also return an output cell array that contains spatial bin locations
for each point in the input pointCloud. In this case, the input pointCloud is binned in a [32,32,32]
size output grid that spans the XLimits,YLimits, and ZLimits of the input pointCloud.

outputGridSize = [32,32,32];
bins = pcbin(data{1},outputGridSize);

Each cell in bins contains the indices of the points in ptCloud.Location that fall in a particular
point location. The MATLAB function cellfun can be used to define common encodings of point
cloud data using bins as input.

occupancyGrid = cellfun(@(c) ~isempty(c),bins);

Define a 3-D occupancy grid which is true for grid locations that are occupied by at least one point
and false otherwise.

figure;
p = patch(isosurface(occupancyGrid,0.5));
view(45,45);
p.FaceColor = 'red';
p.EdgeColor = 'none';
camlight;
lighting phong

 Encode Point Cloud Data For Deep Learning

5-31

Transform Datastore to Apply Point Cloud Encoding to Entire Dataset

Use the transform function of datastore to apply a simple occupancy grid encoding to every
observation in an input datastore. The formOccupancyGrid function, which is included in the
supporting functions section, uses the exact same approach shown above with pcbin.

dsTransformed = transform(ds,@formOccupancyGrid);
exampleOutputData = preview(dsTransformed);
disp(exampleOutputData);

 {32×32×32 logical} {[4wd]}

The resulting datastore, dsTransformed, can be passed to deep learning interfaces including
trainNetwork and DataLoader for use in training deep neural networks.

References

[1] Maturana, D. and Scherer, S., VoxNet: A 3D Convolutional Neural Network for Real-Time Object
Recognition, IROS 2015.

[2] AH Lang, S Vora, H Caesar, L Zhou, J Yang, O Beijbom, PointPillars: Fast Encoders for Object
Detection from Point Clouds, CVPR 2019

5 Lidar and Point Cloud Processing Examples

5-32

[3] Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas, PointNet: Deep Learning on Point Sets for
3D Classification and Segmentation, CVPR 2017

Supporting Functions

function datasetPath = downloadSydneyUrbanObjects(dataLoc)

if nargin == 0
 dataLoc = pwd();
end

dataLoc = string(dataLoc);

url = "http://www.acfr.usyd.edu.au/papers/data/";
name = "sydney-urban-objects-dataset.tar.gz";

if ~exist(fullfile(dataLoc,'sydney-urban-objects-dataset'),'dir')
 disp('Downloading Sydney Urban Objects Dataset...');
 untar(url + name,dataLoc);
end

datasetPath = dataLoc.append('sydney-urban-objects-dataset');

end

function ds = loadSydneyUrbanObjectsData(datapath,folds)
% loadSydneyUrbanObjectsData Datastore with point clouds and
% associated categorical labels for Sydney Urban Objects dataset.
%
% ds = loadSydneyUrbanObjectsData(datapath) constructs a datastore that
% represents point clouds and associated categories for the Sydney Urban
% Objects dataset. The input, datapath, is a string or char array which
% represents the path to the root directory of the Sydney Urban Objects
% Dataset.
%
% ds = loadSydneyUrbanObjectsData(___,folds) optionally allows
% specification of desired folds that you wish to be included in the
% output ds. For example, [1 2 4] specifies that you want the first,
% second, and fourth folds of the Dataset. Default: [1 2 3 4].

if nargin < 2
 folds = 1:4;
end

datapath = string(datapath);
path = fullfile(datapath,'objects',filesep);

% For now, include all folds in Datastore
foldNames{1} = importdata(fullfile(datapath,'folds','fold0.txt'));
foldNames{2} = importdata(fullfile(datapath,'folds','fold1.txt'));
foldNames{3} = importdata(fullfile(datapath,'folds','fold2.txt'));
foldNames{4} = importdata(fullfile(datapath,'folds','fold3.txt'));
names = foldNames(folds);
names = vertcat(names{:});

fullFilenames = append(path,names);
ds = fileDatastore(fullFilenames,'ReadFcn',@extractTrainingData,'FileExtensions','.bin');

 Encode Point Cloud Data For Deep Learning

5-33

end

function dataOut = extractTrainingData(fname)

[pointData,intensity] = readbin(fname);

[~,name] = fileparts(fname);
name = string(name);
name = extractBefore(name,'.');

labelNames = ["4wd","bench","bicycle","biker",...
 "building","bus","car","cyclist","excavator","pedestrian","pillar",...
 "pole","post","scooter","ticket_machine","traffic_lights","traffic_sign",...
 "trailer","trash","tree","truck","trunk","umbrella","ute","van","vegetation"];

label = categorical(name,labelNames);

dataOut = {pointCloud(pointData,'Intensity',intensity),label};

end

function [pointData,intensity] = readbin(fname)
% readbin Read point and intensity data from Sydney Urban Object binary
% files.

% names = ['t','intensity','id',...
% 'x','y','z',...
% 'azimuth','range','pid']
%
% formats = ['int64', 'uint8', 'uint8',...
% 'float32', 'float32', 'float32',...
% 'float32', 'float32', 'int32']

fid = fopen(fname, 'r');
c = onCleanup(@() fclose(fid));

fseek(fid,10,-1); % Move to the first X point location 10 bytes from beginning
X = fread(fid,inf,'single',30);
fseek(fid,14,-1);
Y = fread(fid,inf,'single',30);
fseek(fid,18,-1);
Z = fread(fid,inf,'single',30);

fseek(fid,8,-1);
intensity = fread(fid,inf,'uint8',33);

pointData = [X,Y,Z];

end

function dataOut = formOccupancyGrid(data)

grid = pcbin(data{1},[32 32 32]);
occupancyGrid = cellfun(@(c) ~isempty(c),grid);
label = data{2};
dataOut = {occupancyGrid,label};

5 Lidar and Point Cloud Processing Examples

5-34

end

 Encode Point Cloud Data For Deep Learning

5-35

Build a Map from Lidar Data

This example shows how to process 3-D lidar data from a sensor mounted on a vehicle to
progressively build a map, with assistance from inertial measurement unit (IMU) readings. Such a
map can facilitate path planning for vehicle navigation or can be used for localization. For evaluating
the generated map, this example also shows how to compare the trajectory of the vehicle against
global positioning system (GPS) recording.

Overview

High Definition (HD) maps are mapping services that provide precise geometry of roads up to a few
centimeters in accuracy. This level of accuracy makes HD maps suitable for automated driving
workflows such as localization and navigation. Such HD maps are generated by building a map from
3-D lidar scans, in conjunction with high-precision GPS and or IMU sensors and can be used to
localize a vehicle within a few centimeters. This example implements a subset of features required to
build such a system.

In this example, you learn how to:

• Load, explore and visualize recorded driving data
• Build a map using lidar scans
• Improve the map using IMU readings

Load and Explore Recorded Driving Data

The data used in this example is from this GitHub® repository, and represents approximately 100
seconds of lidar, GPS and IMU data. The data is saved in the form of MAT-files, each containing a
timetable. Download the MAT-files from the repository and load them into the MATLAB®
workspace.

Note: This download can take a few minutes.

baseDownloadURL = 'https://github.com/mathworks/udacity-self-driving-data-subset/raw/master/drive_segment_11_18_16/';
dataFolder = fullfile(tempdir, 'drive_segment_11_18_16', filesep);
options = weboptions('Timeout', Inf);

lidarFileName = dataFolder + "lidarPointClouds.mat";
imuFileName = dataFolder + "imuOrientations.mat";
gpsFileName = dataFolder + "gpsSequence.mat";

folderExists = exist(dataFolder, 'dir');
matfilesExist = exist(lidarFileName, 'file') && exist(imuFileName, 'file') ...
 && exist(gpsFileName, 'file');

if ~folderExists
 mkdir(dataFolder);
end

if ~matfilesExist
 disp('Downloading lidarPointClouds.mat (613 MB)...')
 websave(lidarFileName, baseDownloadURL + "lidarPointClouds.mat", options);

 disp('Downloading imuOrientations.mat (1.2 MB)...')
 websave(imuFileName, baseDownloadURL + "imuOrientations.mat", options);

5 Lidar and Point Cloud Processing Examples

5-36

https://github.com/mathworks/udacity-self-driving-data-subset/

 disp('Downloading gpsSequence.mat (3 KB)...')
 websave(gpsFileName, baseDownloadURL + "gpsSequence.mat", options);
end

Downloading lidarPointClouds.mat (613 MB)...
Downloading imuOrientations.mat (1.2 MB)...
Downloading gpsSequence.mat (3 KB)...

First, load the point cloud data saved from a Velodyne® HDL32E lidar. Each scan of lidar data is
stored as a 3-D point cloud using the pointCloud object. This object internally organizes the data
using a K-d tree data structure for faster search. The timestamp associated with each lidar scan is
recorded in the Time variable of the timetable.

% Load lidar data from MAT-file
data = load(lidarFileName);
lidarPointClouds = data.lidarPointClouds;

% Display first few rows of lidar data
head(lidarPointClouds)

 Time PointCloud
 _____________ ______________

 23:46:10.5115 1×1 pointCloud
 23:46:10.6115 1×1 pointCloud
 23:46:10.7116 1×1 pointCloud
 23:46:10.8117 1×1 pointCloud
 23:46:10.9118 1×1 pointCloud
 23:46:11.0119 1×1 pointCloud
 23:46:11.1120 1×1 pointCloud
 23:46:11.2120 1×1 pointCloud

Load the GPS data from the MAT-file. The Latitude, Longitude, and Altitude variables of the
timetable are used to store the geographic coordinates recorded by the GPS device on the vehicle.

% Load GPS sequence from MAT-file
data = load(gpsFileName);
gpsSequence = data.gpsSequence;

% Display first few rows of GPS data
head(gpsSequence)

 Time Latitude Longitude Altitude
 _____________ ________ _________ ________

 23:46:11.4563 37.4 -122.11 -42.5
 23:46:12.4563 37.4 -122.11 -42.5
 23:46:13.4565 37.4 -122.11 -42.5
 23:46:14.4455 37.4 -122.11 -42.5
 23:46:15.4455 37.4 -122.11 -42.5
 23:46:16.4567 37.4 -122.11 -42.5
 23:46:17.4573 37.4 -122.11 -42.5
 23:46:18.4656 37.4 -122.11 -42.5

Load the IMU data from the MAT-file. An IMU typically consists of individual sensors that report
information about the motion of the vehicle. They combine multiple sensors, including

 Build a Map from Lidar Data

5-37

accelerometers, gyroscopes and magnetometers. The Orientation variable stores the reported
orientation of the IMU sensor. These readings are reported as quaternions. Each reading is specified
as a 1-by-4 vector containing the four quaternion parts. Convert the 1-by-4 vector to a quaternion
(Automated Driving Toolbox) object.

% Load IMU recordings from MAT-file
data = load(imuFileName);
imuOrientations = data.imuOrientations;

% Convert IMU recordings to quaternion type
imuOrientations = convertvars(imuOrientations, 'Orientation', 'quaternion');

% Display first few rows of IMU data
head(imuOrientations)

 Time Orientation
 _____________ ______________

 23:46:11.4570 1×1 quaternion
 23:46:11.4605 1×1 quaternion
 23:46:11.4620 1×1 quaternion
 23:46:11.4655 1×1 quaternion
 23:46:11.4670 1×1 quaternion
 23:46:11.4705 1×1 quaternion
 23:46:11.4720 1×1 quaternion
 23:46:11.4755 1×1 quaternion

To understand how the sensor readings come in, for each sensor, compute the approximate frame
duration.

lidarFrameDuration = median(diff(lidarPointClouds.Time));
gpsFrameDuration = median(diff(gpsSequence.Time));
imuFrameDuration = median(diff(imuOrientations.Time));

% Adjust display format to seconds
lidarFrameDuration.Format = 's';
gpsFrameDuration.Format = 's';
imuFrameDuration.Format = 's';

% Compute frame rates
lidarRate = 1/seconds(lidarFrameDuration);
gpsRate = 1/seconds(gpsFrameDuration);
imuRate = 1/seconds(imuFrameDuration);

% Display frame durations and rates
fprintf('Lidar: %s, %3.1f Hz\n', char(lidarFrameDuration), lidarRate);
fprintf('GPS : %s, %3.1f Hz\n', char(gpsFrameDuration), gpsRate);
fprintf('IMU : %s, %3.1f Hz\n', char(imuFrameDuration), imuRate);

Lidar: 0.10008 sec, 10.0 Hz
GPS : 1.0001 sec, 1.0 Hz
IMU : 0.002493 sec, 401.1 Hz

The GPS sensor is the slowest, running at a rate close to 1 Hz. The lidar is next slowest, running at a
rate close to 10 Hz, followed by the IMU at a rate of almost 400 Hz.

5 Lidar and Point Cloud Processing Examples

5-38

Visualize Driving Data

To understand what the scene contains, visualize the recorded data using streaming players. To
visualize the GPS readings, use geoplayer (Automated Driving Toolbox). To visualize lidar readings
using pcplayer.

% Create a geoplayer to visualize streaming geographic coordinates
latCenter = gpsSequence.Latitude(1);
lonCenter = gpsSequence.Longitude(1);
zoomLevel = 17;

gpsPlayer = geoplayer(latCenter, lonCenter, zoomLevel);

% Plot the full route
plotRoute(gpsPlayer, gpsSequence.Latitude, gpsSequence.Longitude);

% Determine limits for the player
xlimits = [-45 45]; % meters
ylimits = [-45 45];
zlimits = [-10 20];

% Create a pcplayer to visualize streaming point clouds from lidar sensor
lidarPlayer = pcplayer(xlimits, ylimits, zlimits);

% Customize player axes labels
xlabel(lidarPlayer.Axes, 'X (m)')
ylabel(lidarPlayer.Axes, 'Y (m)')
zlabel(lidarPlayer.Axes, 'Z (m)')

title(lidarPlayer.Axes, 'Lidar Sensor Data')

% Align players on screen
helperAlignPlayers({gpsPlayer, lidarPlayer});

% Outer loop over GPS readings (slower signal)
for g = 1 : height(gpsSequence)-1

 % Extract geographic coordinates from timetable
 latitude = gpsSequence.Latitude(g);
 longitude = gpsSequence.Longitude(g);

 % Update current position in GPS display
 plotPosition(gpsPlayer, latitude, longitude);

 % Compute the time span between the current and next GPS reading
 timeSpan = timerange(gpsSequence.Time(g), gpsSequence.Time(g+1));

 % Extract the lidar frames recorded during this time span
 lidarFrames = lidarPointClouds(timeSpan, :);

 % Inner loop over lidar readings (faster signal)
 for l = 1 : height(lidarFrames)

 % Extract point cloud
 ptCloud = lidarFrames.PointCloud(l);

 % Update lidar display
 view(lidarPlayer, ptCloud);

 Build a Map from Lidar Data

5-39

 % Pause to slow down the display
 pause(0.01)
 end
end

5 Lidar and Point Cloud Processing Examples

5-40

Use Recorded Lidar Data to Build a Map

Lidars are powerful sensors that can be used for perception in challenging environments where other
sensors are not useful. They provide a detailed, full 360 degree view of the environment of the
vehicle.

% Hide players
hide(gpsPlayer)
hide(lidarPlayer)

% Select a frame of lidar data to demonstrate registration workflow
frameNum = 600;
ptCloud = lidarPointClouds.PointCloud(frameNum);

% Display and rotate ego view to show lidar data
helperVisualizeEgoView(ptCloud);

 Build a Map from Lidar Data

5-41

Lidars can be used to build centimeter-accurate HD maps, including HD maps of entire cities. These
maps can later be used for in-vehicle localization. A typical approach to build such a map is to align
successive lidar scans obtained from the moving vehicle and combine them into a single large point
cloud. The rest of this example explores this approach to building a map.

1 Align lidar scans: Align successive lidar scans using a point cloud registration technique like
the iterative closest point (ICP) algorithm or the normal-distributions transform (NDT) algorithm.
See pcregistericp and pcregisterndt for more details about each algorithm. This example
uses the Generalized-ICP (G-ICP) algorithm. The pcregistericp function returns the rigid
transformation that aligns the moving point cloud with respect to the reference point cloud. By
successively composing these transformations, each point cloud is transformed back to the
reference frame of the first point cloud.

2 Combine aligned scans: Once a new point cloud scan is registered and transformed back to the
reference frame of the first point cloud, the point cloud can be merged with the first point cloud
using pcmerge.

Start by taking two point clouds corresponding to nearby lidar scans. To speed up processing, and
accumulate enough motion between scans, use every tenth scan.

5 Lidar and Point Cloud Processing Examples

5-42

skipFrames = 10;
frameNum = 100;

fixed = lidarPointClouds.PointCloud(frameNum);
moving = lidarPointClouds.PointCloud(frameNum + skipFrames);

Downsample the point clouds prior to registration. Downsampling improves both registration
accuracy and algorithm speed.

downsampleGridStep = 0.2;
fixedDownsampled = pcdownsample(fixed, 'gridAverage', downsampleGridStep);
movingDownsampled = pcdownsample(moving, 'gridAverage', downsampleGridStep);

After preprocessing the point clouds, register them using the Generalized-ICP algorithm. This is
available in pcregistericp by setting the Metric name-value argument to 'planeToPlane'. Visualize
the alignment before and after registration.

regInlierRatio = 0.35;
tform = pcregistericp(movingDownsampled, fixedDownsampled, 'Metric', 'planeToPlane', ...
 'InlierRatio', regInlierRatio);

movingReg = pctransform(movingDownsampled, tform);

% Visualize alignment in top-view before and after registration
hFigAlign = figure;

subplot(121)
pcshowpair(movingDownsampled, fixedDownsampled)
title('Before Registration')
view(2)

subplot(122)
pcshowpair(movingReg, fixedDownsampled)
title('After Registration')
view(2)

helperMakeFigurePublishFriendly(hFigAlign);

 Build a Map from Lidar Data

5-43

Notice that the point clouds are well-aligned after registration. Even though the point clouds are
closely aligned, the alignment is still not perfect.

Next, merge the point clouds using pcmerge.

mergeGridStep = 0.5;
ptCloudAccum = pcmerge(fixedDownsampled, movingReg, mergeGridStep);

hFigAccum = figure;
pcshow(ptCloudAccum)
title('Accumulated Point Cloud')
view(2)

helperMakeFigurePublishFriendly(hFigAccum);

5 Lidar and Point Cloud Processing Examples

5-44

Now that the processing pipeline for a single pair of point clouds is well-understood, put this together
in a loop over the entire sequence of recorded data. The helperLidarMapBuilder class puts all
this together. The updateMap method of the class takes in a new point cloud and goes through the
steps detailed previously:

• Downsampling the point cloud.
• Estimating the rigid transformation required to merge the previous point cloud with the current

point cloud.
• Transforming the point cloud back to the first frame.
• Merging the point cloud with the accumulated point cloud map.

Additionally, the updateMap method also accepts an initial transformation estimate, which is used to
initialize the registration. A good initialization can significantly improve results of registration.
Conversely, a poor initialization can adversely affect registration. Providing a good initialization can
also improve the execution time of the algorithm.

A common approach to providing an initial estimate for registration is to use a constant velocity
assumption. Use the transformation from the previous iteration as the initial estimate.

 Build a Map from Lidar Data

5-45

The updateDisplay method additionally creates and updates a 2-D top-view streaming point cloud
display.

% Create a map builder object
mapBuilder = helperLidarMapBuilder('DownsampleGridStep', downsampleGridStep);

% Set random number seed
rng(0);

closeDisplay = false;
numFrames = height(lidarPointClouds);

tform = rigidtform3d;
for n = 1 : skipFrames : numFrames - skipFrames + 1

 % Get the nth point cloud
 ptCloud = lidarPointClouds.PointCloud(n);

 % Use transformation from previous iteration as initial estimate for
 % current iteration of point cloud registration. (constant velocity)
 initTform = tform;

 % Update map using the point cloud
 tform = updateMap(mapBuilder, ptCloud, initTform);

 % Update map display
 updateDisplay(mapBuilder, closeDisplay);
end

5 Lidar and Point Cloud Processing Examples

5-46

Point cloud registration alone builds a map of the environment traversed by the vehicle. While the
map may appear locally consistent, it might have developed significant drift over the entire sequence.

Use the recorded GPS readings as a ground truth trajectory, to visually evaluate the quality of the
built map. First convert the GPS readings (latitude, longitude, altitude) to a local coordinate system.
Select a local coordinate system that coincides with the origin of the first point cloud in the sequence.
This conversion is computed using two transformations:

1 Convert the GPS coordinates to local Cartesian East-North-Up coordinates using the
latlon2local (Automated Driving Toolbox) function. The GPS location from the start of the
trajectory is used as the reference point and defines the origin of the local x,y,z coordinate
system.

2 Rotate the Cartesian coordinates so that the local coordinate system is aligned with the first lidar
sensor coordinates. Since the exact mounting configuration of the lidar and GPS on the vehicle
are not known, they are estimated.

% Select reference point as first GPS reading
origin = [gpsSequence.Latitude(1), gpsSequence.Longitude(1), gpsSequence.Altitude(1)];

% Convert GPS readings to a local East-North-Up coordinate system

 Build a Map from Lidar Data

5-47

[xEast, yNorth, zUp] = latlon2local(gpsSequence.Latitude, gpsSequence.Longitude, ...
 gpsSequence.Altitude, origin);

% Estimate rough orientation at start of trajectory to align local ENU
% system with lidar coordinate system
theta = median(atan2d(yNorth(1:15), xEast(1:15)));

R = [cosd(90-theta) sind(90-theta) 0;
 -sind(90-theta) cosd(90-theta) 0;
 0 0 1];

% Rotate ENU coordinates to align with lidar coordinate system
groundTruthTrajectory = [xEast, yNorth, zUp] * R;

Superimpose the ground truth trajectory on the built map.

hold(mapBuilder.Axes, 'on')
scatter(mapBuilder.Axes, groundTruthTrajectory(:,1), groundTruthTrajectory(:,2), ...
 'green', 'filled');

helperAddLegend(mapBuilder.Axes, ...
 {'Map Points', 'Estimated Trajectory', 'Ground Truth Trajectory'});

5 Lidar and Point Cloud Processing Examples

5-48

Compare the estimated trajectory with the ground truth trajectory by computing the root-mean-
square error (rmse) between the trajectories.

estimatedTrajectory = vertcat(mapBuilder.ViewSet.Views.AbsolutePose.Translation);
accuracyMetric = rmse(groundTruthTrajectory, estimatedTrajectory, 'all');

disp(['rmse between ground truth and estimated trajectory: ' num2str(accuracyMetric)])

rmse between ground truth and estimated trajectory: 9.773

After the initial turn, the estimated trajectory veers off the ground truth trajectory significantly. The
trajectory estimated using point cloud registration alone can drift for a number of reasons:

• Noisy scans from the sensor without sufficient overlap
• Absence of strong enough features, for example, near long roads
• Inaccurate initial transformation, especially when rotation is significant

% Close map display
updateDisplay(mapBuilder, true);

Use IMU Orientation to Improve Built Map

An IMU is an electronic device mounted on a platform. IMUs contain multiple sensors that report
various information about the motion of the vehicle. Typical IMUs incorporate accelerometers,
gyroscopes, and magnetometers. An IMU can provide a reliable measure of orientation.

Use the IMU readings to provide a better initial estimate for registration. The IMU-reported sensor
readings used in this example have already been filtered on the device.

% Reset the map builder to clear previously built map
reset(mapBuilder);

% Set random number seed
rng(0);

initTform = rigidtform3d;
for n = 1 : skipFrames : numFrames - skipFrames + 1

 % Get the nth point cloud
 ptCloud = lidarPointClouds.PointCloud(n);

 if n > 1
 % Since IMU sensor reports readings at a much faster rate, gather
 % IMU readings reported since the last lidar scan.
 prevTime = lidarPointClouds.Time(n - skipFrames);
 currTime = lidarPointClouds.Time(n);
 timeSinceScan = timerange(prevTime, currTime);

 imuReadings = imuOrientations(timeSinceScan, 'Orientation');

 % Form an initial estimate using IMU readings
 initTform = helperComputeInitialEstimateFromIMU(imuReadings, tform);
 end

 % Update map using the point cloud
 tform = updateMap(mapBuilder, ptCloud, initTform);

 Build a Map from Lidar Data

5-49

 % Update map display
 updateDisplay(mapBuilder, closeDisplay);
end

% Superimpose ground truth trajectory on new map
hold(mapBuilder.Axes, 'on')
scatter(mapBuilder.Axes, groundTruthTrajectory(:,1), groundTruthTrajectory(:,2), ...
 'green', 'filled');

helperAddLegend(mapBuilder.Axes, ...
 {'Map Points', 'Estimated Trajectory', 'Ground Truth Trajectory'});

% Capture snapshot for publishing
snapnow;

% Close open figures
close([hFigAlign, hFigAccum]);
updateDisplay(mapBuilder, true);

% Compare the trajectory estimated using the IMU orientation with the
% ground truth trajectory
estimatedTrajectory = vertcat(mapBuilder.ViewSet.Views.AbsolutePose.Translation);
accuracyMetricWithIMU = rmse(groundTruthTrajectory, estimatedTrajectory, 'all');

disp(['rmse between ground truth and trajectory estimated using IMU orientation: ' num2str(accuracyMetricWithIMU)])

5 Lidar and Point Cloud Processing Examples

5-50

rmse between ground truth and trajectory estimated using IMU orientation: 3.4613

Using the orientation estimate from IMU significantly improved registration, leading to a much closer
trajectory with smaller drift.

Supporting Functions

helperAlignPlayers aligns a cell array of streaming players so they are arranged from left to right
on the screen.

function helperAlignPlayers(players)

validateattributes(players, {'cell'}, {'vector'});

hasAxes = cellfun(@(p)isprop(p,'Axes'),players,'UniformOutput', true);
if ~all(hasAxes)
 error('Expected all viewers to have an Axes property');
end

screenSize = get(groot, 'ScreenSize');
screenMargin = [50, 100];

 Build a Map from Lidar Data

5-51

playerSizes = cellfun(@getPlayerSize, players, 'UniformOutput', false);
playerSizes = cell2mat(playerSizes);

maxHeightInSet = max(playerSizes(1:3:end));

% Arrange players vertically so that the tallest player is 100 pixels from
% the top.
location = round([screenMargin(1), screenSize(4)-screenMargin(2)-maxHeightInSet]);
for n = 1 : numel(players)
 player = players{n};

 hFig = ancestor(player.Axes, 'figure');
 hFig.OuterPosition(1:2) = location;

 % Set up next location by going right
 location = location + [50+hFig.OuterPosition(3), 0];
end

 function sz = getPlayerSize(viewer)

 % Get the parent figure container
 h = ancestor(viewer.Axes, 'figure');

 sz = h.OuterPosition(3:4);
 end
end

helperVisualizeEgoView visualizes point cloud data in the ego perspective by rotating about the
center.

function player = helperVisualizeEgoView(ptCloud)

% Create a pcplayer object
xlimits = ptCloud.XLimits;
ylimits = ptCloud.YLimits;
zlimits = ptCloud.ZLimits;

player = pcplayer(xlimits, ylimits, zlimits);

% Turn off axes lines
axis(player.Axes, 'off');

% Set up camera to show ego view
camproj(player.Axes, 'perspective');
camva(player.Axes, 90);
campos(player.Axes, [0 0 0]);
camtarget(player.Axes, [-1 0 0]);

% Set up a transformation to rotate by 5 degrees
theta = 5;

eulerAngles = [0 0 theta];
translation = [0 0 0];
rotateByTheta = rigidtform3d(eulerAngles, translation);

for n = 0 : theta : 359
 % Rotate point cloud by theta

5 Lidar and Point Cloud Processing Examples

5-52

 ptCloud = pctransform(ptCloud, rotateByTheta);

 % Display point cloud
 view(player, ptCloud);

 pause(0.05)
end
end

helperComputeInitialEstimateFromIMU estimates an initial transformation for registration
using IMU orientation readings and previously estimated transformation.

function tform = helperComputeInitialEstimateFromIMU(imuReadings, prevTform)

% Initialize transformation using previously estimated transform
tform = prevTform;

% If no IMU readings are available, return
if height(imuReadings) <= 1
 return;
end

% IMU orientation readings are reported as quaternions representing the
% rotational offset to the body frame. Compute the orientation change
% between the first and last reported IMU orientations during the interval
% of the lidar scan.
q1 = imuReadings.Orientation(1);
q2 = imuReadings.Orientation(end);

% Compute rotational offset between first and last IMU reading by
% - Rotating from q2 frame to body frame
% - Rotating from body frame to q1 frame
q = q1 * conj(q2);

% Convert to Euler angles
yawPitchRoll = euler(q, 'ZYX', 'point');

% Discard pitch and roll angle estimates. Use only heading angle estimate
% from IMU orientation.
yawPitchRoll(2:3) = 0;

% Convert back to rotation matrix
q = quaternion(yawPitchRoll, 'euler', 'ZYX', 'point');
R = rotmat(q, 'point');

% Use computed rotation
tform.T(1:3, 1:3) = R';
end

helperAddLegend adds a legend to the axes.

function helperAddLegend(hAx, labels)

% Add a legend to the axes
hLegend = legend(hAx, labels{:});

% Set text color and font weight
hLegend.TextColor = [1 1 1];

 Build a Map from Lidar Data

5-53

hLegend.FontWeight = 'bold';
end

helperMakeFigurePublishFriendly adjusts figures so that screenshot captured by publish is
correct.

function helperMakeFigurePublishFriendly(hFig)

if ~isempty(hFig) && isvalid(hFig)
 hFig.HandleVisibility = 'callback';
end

end

See Also
Functions
pcmerge | pcregistericp | pcregisterndt

Objects
pcplayer | geoplayer | pointCloud

More About
• “Build a Map from Lidar Data Using SLAM” on page 5-55
• “Ground Plane and Obstacle Detection Using Lidar” (Automated Driving Toolbox)

External Websites
• Udacity Self-Driving Car Data Subset (MathWorks GitHub repository)

5 Lidar and Point Cloud Processing Examples

5-54

https://github.com/mathworks/udacity-self-driving-data-subset

Build a Map from Lidar Data Using SLAM

This example shows how to process 3-D lidar data from a sensor mounted on a vehicle to
progressively build a map and estimate the trajectory of a vehicle using simultaneous localization and
mapping (SLAM). In addition to 3-D lidar data, an inertial navigation sensor (INS) is also used to help
build the map. Maps built this way can facilitate path planning for vehicle navigation or can be used
for localization.

Overview

The “Build a Map from Lidar Data” (Automated Driving Toolbox) example uses 3-D lidar data and
IMU readings to progressively build a map of the environment traversed by a vehicle. While this
approach builds a locally consistent map, it is suitable only for mapping small areas. Over longer
sequences, the drift accumulates into a significant error. To overcome this limitation, this example
recognizes previously visited places and tries to correct for the accumulated drift using the graph
SLAM approach.

Load and Explore Recorded Data

The data used in this example is part of the Velodyne SLAM Dataset, and represents close to 6
minutes of recorded data. Download the data to a temporary directory.

Note: This download can take a few minutes.

baseDownloadURL = 'https://www.mrt.kit.edu/z/publ/download/velodyneslam/data/scenario1.zip';
dataFolder = fullfile(tempdir, 'kit_velodyneslam_data_scenario1', filesep);
options = weboptions('Timeout', Inf);

zipFileName = dataFolder + "scenario1.zip";

% Get the full file path to the PNG files in the scenario1 folder.
pointCloudFilePattern = fullfile(dataFolder, 'scenario1', 'scan*.png');
numExpectedFiles = 2513;

folderExists = exist(dataFolder, 'dir');
if ~folderExists
 % Create a folder in a temporary directory to save the downloaded zip
 % file.
 mkdir(dataFolder);

 disp('Downloading scenario1.zip (153 MB) ...')
 websave(zipFileName, baseDownloadURL, options);

 % Unzip downloaded file
 unzip(zipFileName, dataFolder);

elseif folderExists && numel(dir(pointCloudFilePattern)) < numExpectedFiles
 % Redownload the data if it got reduced in the temporary directory.
 disp('Downloading scenario1.zip (153 MB) ...')
 websave(zipFileName, baseDownloadURL, options);

 % Unzip downloaded file.
 unzip(zipFileName, dataFolder)
end

Downloading scenario1.zip (153 MB) ...

 Build a Map from Lidar Data Using SLAM

5-55

https://www.mrt.kit.edu/z/publ/download/velodyneslam/dataset.html

Use the helperReadDataset function to read data from the created folder in the form of a
timetable. The point clouds captured by the lidar are stored in the form of PNG image files. Extract
the list of point cloud file names in the pointCloudTable variable. To read the point cloud data from
the image file, use the helperReadPointCloudFromFile function. This function takes an image file
name and returns a pointCloud object. The INS readings are read directly from a configuration file
and stored in the insDataTable variable.

datasetTable = helperReadDataset(dataFolder, pointCloudFilePattern);

pointCloudTable = datasetTable(:, 1);
insDataTable = datasetTable(:, 2:end);

Read the first point cloud and display it at the MATLAB® command prompt

ptCloud = helperReadPointCloudFromFile(pointCloudTable.PointCloudFileName{1});
disp(ptCloud)

 pointCloud with properties:

 Location: [64×870×3 single]
 Count: 55680
 XLimits: [-78.4980 77.7062]
 YLimits: [-76.8795 74.7502]
 ZLimits: [-2.4839 2.6836]
 Color: []
 Normal: []
 Intensity: []

Display the first INS reading. The timetable holds Heading, Pitch, Roll, X, Y, and Z information
from the INS.

disp(insDataTable(1, :))

 Timestamps Heading Pitch Roll X Y Z
 ____________________ _______ ________ _________ _______ _______ ______

 13-Jun-2010 06:27:31 1.9154 0.007438 -0.019888 -2889.1 -2183.9 116.47

Visualize the point clouds using pcplayer, a streaming point cloud display. The vehicle traverses a
path consisting of two loops. In the first loop, the vehicle makes a series of turns and returns to the
starting point. In the second loop, the vehicle makes a series of turns along another route and again
returns to the starting point.

% Specify limits of the player
xlimits = [-45 45]; % meters
ylimits = [-45 45];
zlimits = [-10 20];

% Create a streaming point cloud display object
lidarPlayer = pcplayer(xlimits, ylimits, zlimits);

% Customize player axes labels
xlabel(lidarPlayer.Axes, 'X (m)')
ylabel(lidarPlayer.Axes, 'Y (m)')
zlabel(lidarPlayer.Axes, 'Z (m)')

5 Lidar and Point Cloud Processing Examples

5-56

title(lidarPlayer.Axes, 'Lidar Sensor Data')

% Skip evey other frame since this is a long sequence
skipFrames = 2;
numFrames = height(pointCloudTable);
for n = 1 : skipFrames : numFrames

 % Read a point cloud
 fileName = pointCloudTable.PointCloudFileName{n};
 ptCloud = helperReadPointCloudFromFile(fileName);

 % Visualize point cloud
 view(lidarPlayer, ptCloud);

 pause(0.01)
end

Build a Map Using Odometry

First, use the approach explained in the “Build a Map from Lidar Data” (Automated Driving Toolbox)
example to build a map. The approach consists of the following steps:

 Build a Map from Lidar Data Using SLAM

5-57

• Align lidar scans: Align successive lidar scans using a point cloud registration technique. This
example uses pcregisterndt for registering scans. By successively composing these
transformations, each point cloud is transformed back to the reference frame of the first point
cloud.

• Combine aligned scans: Generate a map by combining all the transformed point clouds.

This approach of incrementally building a map and estimating the trajectory of the vehicle is called
odometry.

Use a pcviewset object to store and manage data across multiple views. A view set consists of a set
of connected views.

• Each view stores information associated with a single view. This information includes the absolute
pose of the view, the point cloud sensor data captured at that view, and a unique identifier for the
view. Add views to the view set using addView.

• To establish a connection between views use addConnection. A connection stores information
like the relative transformation between the connecting views, the uncertainty involved in
computing this measurement (represented as an information matrix) and the associated view
identifiers.

• Use the plot method to visualize the connections established by the view set. These connections
can be used to visualize the path traversed by the vehicle.

hide(lidarPlayer)

% Set random seed to ensure reproducibility
rng(0);

% Create an empty view set
vSet = pcviewset;

% Create a figure for view set display
hFigBefore = figure('Name', 'View Set Display');
hAxBefore = axes(hFigBefore);

% Initialize point cloud processing parameters
downsamplePercent = 0.1;
regGridSize = 3;

% Initialize transformations
absTform = rigidtform3d; % Absolute transformation to reference frame
relTform = rigidtform3d; % Relative transformation between successive scans

viewId = 1;
skipFrames = 5;
numFrames = height(pointCloudTable);
displayRate = 100; % Update display every 100 frames
for n = 1 : skipFrames : numFrames

 % Read point cloud
 fileName = pointCloudTable.PointCloudFileName{n};
 ptCloudOrig = helperReadPointCloudFromFile(fileName);

 % Process point cloud
 % - Segment and remove ground plane
 % - Segment and remove ego vehicle

5 Lidar and Point Cloud Processing Examples

5-58

 ptCloud = helperProcessPointCloud(ptCloudOrig);

 % Downsample the processed point cloud
 ptCloud = pcdownsample(ptCloud, "random", downsamplePercent);

 firstFrame = (n==1);
 if firstFrame
 % Add first point cloud scan as a view to the view set
 vSet = addView(vSet, viewId, absTform, "PointCloud", ptCloudOrig);

 viewId = viewId + 1;
 ptCloudPrev = ptCloud;
 continue;
 end

 % Use INS to estimate an initial transformation for registration
 initTform = helperComputeInitialEstimateFromINS(relTform, ...
 insDataTable(n-skipFrames:n, :));

 % Compute rigid transformation that registers current point cloud with
 % previous point cloud
 relTform = pcregisterndt(ptCloud, ptCloudPrev, regGridSize, ...
 "InitialTransform", initTform);

 % Update absolute transformation to reference frame (first point cloud)
 absTform = rigidtform3d(absTform.A * relTform.A);

 % Add current point cloud scan as a view to the view set
 vSet = addView(vSet, viewId, absTform, "PointCloud", ptCloudOrig);

 % Add a connection from the previous view to the current view, representing
 % the relative transformation between them
 vSet = addConnection(vSet, viewId-1, viewId, relTform);

 viewId = viewId + 1;

 ptCloudPrev = ptCloud;
 initTform = relTform;

 if n>1 && mod(n, displayRate) == 1
 plot(vSet, "Parent", hAxBefore);
 drawnow update
 end
end

 Build a Map from Lidar Data Using SLAM

5-59

The view set object vSet, now holds views and connections. In the Views table of vSet, the
AbsolutePose variable specifies the absolute pose of each view with respect to the first view. In the
Connections table of vSet, the RelativePose variable specifies relative constraints between the
connected views, the InformationMatrix variable specifies, for each edge, the uncertainty
associated with a connection.

% Display the first few views and connections
head(vSet.Views)
head(vSet.Connections)

 ViewId AbsolutePose PointCloud
 ______ ________________ ______________

 1 1×1 rigidtform3d 1×1 pointCloud
 2 1×1 rigidtform3d 1×1 pointCloud
 3 1×1 rigidtform3d 1×1 pointCloud
 4 1×1 rigidtform3d 1×1 pointCloud
 5 1×1 rigidtform3d 1×1 pointCloud
 6 1×1 rigidtform3d 1×1 pointCloud
 7 1×1 rigidtform3d 1×1 pointCloud
 8 1×1 rigidtform3d 1×1 pointCloud

 ViewId1 ViewId2 RelativePose InformationMatrix
 _______ _______ ________________ _________________

 1 2 1×1 rigidtform3d {6×6 double}
 2 3 1×1 rigidtform3d {6×6 double}

5 Lidar and Point Cloud Processing Examples

5-60

 3 4 1×1 rigidtform3d {6×6 double}
 4 5 1×1 rigidtform3d {6×6 double}
 5 6 1×1 rigidtform3d {6×6 double}
 6 7 1×1 rigidtform3d {6×6 double}
 7 8 1×1 rigidtform3d {6×6 double}
 8 9 1×1 rigidtform3d {6×6 double}

Now, build a point cloud map using the created view set. Align the view absolute poses with the point
clouds in the view set using pcalign. Specify a grid size to control the resolution of the map. The
map is returned as a pointCloud object.

ptClouds = vSet.Views.PointCloud;
absPoses = vSet.Views.AbsolutePose;
mapGridSize = 0.2;
ptCloudMap = pcalign(ptClouds, absPoses, mapGridSize);

Notice that the path traversed using this approach drifts over time. While the path along the first loop
back to the starting point seems reasonable, the second loop drifts significantly from the starting
point. The accumulated drift results in the second loop terminating several meters away from the
starting point.

A map built using odometry alone is inaccurate. Display the built point cloud map with the traversed
path. Notice that the map and traversed path for the second loop are not consistent with the first
loop.

hold(hAxBefore, 'on');
pcshow(ptCloudMap);
hold(hAxBefore, 'off');

close(hAxBefore.Parent)

Correct Drift Using Pose Graph Optimization

Graph SLAM is a widely used technique for resolving the drift in odometry. The graph SLAM
approach incrementally creates a graph, where nodes correspond to vehicle poses and edges
represent sensor measurements constraining the connected poses. Such a graph is called a pose
graph. The pose graph contains edges that encode contradictory information, due to noise or
inaccuracies in measurement. The nodes in the constructed graph are then optimized to find the set
of vehicle poses that optimally explain the measurements. This technique is called pose graph
optimization.

To create a pose graph from a view set, you can use the createPoseGraph function. This function
creates a node for each view, and an edge for each connection in the view set. To optimize the pose
graph, you can use the optimizePoseGraph (Navigation Toolbox) function.

A key aspect contributing to the effectiveness of graph SLAM in correcting drift is the accurate
detection of loops, that is, places that have been previously visited. This is called loop closure
detection or place recognition. Adding edges to the pose graph corresponding to loop closures
provides a contradictory measurement for the connected node poses, which can be resolved during
pose graph optimization.

Loop closures can be detected using descriptors that characterize the local environment visible to the
Lidar sensor. The Scan Context descriptor [1] is one such descriptor that can be computed from a
point cloud using the scanContextDescriptor function. This example uses a
scanContextLoopDetector object to manage the scan context descriptors that correspond to each

 Build a Map from Lidar Data Using SLAM

5-61

view. It uses the detectLoop object function to detect loop closures with a two phase descriptor
search algorithm. In the first phase, it computes the ring key subdescriptors to find potential loop
candidates. In the second phase, it classifies views as loop closures by thresholding the scan context
distance.

% Set random seed to ensure reproducibility
rng(0);

% Create an empty view set
vSet = pcviewset;

% Create a loop closure detector
loopDetector = scanContextLoopDetector;

% Create a figure for view set display
hFigBefore = figure('Name', 'View Set Display');
hAxBefore = axes(hFigBefore);

% Initialize transformations
absTform = rigidtform3d; % Absolute transformation to reference frame
relTform = rigidtform3d; % Relative transformation between successive scans

maxTolerableRMSE = 3; % Maximum allowed RMSE for a loop closure candidate to be accepted

viewId = 1;
for n = 1 : skipFrames : numFrames

 % Read point cloud
 fileName = pointCloudTable.PointCloudFileName{n};
 ptCloudOrig = helperReadPointCloudFromFile(fileName);

 % Process point cloud
 % - Segment and remove ground plane
 % - Segment and remove ego vehicle
 ptCloud = helperProcessPointCloud(ptCloudOrig);

 % Downsample the processed point cloud
 ptCloud = pcdownsample(ptCloud, "random", downsamplePercent);

 firstFrame = (n==1);
 if firstFrame
 % Add first point cloud scan as a view to the view set
 vSet = addView(vSet, viewId, absTform, "PointCloud", ptCloudOrig);

 % Extract the scan context descriptor from the first point cloud
 descriptor = scanContextDescriptor(ptCloudOrig);

 % Add the first descriptor to the loop closure detector
 addDescriptor(loopDetector, viewId, descriptor)

 viewId = viewId + 1;
 ptCloudPrev = ptCloud;
 continue;
 end

 % Use INS to estimate an initial transformation for registration
 initTform = helperComputeInitialEstimateFromINS(relTform, ...

5 Lidar and Point Cloud Processing Examples

5-62

 insDataTable(n-skipFrames:n, :));

 % Compute rigid transformation that registers current point cloud with
 % previous point cloud
 relTform = pcregisterndt(ptCloud, ptCloudPrev, regGridSize, ...
 "InitialTransform", initTform);

 % Update absolute transformation to reference frame (first point cloud)
 absTform = rigidtform3d(absTform.A * relTform.A);

 % Add current point cloud scan as a view to the view set
 vSet = addView(vSet, viewId, absTform, "PointCloud", ptCloudOrig);

 % Add a connection from the previous view to the current view representing
 % the relative transformation between them
 vSet = addConnection(vSet, viewId-1, viewId, relTform);

 % Extract the scan context descriptor from the point cloud
 descriptor = scanContextDescriptor(ptCloudOrig);

 % Add the descriptor to the loop closure detector
 addDescriptor(loopDetector, viewId, descriptor)

 % Detect loop closure candidates
 loopViewId = detectLoop(loopDetector);

 % A loop candidate was found
 if ~isempty(loopViewId)
 loopViewId = loopViewId(1);

 % Retrieve point cloud from view set
 loopView = findView(vSet, loopViewId);
 ptCloudOrig = loopView.PointCloud;

 % Process point cloud
 ptCloudOld = helperProcessPointCloud(ptCloudOrig);

 % Downsample point cloud
 ptCloudOld = pcdownsample(ptCloudOld, "random", downsamplePercent);

 % Use registration to estimate the relative pose
 [relTform, ~, rmse] = pcregisterndt(ptCloud, ptCloudOld, ...
 regGridSize, "MaxIterations", 50);

 acceptLoopClosure = rmse <= maxTolerableRMSE;
 if acceptLoopClosure
 % For simplicity, use a constant, small information matrix for
 % loop closure edges
 infoMat = 0.01 * eye(6);

 % Add a connection corresponding to a loop closure
 vSet = addConnection(vSet, loopViewId, viewId, relTform, infoMat);
 end
 end

 viewId = viewId + 1;

 ptCloudPrev = ptCloud;

 Build a Map from Lidar Data Using SLAM

5-63

 initTform = relTform;

 if n>1 && mod(n, displayRate) == 1
 hG = plot(vSet, "Parent", hAxBefore);
 drawnow update
 end
end

Create a pose graph from the view set by using the createPoseGraph method. The pose graph is a
digraph object with:

• Nodes containing the absolute pose of each view
• Edges containing the relative pose constraints of each connection

G = createPoseGraph(vSet);
disp(G)

 digraph with properties:

 Edges: [539×3 table]
 Nodes: [503×2 table]

In addition to the odometry connections between successive views, the view set now includes loop
closure connections. For example, notice the new connections between the second loop traversal and
the first loop traversal. These are loop closure connections. These can be identified as edges in the
graph whose end nodes are not consecutive.

5 Lidar and Point Cloud Processing Examples

5-64

% Update axes limits to focus on loop closure connections
xlim(hAxBefore, [-50 50]);
ylim(hAxBefore, [-100 50]);

% Find and highlight loop closure connections
loopEdgeIds = find(abs(diff(G.Edges.EndNodes, 1, 2)) > 1);
highlight(hG, 'Edges', loopEdgeIds, 'EdgeColor', 'red', 'LineWidth', 3)

Optimize the pose graph using optimizePoseGraph.

optimG = optimizePoseGraph(G, 'g2o-levenberg-marquardt');

vSetOptim = updateView(vSet, optimG.Nodes);

Display the view set with optimized poses. Notice that the detected loops are now merged, resulting
in a more accurate trajectory.

plot(vSetOptim, 'Parent', hAxBefore)

 Build a Map from Lidar Data Using SLAM

5-65

The absolute poses in the optimized view set can now be used to build a more accurate map. Use the
pcalign function to align the view set point clouds with the optimized view set absolute poses into a
single point cloud map. Specify a grid size to control the resolution of the created point cloud map.

mapGridSize = 0.2;
ptClouds = vSetOptim.Views.PointCloud;
absPoses = vSetOptim.Views.AbsolutePose;
ptCloudMap = pcalign(ptClouds, absPoses, mapGridSize);

hFigAfter = figure('Name', 'View Set Display (after optimization)');
hAxAfter = axes(hFigAfter);
pcshow(ptCloudMap, 'Parent', hAxAfter);

% Overlay view set display
hold on
plot(vSetOptim, 'Parent', hAxAfter);

helperMakeFigurePublishFriendly(hFigAfter);

5 Lidar and Point Cloud Processing Examples

5-66

While accuracy can still be improved, this point cloud map is significantly more accurate.

References

1 G. Kim and A. Kim, "Scan Context: Egocentric Spatial Descriptor for Place Recognition Within 3D
Point Cloud Map," 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Madrid, 2018, pp. 4802-4809.

Supporting Functions and Classes

helperReadDataset reads data from specified folder into a timetable.

function datasetTable = helperReadDataset(dataFolder, pointCloudFilePattern)
%helperReadDataset Read Velodyne SLAM Dataset data into a timetable
% datasetTable = helperReadDataset(dataFolder) reads data from the
% folder specified in dataFolder into a timetable. The function
% expects data from the Velodyne SLAM Dataset.
%
% See also fileDatastore, helperReadINSConfigFile.

% Create a file datastore to read in files in the right order

 Build a Map from Lidar Data Using SLAM

5-67

fileDS = fileDatastore(pointCloudFilePattern, 'ReadFcn', ...
 @helperReadPointCloudFromFile);

% Extract the file list from the datastore
pointCloudFiles = fileDS.Files;

imuConfigFile = fullfile(dataFolder, 'scenario1', 'imu.cfg');
insDataTable = helperReadINSConfigFile(imuConfigFile);

% Delete the bad row from the INS config file
insDataTable(1447, :) = [];

% Remove columns that will not be used
datasetTable = removevars(insDataTable, ...
 {'Num_Satellites', 'Latitude', 'Longitude', 'Altitude', 'Omega_Heading', ...
 'Omega_Pitch', 'Omega_Roll', 'V_X', 'V_Y', 'V_ZDown'});

datasetTable = addvars(datasetTable, pointCloudFiles, 'Before', 1, ...
 'NewVariableNames', "PointCloudFileName");
end

helperProcessPointCloud processes a point cloud by removing points belonging to the ground
plane and the ego vehicle.

function ptCloud = helperProcessPointCloud(ptCloudIn, method)
%helperProcessPointCloud Process pointCloud to remove ground and ego vehicle
% ptCloud = helperProcessPointCloud(ptCloudIn, method) processes
% ptCloudIn by removing the ground plane and the ego vehicle.
% method can be "planefit" or "rangefloodfill".
%
% See also pcfitplane, pointCloud/findPointsInCylinder.

arguments
 ptCloudIn (1,1) pointCloud
 method string {mustBeMember(method, ["planefit","rangefloodfill"])} = "rangefloodfill"
end

isOrganized = ~ismatrix(ptCloudIn.Location);

if (method=="rangefloodfill" && isOrganized)
 % Segment ground using floodfill on range image
 groundFixedIdx = segmentGroundFromLidarData(ptCloudIn, ...
 "ElevationAngleDelta", 11);
else
 % Segment ground as the dominant plane with reference normal
 % vector pointing in positive z-direction
 maxDistance = 0.4;
 maxAngularDistance = 5;
 referenceVector = [0 0 1];

 [~, groundFixedIdx] = pcfitplane(ptCloudIn, maxDistance, ...
 referenceVector, maxAngularDistance);
end

if isOrganized
 groundFixed = false(size(ptCloudIn.Location,1),size(ptCloudIn.Location,2));
else
 groundFixed = false(ptCloudIn.Count, 1);

5 Lidar and Point Cloud Processing Examples

5-68

end
groundFixed(groundFixedIdx) = true;

% Segment ego vehicle as points within a cylindrical region of the sensor
sensorLocation = [0 0 0];
egoRadius = 3.5;
egoFixed = findPointsInCylinder(ptCloudIn,egoRadius,"Center",sensorLocation);

% Retain subset of point cloud without ground and ego vehicle
if isOrganized
 indices = ~groundFixed & ~egoFixed;
else
 indices = find(~groundFixed & ~egoFixed);
end

ptCloud = select(ptCloudIn, indices);
end

helperComputeInitialEstimateFromINS estimates an initial transformation for registration
from INS readings.

function initTform = helperComputeInitialEstimateFromINS(initTform, insData)

% If no INS readings are available, return
if isempty(insData)
 return;
end

% The INS readings are provided with X pointing to the front, Y to the left
% and Z up. Translation below accounts for transformation into the lidar
% frame.
insToLidarOffset = [0 -0.79 -1.73]; % See DATAFORMAT.txt
Tnow = [-insData.Y(end), insData.X(end), insData.Z(end)].' + insToLidarOffset';
Tbef = [-insData.Y(1) , insData.X(1) , insData.Z(1)].' + insToLidarOffset';

% Since the vehicle is expected to move along the ground, changes in roll
% and pitch are minimal. Ignore changes in roll and pitch, use heading only.
Rnow = rotmat(quaternion([insData.Heading(end) 0 0], 'euler', 'ZYX', 'point'), 'point');
Rbef = rotmat(quaternion([insData.Heading(1) 0 0], 'euler', 'ZYX', 'point'), 'point');

T = [Rbef Tbef;0 0 0 1] \ [Rnow Tnow;0 0 0 1];

initTform = rigidtform3d(T);
end

helperMakeFigurePublishFriendly adjusts figures so that screenshot captured by publish is
correct.

function helperMakeFigurePublishFriendly(hFig)

if ~isempty(hFig) && isvalid(hFig)
 hFig.HandleVisibility = 'callback';

 Build a Map from Lidar Data Using SLAM

5-69

end
end

See Also
Functions
pcregisterndt | pcshow | createPoseGraph | optimizePoses

Objects
pcviewset | rigidtform3d | pointCloud

More About
• “Build a Map from Lidar Data” on page 5-36
• “Ground Plane and Obstacle Detection Using Lidar” (Automated Driving Toolbox)

External Websites
• Velodyne SLAM Dataset

5 Lidar and Point Cloud Processing Examples

5-70

https://www.mrt.kit.edu/z/publ/download/velodyneslam/dataset.html

3-D Point Cloud Registration and Stitching

This example shows how to combine multiple point clouds to reconstruct a 3-D scene using Iterative
Closest Point (ICP) algorithm.

Overview

This example stitches together a collection of point clouds that was captured with Kinect to construct
a larger 3-D view of the scene. The example applies ICP to two successive point clouds. This type of
reconstruction can be used to develop 3-D models of objects or build 3-D world maps for
simultaneous localization and mapping (SLAM).

Register Two Point Clouds

dataFile = fullfile(toolboxdir('vision'),'visiondata','livingRoom.mat');
load(dataFile);

% Extract two consecutive point clouds and use the first point cloud as
% reference.
ptCloudRef = livingRoomData{1};
ptCloudCurrent = livingRoomData{2};

The quality of registration depends on data noise and initial settings of the ICP algorithm. You can
apply preprocessing steps to filter the noise or set initial property values appropriate for your data.
Here, preprocess the data by downsampling with a box grid filter and set the size of grid filter to be
10cm. The grid filter divides the point cloud space into cubes. Points within each cube are combined
into a single output point by averaging their X,Y,Z coordinates.

gridSize = 0.1;
fixed = pcdownsample(ptCloudRef,'gridAverage',gridSize);
moving = pcdownsample(ptCloudCurrent,'gridAverage',gridSize);

% Note that the downsampling step does not only speed up the registration,
% but can also improve the accuracy.

To align the two point clouds, we use the ICP algorithm to estimate the 3-D rigid transformation on
the downsampled data. We use the first point cloud as the reference and then apply the estimated
transformation to the original second point cloud. We need to merge the scene point cloud with the
aligned point cloud to process the overlapped points.

Begin by finding the rigid transformation for aligning the second point cloud with the first point
cloud. Use it to transform the second point cloud to the reference coordinate system defined by the
first point cloud.

tform = pcregistericp(moving,fixed,'Metric','pointToPlane','Extrapolate',true);
ptCloudAligned = pctransform(ptCloudCurrent,tform);

We can now create the world scene with the registered data. The overlapped region is filtered using a
1.5cm box grid filter. Increase the merge size to reduce the storage requirement of the resulting
scene point cloud, and decrease the merge size to increase the scene resolution.

mergeSize = 0.015;
ptCloudScene = pcmerge(ptCloudRef,ptCloudAligned,mergeSize);

% Visualize the input images.

 3-D Point Cloud Registration and Stitching

5-71

figure
subplot(2,2,1)
imshow(ptCloudRef.Color)
title('First input image','Color','w')
drawnow

subplot(2,2,3)
imshow(ptCloudCurrent.Color)
title('Second input image','Color','w')
drawnow

% Visualize the world scene.
subplot(2,2,[2,4])
pcshow(ptCloudScene,'VerticalAxis','Y','VerticalAxisDir','Down')
title('Initial world scene')
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')

drawnow

Stitch a Sequence of Point Clouds

To compose a larger 3-D scene, repeat the same procedure as above to process a sequence of point
clouds. Use the first point cloud to establish the reference coordinate system. Transform each point
cloud to the reference coordinate system. This transformation is a multiplication of pairwise
transformations.

5 Lidar and Point Cloud Processing Examples

5-72

% Store the transformation object that accumulates the transformation.
accumTform = tform;

figure
hAxes = pcshow(ptCloudScene,'VerticalAxis','Y','VerticalAxisDir','Down');
title('Updated world scene')
% Set the axes property for faster rendering
hAxes.CameraViewAngleMode = 'auto';
hScatter = hAxes.Children;

for i = 3:length(livingRoomData)
 ptCloudCurrent = livingRoomData{i};

 % Use previous moving point cloud as reference.
 fixed = moving;
 moving = pcdownsample(ptCloudCurrent,'gridAverage',gridSize);

 % Apply ICP registration.
 tform = pcregistericp(moving,fixed,'Metric','pointToPlane','Extrapolate',true);

 % Transform the current point cloud to the reference coordinate system
 % defined by the first point cloud.
 accumTform = rigidtform3d(accumTform.A * tform.A);
 ptCloudAligned = pctransform(ptCloudCurrent,accumTform);

 % Update the world scene.
 ptCloudScene = pcmerge(ptCloudScene,ptCloudAligned,mergeSize);

 % Visualize the world scene.
 hScatter.XData = ptCloudScene.Location(:,1);
 hScatter.YData = ptCloudScene.Location(:,2);
 hScatter.ZData = ptCloudScene.Location(:,3);
 hScatter.CData = ptCloudScene.Color;
 drawnow('limitrate')
end

 3-D Point Cloud Registration and Stitching

5-73

% During the recording, the Kinect was pointing downward. To visualize the
% result more easily, let's transform the data so that the ground plane is
% parallel to the X-Z plane.
angle = -10;
translation = [0, 0, 0];
tform = rigidtform3d([angle, 0, 0],translation);
ptCloudScene = pctransform(ptCloudScene,tform);
pcshow(ptCloudScene,'VerticalAxis','Y','VerticalAxisDir','Down', ...
 'Parent',hAxes)
title('Updated world scene')
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')

5 Lidar and Point Cloud Processing Examples

5-74

 3-D Point Cloud Registration and Stitching

5-75

Computer Vision with Simulink
Examples

• “Multicore Simulation of Video Processing System” on page 6-2
• “Concentricity Inspection” on page 6-6
• “Object Counting” on page 6-9
• “Video Focus Assessment” on page 6-11
• “Video Compression” on page 6-13
• “Motion Detection” on page 6-15
• “Pattern Matching” on page 6-17
• “Scene Change Detection” on page 6-20
• “Surveillance Recording” on page 6-22
• “Traffic Warning Sign Recognition” on page 6-24
• “Abandoned Object Detection” on page 6-27
• “Color-based Road Tracking” on page 6-30
• “Detect and Track Face” on page 6-34
• “Lane Departure Warning System” on page 6-41
• “Tracking Cars Using Foreground Detection” on page 6-45
• “Tracking Cars Using Optical Flow” on page 6-48
• “Tracking Based on Color” on page 6-50
• “Video Mosaicking” on page 6-52
• “Video Stabilization” on page 6-57
• “Periodic Noise Reduction” on page 6-59
• “Rotation Correction” on page 6-61
• “Barcode Recognition Using Live Video Acquisition” on page 6-65
• “Edge Detection Using Live Video Acquisition” on page 6-67
• “Noise Removal and Image Sharpening” on page 6-72
• “Track Marker Using Simulink Images” on page 6-78

6

Multicore Simulation of Video Processing System

This example shows how to run a video processing system on multiple cores using dataflow execution
domain in Simulink®.

Introduction

Dataflow execution domain allows you to make use of multiple cores in the design of computationally
intensive systems. This example shows how dataflow as the execution domain of a subsystem
improves simulation performance of the model. To learn more about dataflow and how to run
Simulink models using multiple threads, see “Multicore Execution using Dataflow Domain” (DSP
System Toolbox).

Object Counting in Video

This example shows how to use basic morphological operators to extract information from a video
stream. In this case the model counts the number of staples in each video frame. The model uses the
Top-hat block to remove uneven illumination and then the Autothreshold block to convert it into a
binary image. The Blob Analysis block is then used to count the number of staples and compute the
centroid of each staple. The Draw markers and insert text block are used to mark the staples and
write the number of staples found on the video frame.

Setting up the Dataflow Subsystem

This example uses dataflow domain in Simulink to make use of multiple cores on your desktop to
improve simulation performance. The Domain parameter of the dataflow subsystem in this model is
set as Dataflow. You can view this by selecting the subsystem and then accessing Property
Inspector. To access Property Inspector, in the Simulink Toolstrip, on the Modeling tab, in the Design
gallery select Property Inspector or on the Simulation tab, Prepare gallery, select Property Inspector.

6 Computer Vision with Simulink Examples

6-2

Dataflow domains automatically partition your model into multiple threads for better performance.
Once you set the Domain parameter to Dataflow, you can use the Multicore tab analysis to
analyze your model to get better performance. The Multicore tab is available in the toolstrip when
there is a dataflow domain in the model. To learn more about the Multicore tab, see “Perform
Multicore Analysis for Dataflow” (DSP System Toolbox).

Analyzing Concurrency in Dataflow Subsystem

For this example the Multicore tab mode is set to Simulation Profiling for simulation
performance analysis.

It is recommended to optimize model settings for optimal simulation performance. To accept the
proposed model settings, on the Multicore tab, click Optimize. Alternatively, you can use the drop
menu below the Optimize button to change the settings individually. In this example the model
settings are already optimal.

On the Multicore tab, click the Run Analysis button to start the analysis of the dataflow domain for
simulation performance. Once the analysis is finished, the Analysis Report and Suggestions window
shows how many threads the dataflow subsystem uses during simulation.

After analyzing the model, the Analysis Report and Suggestions window shows one thread because
the data dependency between the blocks in the model prevents blocks from being executed
concurrently. By pipelining the data dependent blocks, the dataflow subsystem can increase
concurrency for higher data throughput. The Analysis Report and Suggestions window shows the
recommended number of pipeline delays as Suggested for Increasing Concurrency. The suggested
latency value is computed to give the best performance.

The following diagram shows the Analysis Report and Suggestions window where the suggested
latency is 2 for the dataflow subsystem.

 Multicore Simulation of Video Processing System

6-3

Click the Accept button to use the recommended latency for the dataflow subsystem. This value can
also be entered directly in the Property Inspector for Latency parameter. Simulink shows the latency
parameter value using tags at the output ports of the dataflow subsystem.

The Analysis Report and Suggestions window now shows the number of threads as 2 meaning that
the blocks inside the dataflow subsystem simulate in parallel using 2 threads. Highlight threads
highlights the blocks with colors based on their thread allocation as shown in the Thread
Highlighting Legend. Show pipeline delays shows where pipelining delays were inserted within
the dataflow subsystem using tags.

Multicore Simulation Performance

We measure the performance improvement of using dataflow domain by comparing the execution
time taken for running model with and without using dataflow. Execution time is measured using the
sim command, which returns the simulation execution time of the model. While measuring the
execution time the Video Viewer block is commented to measure the time taken primarily for the
dataflow subsystem. These numbers and analysis were published on a Windows desktop computer
with Intel® Xeon® CPU W-2133 @ 3.6 GHz 6 Cores 12 Threads processor.

Simulation execution time for multithreaded model = 6.86s
Simulation execution time for single-threaded model = 13.34s
Actual speedup with dataflow: 1.9x

6 Computer Vision with Simulink Examples

6-4

Summary

This example shows how multithreading using dataflow domain can improve performance in a video
processing model using multiple cores on the desktop.

 Multicore Simulation of Video Processing System

6-5

Concentricity Inspection

This example shows how to inspect the concentricity of both the core and the cladding in a cross-
section of optical fiber. Concentricity is a measure of how centered the core is within the cladding.

First, the example uses the Blob Analysis block to determine the centroid of the cladding. It uses this
centroid to find a point on the cladding's outer boundary. Using this as a starting point, the Trace
Boundaries block defines the cladding's outer boundary. Then the example uses these boundary
points to compute the cladding's center and radius using a least-square, circle-fitting algorithm. If the
distance between the cladding's centroid and the center of its outer boundary is within a certain
tolerance, the fiber optic cable is in acceptable condition.

The following figure shows examples of optical fibers with good and bad concentricity:

Example Model

The following figure shows the Concentricity Inspection example model:

open_system('vipconcentricity');

6 Computer Vision with Simulink Examples

6-6

Concentricity Inspection Results

In the Results window, you can see that the example marked the cladding's centroid with a red '+'. It
marked the center of the cladding's outer boundary with a green '*'. When the distance between
these two markers is within an acceptable tolerance, the example labels the cross-section of fiber
optic cable "Concentricity: Good". Otherwise, it labels it "Concentricity: Bad". The example also
displays the distance, in pixels, between the cladding's centroid and the center of the cladding's outer
boundary.

close_system('vipconcentricity');
sim('vipconcentricity', 0.0333333);

set(allchild(0), 'Visible', 'off');

captureVideoViewerFrame('vipconcentricity/Results/Original');
captureVideoViewerFrame('vipconcentricity/Results/Results');

 Concentricity Inspection

6-7

close_system('vipconcentricity', 0);

6 Computer Vision with Simulink Examples

6-8

Object Counting

This example shows how to use basic morphological operators to extract information from a video
stream. In this case, the model counts the number of staples in each video frame. Note that the focus
and lighting change in each video frame.

Example Model

The following figure shows the Object Counting model.

Count Staples Subsystem

The model uses the Top-hat block to remove uneven illumination and the Opening block to widen the
gaps between the staples. Due to changes in overall lighting intensity, the model cannot apply a
single threshold value to all of the video frames. Instead, it uses the Autothreshold block to compute a
threshold for each frame. Once the model applies the threshold to separate the staples, it uses the
Blob Analysis block to count the number of staples in each frame and to calculate the centroid of each
staple. The model passes the total number of staples in each frame to the Insert Text block in the
main model. This block embeds this information on each video frame.

Mark Staples Subsystem

The model passes the centroid information to a series of Draw Markers blocks, which mark the
centroids of each staple.

 Object Counting

6-9

Object Counting Results

The Counted window displays one frame of the original video and the segmented staples in that
frame. The number of staples is displayed in the lower left corner.

6 Computer Vision with Simulink Examples

6-10

Video Focus Assessment

This example shows how to determine whether video frames are in focus by using the ratio of the
high spatial frequency content to the low spatial frequency content within a region of interest (ROI).
When this ratio is high, the video is in focus. When this ratio is low, the video is out of focus.

Example Model

The following figure shows the Video Focus Assessment model:

Video Focus Assessment Results

This example shows a video sequence that is moving in and out of focus. The model uses the Draw
Shapes block to highlight an ROI on the video frames and the Insert Text block to indicate whether or
not the video is in focus.

 Video Focus Assessment

6-11

The Relative Focus window displays a plot of the ratio of the high spatial frequency content to the low
spatial frequency content within the ROI. This ratio is an indication of the relative focus adjustment of
the video camera. When this ratio is high, the video is in focus. When this ratio is low, the video is out
of focus. Although it is possible to judge the relative focus of a camera with respect to the video using
2-D filters, the approach used in this example enables you to see the relationship between the high
spatial frequency content of the video and its focus.

The FFT Data window shows the 2-D FFT data within the ROI.

6 Computer Vision with Simulink Examples

6-12

Video Compression

This example shows how to compress a video using motion compensation and discrete cosine
transform (DCT) techniques. The example calculates motion vectors between successive frames and
uses them to reduce redundant information. Then it divides each frame into submatrices and applies
the discrete cosine transform to each submatrix. Finally, the example applies a quantization
technique to achieve further compression. The Decoder subsystem performs the inverse process to
recover the original video.

Example Model

The following figure shows the Video Compression model:

Encoder Subsystem

The Block Processing block sends 16-by-16 submatrices of each video frame to the Block Processing
block's subsystem for processing. Within this subsystem, the model applies a motion compensation
technique and the DCT to the video stream. By discarding many high-frequency coefficients in the
DCT output, the example reduces the bit rate of the input video.

 Video Compression

6-13

Video Compression Results

The Decoded window shows the compressed video stream. You can see that the compressed video is
not as clear as the original video, shown in the Original window, but it still contains many of its
features.

Available Example Versions

Intensity version of this example:

vipcodec.slx

Color version of this example:

vipcodec_color.slx

6 Computer Vision with Simulink Examples

6-14

matlab:vipcodec
matlab:vipcodec_color

Motion Detection

This example shows how to use sum of absolute differences (SAD) method for detecting motion in a
video sequence. This example applies SAD independently to four quadrants of a video sequence. If
motion is detected in a quadrant, the example highlights the quadrant in red.

Example Model

The following figure shows the Motion Detection example model:

Motion Detection Results

If you double-click the Switch block so that the signal is connected to the SAD side, the Video Viewer
block displays the SAD values, which represent the absolute value of the difference between the
current and previous image. When these SAD values exceed a threshold value, the example highlights
the quadrant in red.

Note that the difference image itself may be viewed, in place of the original intensity image, along
with the red motion highlighting, which indicates how the SAD metric works.

 Motion Detection

6-15

6 Computer Vision with Simulink Examples

6-16

Pattern Matching

This example shows how to use the 2-D normalized cross-correlation for pattern matching and target
tracking.

Double-click the Edit Parameters block to select the number of similar targets to detect. You can also
change the pyramiding factor. By increasing it, you can match the target template to each video
frame more quickly. Changing the pyramiding factor might require you to change the Threshold
value.

Additionally, you can double-click the Correlation Method switch to specify the domain in which to
perform the cross-correlation. The relative size of the target to the input video frame and the
pyramiding factor determine which domain computation is faster.

Example Model

The following figure shows the Pattern Matching model:

 Pattern Matching

6-17

Pattern Matching Results

The Match metric window shows the variation of the target match metrics. The model determines
that the target template is present in a video frame when the match metric exceeds a threshold (cyan
line).

The Cross-correlation window shows the result of cross-correlating the target template with a video
frame. Large values in this window correspond to the locations of the targets in the input image.

6 Computer Vision with Simulink Examples

6-18

The Overlay window shows the locations of the targets by highlighting them with rectangular regions
of interest (ROIs). These ROIs are present only when the targets are detected in the video frame.

 Pattern Matching

6-19

Scene Change Detection

This example shows how to segment video in time. The algorithm in this example can be used to
detect major changes in video streams, such as when a commercial begins and ends. It can be useful
when editing video or when you want to skip ahead through certain content.

Example Model

The following figure shows the Scene Change Detection example model:

Scene Change Detection Results

The model segments the video using the following steps. First, it finds the edges in two consecutive
video frames, which makes the algorithm less sensitive to small changes. Based on these edges, the
model uses the Block Processing block to compare sections of the video frames to one another. If the
number of different sections exceeds a specified threshold, the example determines that the scene
has changed.

6 Computer Vision with Simulink Examples

6-20

 Scene Change Detection

6-21

Surveillance Recording

This example shows how to process surveillance video to select frames that contain motion. Security
concerns mandate continuous monitoring of important locations using video cameras. To efficiently
record, review, and archive this massive amount of data, you can either reduce the video frame size
or reduce the total number of video frames you record. This example illustrates the latter approach.
In it, motion in the camera's field of view triggers the capture of "interesting" video frames.

Watch the Surveillance Recording example.

Example Model

The following figure shows the Surveillance Recording model:

Motion Energy Subsystem

The example uses the Template Matching block to detect motion in the video sequence. When the
Sum of Absolute Differences (SAD) value of a particular frame exceeds a threshold, the example
records this video frame and displays it in the Motion Frames window.

Surveillance Recording Results

The Motion Threshold window displays the threshold value in blue, and plots the SAD values for each
frame in yellow. Any time the SAD value exceeds the threshold, the model records the video frame.

6 Computer Vision with Simulink Examples

6-22

https://www.mathworks.com/videos/surveillance-recording-101604.html

The Original frames window shows a frame of the original video.

The Motion frames window shows the last recorded video frame. In this window, the Source frame
value steadily increases as the video runs and the Captured frame value indicates the total number of
frames recorded by the model.

Available Example Versions

Floating-point: vipsurveillance.slx

Fixed-point: vipsurveillance_fixpt.slx

 Surveillance Recording

6-23

matlab:vipsurveillance
matlab:vipsurveillance_fixpt

Traffic Warning Sign Recognition

This example shows how to recognize traffic warning signs, such as Stop, Do Not Enter, and Yield, in
a color video sequence.

Watch the Traffic Warning Sign Recognition example.

Example Model

The following figure shows the Traffic Warning Sign Recognition model:

Traffic Warning Sign Templates

The example uses two set of templates - one for detection and the other for recognition.

To save computation, the detection templates are low resolution, and the example uses one detection
template per sign. Also, because the red pixels are the distinguishing feature of the traffic warning
signs, the example uses these pixels in the detection step.

For the recognition step, accuracy is the highest priority. So, the example uses three high resolution
templates for each sign. Each of these templates shows the sign in a slightly different orientation.
Also, because the white pixels are the key to recognizing each traffic warning sign, the example uses
these pixels in the recognition step.

The Detection Templates window shows the traffic warning sign detection templates.

The Recognition Templates window shows the traffic warning sign recognition templates.

6 Computer Vision with Simulink Examples

6-24

https://www.mathworks.com/videos/traffic-warning-sign-recognition-101609.html

The templates were generated using vipwarningsigns_templates.m and were stored in
vipwarningsigns_templates.mat.

Detection

The example analyzes each video frame in the YCbCr color space. By thresholding and performing
morphological operations on the Cr channel, the example extracts the portions of the video frame
that contain blobs of red pixels. Using the Blob Analysis block, the example finds the pixels and
bounding box for each blob. The example then compares the blob with each warning sign detection
template. If a blob is similar to any of the traffic warning sign detection templates, it is a potential
traffic warning sign.

Tracking and Recognition

The example compares the bounding boxes of the potential traffic warning signs in the current video
frame with those in the previous frame. Then the example counts the number of appearances of each
potential traffic warning sign.

If a potential sign is detected in 4 contiguous video frames, the example compares it to the traffic
warning sign recognition templates. If the potential traffic warning sign is similar enough to a traffic
warning sign recognition template in 3 contiguous frames, the example considers the potential traffic
warning sign to be an actual traffic warning sign.

When the example has recognized a sign, it continues to track it. However, to save computation, it no
longer continues to recognize it.

Display

After a potential sign has been detected in 4 or more video frames, the example uses the Draw Shape
block to draw a yellow rectangle around it. When a sign has been recognized, the example uses the

 Traffic Warning Sign Recognition

6-25

Insert Text block to write the name of the sign on the video stream. The example uses the term 'Tag'
to indicate the order in which the sign is detected.

Traffic Warning Sign Recognition Results

6 Computer Vision with Simulink Examples

6-26

Abandoned Object Detection

This example shows how to track objects at a train station and to determine which ones remain
stationary. Abandoned objects in public areas concern authorities since they might pose a security
risk. Algorithms, such as the one used in this example, can be used to assist security officers
monitoring live surveillance video by directing their attention to a potential area of interest.

This example illustrates how to use the Blob Analysis and MATLAB® Function blocks to design a
custom tracking algorithm. The example implements this algorithm using the following steps: 1)
Eliminate video areas that are unlikely to contain abandoned objects by extracting a region of interest
(ROI). 2) Perform video segmentation using background subtraction. 3) Calculate object statistics
using the Blob Analysis block. 4) Track objects based on their area and centroid statistics. 5)
Visualize the results.

Watch the Abandoned Object Detection example.

Example Model

The following figure shows the Abandoned Object Detection example model.

Store Background Subsystem

This example uses the first frame of the video as the background. To improve accuracy, the example
uses both intensity and color information for the background subtraction operation. During this
operation, Cb and Cr color channels are stored in a complex array.

If you are designing a professional surveillance system, you should implement a more sophisticated
segmentation algorithm.

 Abandoned Object Detection

6-27

https://www.mathworks.com/videos/abandoned-object-detection-101410.html

Detect Subsystem

The Detect subsystem contains the main algorithm. Inside this subsystem, the Luminance
Segmentation and Color Segmentation subsystems perform background subtraction using the
intensity and color data. The example combines these two segmentation results using a binary OR
operator. The Blob Analysis block computes statistics of the objects present in the scene.

Abandoned Object Tracker subsystem, shown below, uses the object statistics to determine which
objects are stationary. To view the contents of this subsystem, right-click the subsystem and select
Mask > Look Under Mask. To view the tracking algorithm details, double-click the Abandoned Object
Tracker block. The MATLAB® code in this block is an example of how to implement your custom code
to augment Computer Vision Toolbox™ functionality.

6 Computer Vision with Simulink Examples

6-28

Abandoned Object Detection Results

The All Objects window marks the region of interest (ROI) with a yellow box and all detected objects
with green boxes.

The Threshold window shows the result of the background subtraction in the ROI.

The Abandoned Objects window highlights the abandoned objects with a red box.

 Abandoned Object Detection

6-29

Color-based Road Tracking

This example shows how to use color information to detect and track road edges set in primarily
residential settings where lane markings may not be present. The Color-based Tracking example
illustrates how to use the Color Space Conversion block, the Hough Transform block, and the Kalman
Filter block to detect and track information using hue and saturation.

Example Model

The following figure shows the Color-based Road Tracking model:

Algorithm

The example algorithm performs a search to define the left and right edges of a road by analyzing
video images for change in color behavior. First a search for edge pixels, or a line passing through
enough number of color pixels, whichever comes first, is initiated from the bottom center of the
image. The search moves to both the upper left and right corners of the image.

6 Computer Vision with Simulink Examples

6-30

To process low quality video sequences, where road sides might be difficult to see, or are obstructed,
the algorithm will wait for multiple frames of valid edge information. The example uses the same
process to decide when to begin to ignore a side.

Tracking Results

The Detection window shows the road sides detected in the current video frame.

When no road sides are visible, the Tracking window displays an error symbol.

 Color-based Road Tracking

6-31

When only one side of the road is visible, the example displays an arrow parallel to the road side. The
direction of the arrow is toward the upper point of intersection between the road side and image
boundary.

When both of the road sides are visible, the example shows an arrow in the center of the road in the
direction calculated by averaging the directions of the left and right sides.

6 Computer Vision with Simulink Examples

6-32

 Color-based Road Tracking

6-33

Detect and Track Face

This example shows how to implement a face detection and tracking algorithm in Simulink® by using
a MATLAB® Function block. It closely follows the “Face Detection and Tracking Using the KLT
Algorithm” on page 8-57 MATLAB® example.

Introduction

Object detection and tracking are important in many computer vision applications, including activity
recognition, automotive safety, and surveillance. In this example, you design a system in Simulink® to
detect a face in a video frame, identify the facial features and track these features. The output video
frame contains the detected face and the features tracked. If a face is not visible or goes out of focus,
the system tries to re-acquire the face and then perform the tracking. This example is designed to
detect and track a single face.

Example Model

close
open_system('DetectAndTrackFace');

6 Computer Vision with Simulink Examples

6-34

Setup

This example uses the From Multimedia File block to read the video frames from the video file. The
Detection and Tracking subsystem takes in a video frame and provides a bounding box for the
face and feature points within the bounding box as its output to the Draw Annotations subsystem.
This subsystem inserts in the image a rectangle for the bounding box and markers for the feature
points.

Detection and Tracking

In this example, the vision.CascadeObjectDetector System object™ detects the location of the
face in the current video frame. The cascade object detector uses the Viola-Jones detection algorithm
and a trained classification model for detection. After the face is detected, facial feature points are
identified using the "Good Features to Track" method proposed by Shi and Tomasi.

 Detect and Track Face

6-35

Then the vision.PointTracker System object™ tracks the identified feature points by using the
Kanade-Lucas-Tomasi (KLT) feature-tracking algorithm. For each point in the previous frame, the
point tracker attempts to find the corresponding point in the current frame. Then the
estimateGeometricTransform function estimates the translation, rotation, and scale between the
old points and the new points. This transformation is applied to the bounding box around the face.

Although it is possible to use the cascade object detector on every frame, it is computationally
expensive. This technique can also fail to detect the face, such as when the subject turns or tilts his
head. This limitation comes from the type of trained classification model used for detection. In this
example, you detect the face once, and then the KLT algorithm tracks the face across the video
frames. The detection is performed again only when the face is no longer visible or when the tracker
cannot find enough feature points.

The ability to perform “Dynamic memory allocation in MATLAB functions” (Simulink) allows the
usage of the previously mentioned System objects and methods inside the MATLAB® Function block.

open_system('DetectAndTrackFace/Detection and Tracking')

Draw Annotations

The bounding box corner points and feature point locations are used to draw on the output video
frame. The Draw Shapes block draws the bounding box. The feature points are drawn using the Draw
Markers block.

open_system('DetectAndTrackFace/Draw Annotations')

6 Computer Vision with Simulink Examples

6-36

Results

The following display shows the detected face with the feature points.

 Detect and Track Face

6-37

The following display shows the tracked face and feature points.

6 Computer Vision with Simulink Examples

6-38

References

Viola, Paul A., and Michael J. Jones. "Rapid Object Detection using a Boosted Cascade of Simple
Features", IEEE CVPR, 2001.

Lucas, Bruce D., and Takeo Kanade. "An Iterative Image Registration Technique with an Application
to Stereo Vision." International Joint Conference on Artificial Intelligence, 1981.

Lucas, Bruce D., and Takeo Kanade. "Detection and Tracking of Point Features." Carnegie Mellon
University Technical Report CMU-CS-91-132, 1991.

Shi, Jianbo, and Carlo Tomasi. "Good Features to Track." IEEE Conference on Computer Vision and
Pattern Recognition, 1994.

 Detect and Track Face

6-39

ZKalal, Zdenek, Krystian Mikolajczyk, and Jiri Matas. "Forward-Backward Error: Automatic Detection
of Tracking Failures." International Conference on Pattern Recognition, 2010

6 Computer Vision with Simulink Examples

6-40

Lane Departure Warning System

This example shows how to detect and track road lane markers in a video sequence and notifies the
driver if they are moving across a lane. The example illustrates how to use the Hough Transform,
Hough Lines and Kalman Filter blocks to create a line detection and tracking algorithm. The example
implements this algorithm using the following steps: 1) Detect lane markers in the current video
frame. 2) Match the current lane markers with those detected in the previous video frame. 3) Find
the left and right lane markers. 4) Issue a warning message if the vehicle moves across either of the
lane markers.

To process low quality video sequences, where lane markers might be difficult to see or are hidden
behind objects, the example waits for a lane marker to appear in multiple frames before it considers
the marker to be valid. The example uses the same process to decide when to begin to ignore a lane
marker.

Note: The example parameters are defined in the model workspace. To access the parameters, click
View > Model Explorer. Then navigate to Model Workspace under model's name.

Watch the Lane Departure Warning System example.

Example Model

The following figure shows the Lane Departure Warning System example model:

 Lane Departure Warning System

6-41

https://www.mathworks.com/videos/lane-departure-warning-system-101510.html

Lane Detection Subsystem

This subsystem uses the 2-D FIR Filter and Autothreshold blocks to detect the left boundaries of the
lane markers in the current video frame. The boundaries of the lane markers resemble straight lines
and correspond to peak values in the Hough transform matrix. This subsystem uses the Find Local
Maxima block to determine the Polar coordinate location of the lane markers.

Lane Tracking Subsystem

The example saves the previously-detected lanes in a repository and counts the number of times each
lane is detected. This subsystem matches the lanes found in the current video frame with those in the
repository. If a current lane is similar enough to another lane in the repository, the example updates
the repository with the lanes' current location. The Kalman Filter block predicts the location of each
lane in the repository, which improves the accuracy of the lane tracking.

Departure Warning Subsystem

This subsystem uses the Hough Lines block to convert the Polar coordinates of a line to Cartesian
coordinates. The subsystem uses these Cartesian coordinates to calculate the distance between the
lane markers and the center of the video bottom boundary. If this distance is less than the threshold
value, the example issues a warning. This subsystem also determines if the line is yellow or white and
whether it is solid or broken.

6 Computer Vision with Simulink Examples

6-42

Lane Departure Warning System Results

The Safety Margin Signals window shows a plot of a safety margin metric. The safety margin metric
is determined by the distance between the car and the closest lane marker. When the safety margin
metric, shown in yellow, drops below 0, shown in blue, the car is in lane departure mode otherwise
the car is in normal driving mode.

The Results window shows the left and right lane markers and a warning message. The warning
message indicates that the vehicle is moving across the right lane marker. The type and color of the
lane markers are also shown in this window. In addition to the text message, the Windows® version
of the example issues an audio warning.

 Lane Departure Warning System

6-43

6 Computer Vision with Simulink Examples

6-44

Tracking Cars Using Foreground Detection

This example shows how to detect and count cars in a video sequence using Gaussian mixture models
(GMMs).

Example Model

The following figure shows the Tracking Cars Using Foreground Detection model:

Detection and Tracking Results

Detecting and counting cars can be used to analyze traffic patterns. Detection is also a first step prior
to performing more sophisticated tasks such as tracking or categorization of vehicles by their type.

This example uses the vision.ForegroundDetector to estimate the foreground pixels of the video
sequence captured from a stationary camera. The vision.ForegroundDetector estimates the
background using Gaussian Mixture Models and produces a foreground mask highlighting foreground
objects; in this case, moving cars.

The foreground mask is then analyzed using the Blob Analysis block, which produces bounding boxes
around the cars. Finally, the number of cars and the bounding boxes are drawn into the original video
to display the final results.

 Tracking Cars Using Foreground Detection

6-45

Tracking Results

6 Computer Vision with Simulink Examples

6-46

Prototype on a Xilinx Zynq Board

The algorithm in this example is suitable for an embedded software implementation. You can deploy it
to an ARM™ processor using a Xilinx™ Zynq™ video processing reference design. See “Tracking Cars
with Zynq-Based Hardware” (Vision HDL Toolbox Support Package for Xilinx Zynq-Based Hardware).

 Tracking Cars Using Foreground Detection

6-47

Tracking Cars Using Optical Flow

This example shows how to detect and track cars in a video sequence using optical flow estimation.

Example Model

The following figure shows the Tracking Cars Using Optical Flow model:

Tracking Cars Using Optical Flow Results

The model uses an optical flow estimation technique to estimate the motion vectors in each frame of
the video sequence. By thresholding the motion vectors, the model creates binary feature image
containing blobs of moving objects. Median filtering is used to remove scattered noise; Close
operation is performed to remove small holes in blobs. The model locates the cars in each binary
feature image using the Blob Analysis block. Then it uses the Draw Shapes block to draw a green
rectangle around the cars that pass beneath the white line. The counter in the upper left corner of
the Results window tracks the number of cars in the region of interest.

6 Computer Vision with Simulink Examples

6-48

 Tracking Cars Using Optical Flow

6-49

Tracking Based on Color

This example shows how to track a person's face and hand using a color-based segmentation method.

Example Model

The following figure shows the Color Segmentation example model:

Color Segmentation Results

To create an accurate color model for the example, many images containing skin color samples were
processed to compute the mean (m) and covariance (C) of the Cb and Cr color channels. Using this
color model, the Color Segmentation/Color Classifier subsystem classifies each pixel as either skin or
nonskin by computing the square of the Mahalanobis distance and comparing it to a threshold. The
equation for the Mahalanobis distance is shown below:

SquaredDistance(Cb,Cr) = (x-m)'*inv(C)*(x-m), where x=[Cb; Cr]

The result of this process is binary image, where pixel values equal to 1 indicate potential skin color
locations.

The Color Segmentation/Filtering subsystem filters and performs morphological operations on each
binary image, which creates the refined binary images shown in the Skin Region window.

The Color Segmentation/Region Filtering subsystem uses the Blob Analysis block and the Extract
Face and Hand subsystem to determine the location of the person's face and hand in each binary
image. The Display Results/Mark Image subsystem uses this location information to draw bounding
boxes around these regions.

6 Computer Vision with Simulink Examples

6-50

 Tracking Based on Color

6-51

Video Mosaicking

This example shows how to create a mosaic from a video sequence. Video mosaicking is the process
of stitching video frames together to form a comprehensive view of the scene. The resulting mosaic
image is a compact representation of the video data. The Video Mosaicking block is often used in
video compression and surveillance applications.

This example illustrates how to use the Corner Detection block, the Estimate Geometric
Transformation block, the Projective Transform block, and the Compositing block to create a mosaic
image from a video sequence.

Example Model

The following figure shows the Video Mosaicking model:

The Input subsystem loads a video sequence from either a file, or generates a synthetic video
sequence. The choice is user defined. First, the Corner Detection block finds points that are matched
between successive frames by the Corner Matching subsystem. Then the Estimate Geometric
Transformation block computes an accurate estimate of the transformation matrix. This block uses
the RANSAC algorithm to eliminate outlier input points, reducing error along the seams of the output
mosaic image. Finally, the Mosaicking subsystem overlays the current video frame onto the output
image to generate a mosaic.

Input Subsystem

The Input subsystem can be configured to load a video sequence from a file, or to generate a
synthetic video sequence.

6 Computer Vision with Simulink Examples

6-52

If you choose to use a video sequence from a file, you can reduce computation time by processing
only some of the video frames. This is done by setting the downsampling rate in the Frame Rate
Downsampling subsystem.

If you choose a synthetic video sequence, you can set the speed of translation and rotation, output
image size and origin, and the level of noise. The output of the synthetic video sequence generator
mimics the images captured by a perspective camera with arbitrary motion over a planar surface.

Corner Matching Subsystem

The subsystem finds corner features in the current video frame in one of three methods. The example
uses Local intensity comparison (Rosen & Drummond), which is the fastest method. The other
methods available are the Harris corner detection (Harris & Stephens) and the Minimum Eigenvalue
(Shi & Tomasi).

 Video Mosaicking

6-53

The Corner Matching Subsystem finds the number of corners, location, and their metric values. The
subsystem then calculates the distances between all features in the current frame with those in the
previous frame. By searching for the minimum distances, the subsystem finds the best matching
features.

Mosaicking Subsystem

By accumulating transformation matrices between consecutive video frames, the subsystem
calculates the transformation matrix between the current and the first video frame. The subsystem
then overlays the current video frame on to the output image. By repeating this process, the
subsystem generates a mosaic image.

The subsystem is reset when the video sequence rewinds or when the Estimate Geometric
Transformation block does not find enough inliers.

Video Mosaicking Using Synthetic Video

The Corners window shows the corner locations in the current video frame.

6 Computer Vision with Simulink Examples

6-54

The Mosaic window shows the resulting mosaic image.

Video Mosaicking Using Captured Video

The Corners window shows the corner locations in the current video frame.

 Video Mosaicking

6-55

The Mosaic window shows the resulting mosaic image.

6 Computer Vision with Simulink Examples

6-56

Video Stabilization

This example shows how to remove the effect of camera motion from a video stream. In the first video
frame, the model defines the target to track. In this case, it is the back of a car and the license plate.
It also establishes a dynamic search region, whose position is determined by the last known target
location. The model only searches for the target within this search region, which reduces the number
of computations required to find the target. In each subsequent video frame, the model determines
how much the target has moved relative to the previous frame. It uses this information to remove
unwanted translational camera motions and generate a stabilized video.

Example Model

The following figure shows the Video Stabilization model:

Estimate Motion Subsystem

The model uses the Template Matching block to move the target over the search region and compute
the Sum of Absolute Differences (SAD) at each location. The location with the lowest SAD value
corresponds to the location of the target in the video frame. Based on the location information, the
model computes the displacement vector between the target and its original location. The Translate
block in the Stabilization subsystem uses this vector to shift each frame so that the camera motion is
removed from the video stream.

 Video Stabilization

6-57

Display Results Subsystem

The model uses the Resize, Compositing, and Insert Text blocks to embed the enlarged target and its
displacement vector on the original video.

Video Stabilization Results

The figure on the left shows the original video. The figure on the right shows the stabilized video.

Available Example Versions

Floating-point version of this example: vipstabilize.slx

Fixed-point version of this example: vipstabilize_fixpt.slx

Fixed-point version of this example that simulates row major data organization:
vipstabilize_fixpt_rowmajor.slx

6 Computer Vision with Simulink Examples

6-58

matlab:vipstabilize
matlab:vipstabilize_fixpt
matlab:vipstabilize_fixpt_rowmajor

Periodic Noise Reduction

This example shows how to remove periodic noise from a video. In a video stream, periodic noise is
typically caused by the presence of electrical or electromechanical interference during video
acquisition or transmission. This type of noise is most effectively reduced with frequency domain
filtering, which isolates the frequencies occupied by the noise and suppresses them using a band-
reject filter.

Example Model

The following figure shows the Periodic Noise Reduction example model:

Periodic Noise Reduction Results

This example creates periodic noise by adding two 2-D sinusoids with varying frequency and phase to
the video frames. Then it removes this noise using a frequency-domain or spatial-domain filter. You
can specify which filter the example uses by double-clicking the Filtering Method switch.

For the frequency-domain filter, the model uses a binary mask, which it creates using Draw Shapes
blocks, to eliminate a band of frequencies from the frequency domain representation of the image.
For the spatial-domain filter, the model uses the 2-D FIR Filter block and precomputed band-reject
filter coefficients that were derived using the Filter Designer (filterDesigner) and the ftrans2
function.

 Periodic Noise Reduction

6-59

6 Computer Vision with Simulink Examples

6-60

Rotation Correction

This example shows how to use the Hough Transform and Polyfit blocks to horizontally align text
rotating in a video sequence. The techniques illustrated by this example can be used in video
stabilization and optical character recognition (OCR).

Example Model

The following figure shows the Rotation Correction example model:

Text Alignment Using Hough Transform Subsystem

The morphological operators in the Smudge text subsystem blur the letters to create a binary image
with two distinct lines. You can see the result of this process in the Smudged Video window.

By transforming the binary image into the Hough parameter space, the example determines the theta
and rho values of the lines created by the Smudge text subsystem. Once the theta values of the text
lines are known, the example uses the Rotate block to eliminate the large angular variations.

 Rotation Correction

6-61

Post-Processing: Text Alignment Using Polynomial Fit Subsystem

The example uses the Polyfit block, in the slope correction subsystem, and the Rotate block to
eliminate small angular variations in the text. The Polyfit block fits a straight line to the smudged
text. Then the slope correction subsystem calculates the slope of the line and its angle of inclination.
The Rotate block uses this angle to correct for the small rotations.

Rotation Correction Results

The Input Video window shows the original video. The Smudged video window shows the result of
blurring the letters to create a binary image with two distinct lines. In the Hough Matrix window, the
x- and y-coordinates of the two dominant yellow dots correspond to the theta and rho values of the
text lines, respectively. The Corrected video window shows the result of the rotation correction
process.

6 Computer Vision with Simulink Examples

6-62

 Rotation Correction

6-63

6 Computer Vision with Simulink Examples

6-64

Barcode Recognition Using Live Video Acquisition

This example shows how to use the From Video Device block provided by Image Acquisition Toolbox™
to acquire live image data from a Point Grey Flea® 2 camera into Simulink®. The example uses the
Computer Vision Toolbox™ to create an image processing system which can recognize and interpret a
GTIN-13 barcode. The GTIN-13 barcode, formally known as EAN-13, is an international barcode
standard. It is a superset of the widely used UPC standard.

Image Acquisition Toolbox™ provides functions for acquiring images and video directly into
MATLAB® and Simulink from PC-compatible imaging hardware. You can detect hardware
automatically, configure hardware properties, preview an acquisition, and acquire images and video.

This example requires Image Acquisition Toolbox and a Point Grey Flea® 2 camera to run the model.

Watch barcode recognition on live video stream. (11 seconds)

Example Model

The following figure shows the example model using the From Video Device block.

Results

The scan lines that have been used to detect barcodes are displayed in red. When a GTIN-13 is
correctly recognized and verified, the code is displayed at the top of the image.

 Barcode Recognition Using Live Video Acquisition

6-65

https://www.mathworks.com/videos/barcode-recognition-using-live-video-acquisition-101414.html

Even though a Point Grey Flea® 2 camera was used for this example, you can update this model to
use other supported image acquisition devices, for example, webcams. This enables you to use the
same Simulink model with different image acquisition hardware. Before using this example, please
adjust the focus of your imaging device such that the barcodes are legible.

Available Example Versions

Example using live video acquisition: viplivebarcoderecognition_win.slx (Windows® only)

Example using stored video data: vipbarcoderecognition.slx (platform independent)

6 Computer Vision with Simulink Examples

6-66

matlab:viplivebarcoderecognition_win
matlab:vipbarcoderecognition

Edge Detection Using Live Video Acquisition

This example shows how to use the From Video Device block provided by Image Acquisition Toolbox™
to acquire live image data from a Hamamatsu C8484 camera into Simulink®. The Prewitt method is
applied to find the edges of objects in the input video stream.

Image Acquisition Toolbox provides functions for acquiring images and video directly into MATLAB®
and Simulink from PC-compatible imaging hardware. You can detect hardware automatically,
configure hardware properties, preview an acquisition, and acquire images and video.

This example requires Image Acquisition Toolbox and Hamamatsu image acquisition device (C8484)
to run the model.

Watch edge detection using live video acquisition. (4 seconds)

Example Model

The following figure shows the example model using the From Video Device block.

 Edge Detection Using Live Video Acquisition

6-67

https://www.mathworks.com/videos/edge-detection-using-live-video-acquisition-101454.html

6 Computer Vision with Simulink Examples

6-68

 Edge Detection Using Live Video Acquisition

6-69

Live Video Input

The example acquires the input video live from a Hamamatsu image acquisition device (C8484). In
this example, the block acquires intensity data from the camera and outputs it into the Simulink
model at every simulation time step.

Edge Detection Analysis

This example uses Computer Vision Toolbox™ to find the edges of objects in the video input. When
you run the model, you can double-click the Edge Detection block and adjust the threshold parameter
while the simulation is running. The higher you make the threshold, the smaller the amount of edges
the example finds in the video stream.

6 Computer Vision with Simulink Examples

6-70

Even though a Hamamatsu camera was used for this example, you can update this model to use other
supported image acquisition devices. This enables you to use the same Simulink model with different
image acquisition hardware.

 Edge Detection Using Live Video Acquisition

6-71

Noise Removal and Image Sharpening

This example shows how to use Vision HDL Toolbox™ to implement an FPGA-based module for image
enhancement.

Vision HDL Toolbox provides video processing algorithms designed to generate readable,
synthesizable code in VHDL and Verilog (with HDL Coder™). The generated HDL code can process
1080p video at a rate of 60 frames per second.

The Computer Vision Toolbox™ product models at a high level of abstraction. The blocks and objects
perform full-frame processing, operating on one image frame at a time. However, FPGA or ASIC
systems perform pixel-stream processing, operating on one image pixel at a time.

Input images from physical systems frequently contain impairments such as blur and noise. An object
out of focus results in a blurred image. Dead or stuck pixels on the camera or video sensor, or thermal
noise from hardware components, contribute to the noise in the image. This example removes noise
and sharpens the input image, and it can be used at an early stage of the processing chain to provide
a better initial condition for subsequent processing. This example uses two pixel-stream filter blocks
from the Vision HDL Toolbox. The median filter removes the noise and the image filter sharpens the
image. To verify the pixel-stream design, the results are compared with those generated by the full-
frame blocks from the Computer Vision Toolbox.

Model Overview

The NoiseRemovalAndSharpeningHDLExample.slx system is shown.

Computer Vision Toolbox blocks operate on an entire frame at a time. Vision HDL Toolbox blocks
operate on a stream of pixel data, one pixel at a time. The conversion blocks in Vision HDL Toolbox,
Frame To Pixels and Pixels To Frame, enable you to simulate streaming-pixel designs and to compare
with full-frame designs.

The difference in the color of the lines feeding the Full-Frame Behavioral Model and Pixel-Stream
HDL Model subsystems indicates the change in the image rate on the streaming branch of the model.
This rate transition occurs because the pixel stream is sent out in the same amount of time as the full
video frames and therefore it is transmitted at a higher rate. To turn on colors and view sample time
information, in the left palette, click the Sample Time icon and select Colors.

6 Computer Vision with Simulink Examples

6-72

The following figure shows the Image Source subsystem.

The Image Source block imports a greyscale image, then uses a MATLAB function block named Blur
and Add Noise to blur the image and inject salt-and-pepper noise. The imfilter function uses a 3-
by-3 averaging kernel to blur the image. The salt-and-pepper noise is injected by calling the imnoise
command. The noise density is defined as the ratio of the combined number of salt and pepper pixels
to the total pixels in the image. This density value is specified by the Noise Density constant block,
and it must be between 0 and 1. The Image Source subsystem outputs a 2-D matrix of a full-frame
image.

The diagram below shows the structure of the Full-Frame Behavioral Model subsystem, which
consists of the frame-based Median Filter and 2-D FIR Filter from Computer Vision Toolbox. Median
filter removes the noise and 2-D FIR Filter is configured to sharpen the image.

The displays below show one frame of the blurred and noisy source video, its de-noised version after
median filtering, and the sharpened output after 2-D FIR filtering.

 Noise Removal and Image Sharpening

6-73

The Pixel-Stream HDL Model subsystem uses Vision HDL Toolbox to implement streaming based
median filter and 2-D FIR filter. The Verification subsystem compares the results from full-frame
processing with those from pixel-stream processing. These two subsystems are described in the next
two sections.

Pixel-Streaming HDL Design

The Frame To Pixels block converts a full-frame image to a pixel stream since blocks in Vision HDL
Toolbox operate on stream input signals required by FPGA hardware. To simulate the effect of
horizontal and vertical blanking periods found in video systems based on FPGAs or ASICs, the active
image is augmented with non-image data. For more information on the streaming pixel protocol, see
the “Streaming Pixel Interface” (Vision HDL Toolbox). The Frame To Pixels block is configured as
shown:

6 Computer Vision with Simulink Examples

6-74

The Number of components field is set to 1 for grayscale image input, and the Video format field is
240p to match that of the video source.

In this example, the Active Video region corresponds to the 240x320 matrix of the blurred and noisy
image from the upstream Image Source subsystem. Six other parameters, namely, Total pixels per

 Noise Removal and Image Sharpening

6-75

line, Total video lines, Starting active line, Ending active line, Front porch, and Back porch specify
how many non-image pixels will be added on the four sides of the Active Video. For more information,
see the Frame To Pixels (Vision HDL Toolbox) block reference page.

Note that the Desired sample time of the Video Source inside Image Source is determined by the
product of Total pixels per line and Total video lines.

The Pixel-Stream HDL Model subsystem contains the streaming implementation of the median filter
and 2-D FIR filter from Vision HDL Toolbox, as shown in the diagram below. You can generate HDL
code from the Pixel-Stream HDL Model subsystem using HDL Coder™.

The Median Filter (Vision HDL Toolbox) block is used to remove the salt and pepper noise. Based on
the filter coefficients, the Image Filter (Vision HDL Toolbox) block can be used to blur, sharpen, or
detect the edges of the recovered image after median filtering. In this example, Image Filter is
configured to sharpen an image.

Verifying the Pixel-Stream Processing Design

In order to compare with the output of the full-frame filters from the Computer Vision Toolbox, the
model converts the pixel stream data back to full frame using the Pixels To Frame block. The Number
of components field and the Video format fields of both Frame To Pixels and Pixels To Frame are set
at 1 and 240p, respectively, to match the format of the video source.

The output of the Pixels To Frame block is a 2-D matrix of a full image. This allows us to compare the
HDL model against the behavioral model in the full-frame domain, as shown in the Verification
subsystem shown below.

The peak signal to noise ratio (PSNR) is calculated between the reference image and the stream
processed image. Ideally, the ratio should be inf, indicating that the output image from the Full-Frame
Behavioral Model matches that generated from the Pixel-Stream HDL Model.

Generate HDL Code and Verify Its Behavior

To check and generate the HDL code referenced in this example, you must have an HDL Coder
license.

To generate the HDL code, use the following command:

6 Computer Vision with Simulink Examples

6-76

makehdl('NoiseRemovalAndSharpeningHDLExample/Pixel-Stream HDL Model');

To generate test bench, use the following command:

makehdltb('NoiseRemovalAndSharpeningHDLExample/Pixel-Stream HDL Model');

 Noise Removal and Image Sharpening

6-77

Track Marker Using Simulink Images

This example shows how to track a marker on a whiteboard by using images of the
Simulink.ImageType data type.

Example Model

The ex_tracking_marker example model contains a model reference hierarcy. Each model
contributes towards the image processing algorithm.

• ex_tracking_marker - Top model that tracks a marker in an input video. This model renders the
output video by using the Video Viewer block and the logs the output frame in the
out.MarkerOnImage workspace variable.

• ColorTracking - Referenced model that implements a basic image thresholding algorithm.
Includes ProcessFramesForMarker processes the centroid of each frame. The DrawMarkers
subsystem plots the line from the centroid of the previous frame to the current frame.

• ProcessFramesForMarker - Referenced model that looks for pixels in each frame and localizes
the centroid in every frame. The MATLAB Function block DetectMarker uses the thresholding
logic and the MATLAB Function block FindContours localizes the centroid of the detected pixels.

Working with Simulink Images

A Simulink.ImageType data type is an encapsulated object that defines an image with fixed meta-
attributes specific to this data type. The ex_tracking_marker model takes the input video through
From Multimedia File block as a Simulink image by setting the block parameter Image signal to
Simulink image signal.

If your image processing algorithm includes blocks that currently don't support the
Simulink.ImageType data type, use the From Simulink Image block to unpack data in from the
Simulink image to a matrix. Specify the block parameter Output dimensions as [720 960 3]
which corresponds to the rows, columns, and channels in the image. Because MATLAB Function
blocks operate on matrix data only, the ColorTracking model uses a From Simulink Image block
before passing the image data to the ProcessFramesForMarker model, which contains MATLAB
Function blocks. To review these configurations, open the ColorTracking model.

6 Computer Vision with Simulink Examples

6-78

The DrawMarkers subsystem draws the tracking line on the image, and converts the image from
matrix format to a Simulink image by using the To Simulink Image block. This image is then fed to the
Video Viewer block. To review these configurations, open the ProcessFramesForMarker model.

Simulate Model

To simulate the model, on the Simulink toolstrip, in the Simulation tab, select Run. The Video
Viewer block opens and displays the tracker tracing the marker. The simulation runs at a reduced
pace so you can observe the real-time behaviour of the system. To change the pacing of the model,
select Run > Simulation Pacing.

To generate a final image that draws over the logged outputs, in the MATLAB Command Window, run
these commands.

vw = VideoWriter('WhatDidIDraw.mp4');
vw.open();
h=figure;
Ax = axes(h);
for i = 2:70
 imshow(out.yout{1}.Values.Data(:,:,:,i),'Parent',Ax);
 drawpolyline('Position',transpose(squeeze(out.yout{2}.Values.Data(:,:,1:i))),'StripeColor','blue','Parent',Ax);
 vw.writeVideo(getframe(h));
end
vw.close();

Results

The script uses the logged output video to generate the path the marker followed and displays the
result in the Video Viewer block.

 Track Marker Using Simulink Images

6-79

See Also
Simulink.ImageType | To Simulink Image | From Simulink Image

Related Examples
• “Convert Between Simulink Image Type and Matrices” on page 13-69
• “Smile Detection by Using OpenCV Code in Simulink” on page 13-45

6 Computer Vision with Simulink Examples

6-80

Video and Image Ground Truth Labeling

• “Export Ground Truth Object to Custom and COCO JSON Files” on page 7-2
• “Automate Ground Truth Labeling for Semantic Segmentation” on page 7-7
• “Convert Image Labeler Polygons to Labeled Blocked Image for Semantic Segmentation”

on page 7-16
• “Automate Ground Truth Labeling for Object Detection” on page 7-21

7

Export Ground Truth Object to Custom and COCO JSON Files

This example shows you how to export a ground truth object to a custom data format JavaScript
Object Notation (JSON) file, and to a COCO [1] data format JSON file.

You can parse JSON files to use for training and inference in machine learning frameworks. The
format of the custom data format JSON file is similar to the COCO data format. The difference is that
the format for representing label annotations for the JSON file is modified to include various label
types supported by the ground truth object.

This example uses a ground truth object that contains labels previously generated using the Video
Labeler app.

To export a ground truth object from the Labeler app to the JSON file, follow these steps:

1 Use the Image Labeler or the Video Labeler App to label images or videos respectively.
2 Export the labels to file or the workspace to generate a ground truth object.
3 Follow the steps in this example.

Load Ground Truth Object

Load a ground truth object

load("VehicleImageSequenceGroundTruth.mat")

Display the label definitions

VehicleImageSequenceGroundTruth.LabelDefinitions

ans=3×6 table
 Name Type LabelColor Group Description Hierarchy
 _________ _______ _____________________________ ___________ ___________ ____________

 {'Car' } Polygon 0.5862 0.8276 0.3103 {'Vehicle'} {0x0 char} {1x1 struct}
 {'Lane' } Line 0.49412 0.18431 0.55686 {'Road' } {0x0 char} {0x0 double}
 {'Sunny'} Scene 1 0.41176 0.16078 {'None' } {0x0 char} {0x0 double}

Add Info and License Information (Optional)

Add the metadata to the annotations by specifying the Info and the License Name-Value pairs

info = struct(...
 'year', 2020, ...
 'version', '1', ...
 'description', 'Vehicles Dataset', ...
 'date_created', datetime ...
);

licenses = struct(...
 'url', {'www.mathworks.com', 'www.mathworks.com'}, ...
 'name', {'License 1', 'License 2'} ...
);

7 Video and Image Ground Truth Labeling

7-2

Export the Ground Truth Object to a custom data format JSON file

Use exportGroundTruthToJSON function to export the ground truth object to a JSON file.

The exportGroundTruthToJSON function parses the data in the ground truth object, encodes it in a
custom data format that is described below on page 7-3, and then generates the JSON file.

annotationsFileName = 'vehicles_annotations.json';
exportGroundTruthToJSON(VehicleImageSequenceGroundTruth, annotationsFileName, 'Info', info, 'License', licenses)

Export the Object Detection Ground Truth Object to a COCO data format JSON file

Use exportGroundTruthToJSON with the 'COCO' Name-Value set to true to export object
detection data that was labeled using polygons to the COCO object detection data format JSON file.

To create a ground truth object for object detection that can be exported to COCO data format JSON
file, follow these steps:

1 Use the Polygon label type to label the object instances.
2 Use the Pixel label type to label the crowd regions of the object. Its label name should be as

follows: polygonLabelName_crowd (Where polygonLabelName is the label name of the
corresponding polygon label).

For example:

To annotate an image that contains both person instances and crowd regions,

1 Create a label of type polygon with name as 'person' for annotating person instances.
2 Create a corresponding Pixel label with name 'person_crowd' to annotate person-crowd

regions.

The '_crowd' suffix is used to bind the two labels together. Therefore, ensure that for each crowd
pixel label there is a corresponding polygon label.

Note: While exporting to COCO object detection data format, an expected warning is thrown
specifying the label types that are being ignored. In this case, since the ground truth object has Line
labels they will be ignored.

annotationsFileName = 'vehicles_annotations_coco.json';
exportGroundTruthToJSON(VehicleImageSequenceGroundTruth, annotationsFileName, ...
 'Info', info, 'License', licenses, 'COCO', true)

Warning: Label types, Line, Scene, are not supported and are ignored during export to a COCO data format JSON file

Custom JSON Data Format

The exported JSON file contains these five fields:

1 info
2 licenses
3 categories
4 images/ video
5 annotations

 Export Ground Truth Object to Custom and COCO JSON Files

7-3

Info

The Info field specifies the dataset and annotation information by using the 'Info' name-value pair
argument. The value must be a scalar structure.

Default Value:

{
 "year": Current year,
 "version": "1",
 "description": "Created using MATLAB",
 "date_created": Current datetime
}

Licenses

The Licenses field specifies information about the licenses by using the License name-value pair
argument. The value must be a structure array.

Default Value: []

Categories

The Categories field contains the contents of the ground truth label definitions table. The variable
names in the table are used as fields and are modified to be similar to the COCO data format. An
additional field Id identifies each label definition.

Each category object contains the following two additional fields which replace the 'Hierarchy'
variable if it exists:

1 Attributes: Contains attributes definitions of the label.
2 Sublabels: Contains sublabels definitions of the label.

Images/ Video

The Images/ Video field contains a list of the images (or video) objects and related information.

Data Format:

{
 "id": Unique Image ID,
 "time_stamp": Time stamp of the image frame (Only applicable to data sources with timestamps),
 "width": Width of the image/video,
 "height": Height of the image/video,
 "file_name": Name of the file,
 "file_path": Absolute file path,
 "date_captured": Last modified date of the image/ Current datetime
}

Annotations

The Annotations field contains a list of annotation objects. The data format of the annotation objects
depends on the label type and is as follows:

Rectangle ROI
{
 "id": Unique Annotation ID,

7 Video and Image Ground Truth Labeling

7-4

 "image_id": Image ID ,
 "category_id": Category ID,
 "position": [x,y,width,height] bounding box location,
 "attributes": Contains attributes data,
 "sublabels": Contains sublabels data
}

• x and y specify the upper-left corner of the rectangle and are 0-indexed.
• w specifies the width of the rectangle, which is its length along the x-axis.
• h specifies the height of the rectangle, which is its length along the y-axis.

Polygon ROI

{
 "id": Unique Annotation ID,
 "image_id": Image ID ,
 "category_id": Category ID,
 "position": [[x1 y1 x2 y2 ... xN yN]] for N points in the polygon,
 "attributes": Contains attributes data,
 "sublabels": Contains sublabels data
}

PolyLine ROI

{
 "id": Unique Annotation ID,
 "image_id": Image ID,
 "category_id": Category ID,
 "position": [x1 y1 x2 y2 ... xN yN] for N points in the polyline.,
 "attributes": Contains attributes data,
 "sublabels": Contains sublabels data
}

• x1, y1,... specify the point location and are 0-indexed.

ProjectedCuboid ROI

{
"id": Unique Annotation ID,
"image_id": Image ID,
"category_id": Category ID,
"position": List of the form [xctr, yctr, zctr, xlen, ylen, zlen, xrot, yrot, zrot],
 "attributes": Contains attributes data,
 "sublabels": Contains sublabels data
}

• xctr, yctr, and zctr specify the center of the projected cuboid and are 0-indexed.
• xlen, ylen, and zlen specify the length of the projected cuboid along the x-axis, y-axis, and z-

axis, respectively, before rotation has been applied.
• xrot, yrot, and zrot specify the rotation angles for the projected cuboid along the x-axis, y-axis,

and z-axis, respectively. These angles are clockwise-positive when looking in the forward direction
of their corresponding axes.

PixelLabel ROI

{
 "image_id": Image ID,

 Export Ground Truth Object to Custom and COCO JSON Files

7-5

 "file_name": Name of the pixel label image file,
 "file_path": Path to the pixel label image file,
 "segments_info": List of segment objects
}

Segment Objects format: Each segment in the pixel label image is representated as a segment object.

{
"id": PixelLabelID of the label or R+G*256+B*256^2 in case if PixeLabelID is an array,
"category_id": Category ID,
"area": Area covered by the pixels
}

Scene

{
 "id": Unique Annotation ID,
 "image_id": Image ID,
 "category_id": Category ID of the scene label applicable to the image
}

Limitations

1 Custom label types cannot be exported to the JSON file.
2 You cannot export data from a custom reader ground truth datasource to a JSON file format.
3 Only Polygon and crowd Pixel Label ROIs can be exported to the COCO object detection data

format.
4 The JSON file generated by the "exportGroundTruthToJSON" helper function cannot be imported

back into MATLAB as a ground truth object.

References

[1] Lin TY. et al. (2014) Microsoft COCO: Common Objects in Context. In: Fleet D., Pajdla T., Schiele
B., Tuytelaars T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer
Science, vol 8693. Springer, Cham. https://doi.org/10.1007/978-3-319-10602-1_48

7 Video and Image Ground Truth Labeling

7-6

Automate Ground Truth Labeling for Semantic Segmentation

This example shows how to use a pretrained semantic segmentation algorithm to segment the sky
and road in an image, and use this algorithm to automate ground truth labeling in the Ground Truth
Labeler (Automated Driving Toolbox) app.

The Ground Truth Labeler App

Good ground truth data is crucial for developing automated driving algorithms and evaluating their
performance. However, creating and maintaining a diverse and high-quality set of annotated driving
data requires significant effort. The Ground Truth Labeler (Automated Driving Toolbox) app makes
this process easy and efficient. This app includes features to annotate objects as rectangles, lines, or
pixel labels. Pixel labeling is a process in which each pixel in an image is assigned a class or category,
which can then be used to train a pixel-level segmentation algorithm. Although you can use the app to
manually label all your data, this process requires a significant amount of time and resources,
especially for pixel labeling. As an alternative, the app also provides a framework to incorporate
algorithms to extend and automate the labeling process. You can use the algorithms you create to
automatically label entire data sets, and then end with a more efficient, shorter manual verification
step. You can also edit the results of the automation step to account for challenging scenarios that the
algorithm might have missed.

In this example, you will:

• Use a pretrained segmentation algorithm to segment pixels that belong to the categories 'Road'
and 'Sky'.

• Create an automation algorithm that can be used in the Ground Truth Labeler app to
automatically label road and sky pixels.

This ground truth data can then be used to train a new semantic segmentation network, or retrain an
existing one.

Create a Road and Sky Detection Algorithm

First, create a semantic segmentation algorithm that segments road and sky pixels in an image. The
“Semantic Segmentation Using Deep Learning” on page 3-281 example describes how to train a deep
learning network for semantic segmentation. This network has been trained to predict 11 classes of
semantic labels including 'Road' and 'Sky'. The performance of these networks depends on how
generalizable they are. Applying the networks to situations they did not encounter during training
can lead to subpar results. Iteratively introducing custom training data to the learning process can
make the network perform better on similar data sets.

Download a network, which was pretrained on the CamVid dataset [1][2] from the University of
Cambridge.

pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/segnetVGG16CamVid.mat';
pretrainedFolder = fullfile(tempdir,'pretrainedSegNet');
pretrainedSegNet = fullfile(pretrainedFolder,'segnetVGG16CamVid.mat');
if ~exist(pretrainedSegNet,'file')
 if ~exist(pretrainedFolder,'dir')
 mkdir(pretrainedFolder);
 end
 disp('Downloading pretrained SegNet (107 MB)...');
 websave(pretrainedSegNet,pretrainedURL);
end

 Automate Ground Truth Labeling for Semantic Segmentation

7-7

https://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/

Downloading pretrained SegNet (107 MB)...

Segment an image and display it.

% Load the semantic segmentation network
data = load(pretrainedSegNet);

% Load a test image from drivingdata
roadSequenceData = fullfile(toolboxdir('driving'), 'drivingdata', 'roadSequence');
I = imread(fullfile(roadSequenceData, 'f00000.png'));

% Run the network on the image
automatedLabels = semanticseg(I, data.net);

% Display the labels overlaid on the image, choosing relevant categories
figure, imshow(labeloverlay(I, automatedLabels, 'IncludedLabels', ["Sky", "Road"]));

The output of the network is represented in MATLAB® as a categorical matrix. The categories listed
include all those that the semantic segmentation network has been trained on, not just the categories
present in the output. This information is also available from the network object itself.

 data.net.Layers(end).ClassNames

7 Video and Image Ground Truth Labeling

7-8

% List categories of pixels labeled
categories(automatedLabels)

ans = 11×1 cell
 {'Sky' }
 {'Building' }
 {'Pole' }
 {'Road' }
 {'Pavement' }
 {'Tree' }
 {'SignSymbol'}
 {'Fence' }
 {'Car' }
 {'Pedestrian'}
 {'Bicyclist' }

% The blue overlay indicates the 'Sky' category, and the green overlay
% indicates 'Road'.

Integrate Pixel Segmentation Algorithm Into Ground Truth Labeler

Incorporate this semantic segmentation algorithm into the automation workflow of the app by
creating a class that inherits from the abstract base class
vision.labeler.AutomationAlgorithm. This base class defines the API that the app uses to
configure and run the algorithm. The Ground Truth Labeler app provides a convenient way to obtain
an initial automation class template. For details, see “Create Automation Algorithm for Labeling” on
page 9-8. The RoadAndSkySegmentation class is based on this template and provides a ready-to-
use automation class for pixel label segmentation.

The first set of properties in the RoadAndSkySegmentation class specify the name of the algorithm,
provide a brief description of it, and give directions for using it.

 properties(Constant)

 %Name
 % Character vector specifying name of algorithm.
 Name = 'RoadAndSkySegmentation'

 %Description
 % Character vector specifying short description of algorithm.
 Description = 'This algorithm uses semanticseg with a pretrained network to annotate roads and sky'

 %UserDirections
 % Cell array of character vectors specifying directions for
 % algorithm users to follow in order to use algorithm.
 UserDirections = {...
 ['Automation algorithms are a way to automate manual labeling ' ...
 'tasks. This AutomationAlgorithm automatically creates pixel ', ...
 'labels for road and sky.'], ...
 ['Review and Modify: Review automated labels over the interval ', ...
 'using playback controls. Modify/delete/add ROIs that were not ' ...
 'satisfactorily automated at this stage. If the results are ' ...
 'satisfactory, click Accept to accept the automated labels.'], ...
 ['Accept/Cancel: If results of automation are satisfactory, ' ...
 'click Accept to accept all automated labels and return to ' ...
 'manual labeling. If results of automation are not ' ...

 Automate Ground Truth Labeling for Semantic Segmentation

7-9

 'satisfactory, click Cancel to return to manual labeling ' ...
 'without saving automated labels.']};
 end

The next section of the RoadAndSkySegmentation class specifies the custom properties needed by
the core algorithm. The PretrainedNetwork property holds the pretrained network. The
AllCategories property holds the names of all the categories.

 properties
 % PretrainedNetwork saves the SeriesNetwork object that does the semantic
 % segmentation.
 PretrainedNetwork

 % Categories holds the default 'background', 'road', and 'sky'
 % categorical types.
 AllCategories = {'background'};

 % Store names for 'road' and 'sky'.
 RoadName
 SkyName
 end

checkLabelDefinition, the first method defined in RoadAndSkySegmentation, checks that only
labels of type PixelLabel are enabled for automation. PixelLabel is the only type needed for
semantic segmentation.

 function TF = checkLabelDefinition(~, labelDef)
 isValid = false;

 if (strcmpi(labelDef.Name, 'road') && labelDef.Type == labelType.PixelLabel)
 isValid = true;
 algObj.RoadName = labelDef.Name;
 algObj.AllCategories{end+1} = labelDef.Name;
 elseif (strcmpi(labelDef.Name, 'sky') && labelDef.Type == labelType.PixelLabel)
 isValid = true;
 algObj.SkyName = labelDef.Name;
 algObj.AllCategories{end+1} = labelDef.Name;
 elseif(labelDef.Type == labelType.PixelLabel)
 isValid = true;
 end
 end

The next set of functions control the execution of the algorithm. The
vision.labeler.AutomationAlgorithm class includes an interface that contains methods like
'initialize', 'run', and 'terminate' for setting up and running the automation with ease. The
initialize function populates the initial algorithm state based on the existing labels in the app. In
the RoadAndSkySegmentation class, the initialize function has been customized to load the
pretrained semantic segmentation network from tempdir and save it to the PretrainedNetwork
property.

 function initialize(algObj, ~, ~)

 % Point to tempdir where pretrainedSegNet was downloaded.
 pretrainedFolder = fullfile(tempdir,'pretrainedSegNet');
 pretrainedSegNet = fullfile(pretrainedFolder,'segnetVGG16CamVid.mat');
 data = load(pretrainedSegNet);
 % Store the network in the 'PretrainedNetwork' property of this object.

7 Video and Image Ground Truth Labeling

7-10

 algObj.PretrainedNetwork = data.net;
 end

Next, the run function defines the core semantic segmentation algorithm of this automation class.
run is called for each video frame, and expects the automation class to return a set of labels. The run
function in RoadAndSkySegmentation contains the logic introduced previously for creating a
categorical matrix of pixel labels corresponding to "Road" and "Sky". This can be extended to any
categories the network is trained on, and is restricted to these two for illustration only.

 function autoLabels = run(algObj, I)
 % Setup categorical matrix with categories including road and
 % sky
 autoLabels = categorical(zeros(size(I,1), size(I,2)),0:2,algObj.AllCategories,'Ordinal',true);

 pixelCat = semanticseg(I, algObj.PretrainedNetwork);
 if ~isempty(pixelCat)
 % Add the selected label at the bounding box position(s)
 autoLabels(pixelCat == "Road") = algObj.RoadName;
 autoLabels(pixelCat == "Sky") = algObj.SkyName;
 end
 end

This algorithm does not require any cleanup, so the terminate function is empty.

Use the Pixel Segmentation Automation Class in the App

The properties and methods described in the previous section have been implemented in the
RoadAndSkySegmentation automation algorithm class file. To use this class in the app:

• Create the folder structure +vision/+labeler required under the current folder, and copy the
automation class into it.

 mkdir('+vision/+labeler');
 copyfile('RoadAndSkySegmentation.m','+vision/+labeler');

• Open the groundTruthLabeler app with custom data to label. For illustration purposes, open
the caltech_cordova1.avi video.

 groundTruthLabeler caltech_cordova1.avi

• On the left pane, click the Define new ROI label button and define two ROI labels with names
Road and Sky, of type Pixel label as shown.

 Automate Ground Truth Labeling for Semantic Segmentation

7-11

• Click Algorithm > Select Algorithm > Refresh list.
• Click Algorithm > RoadAndSkySegmentation. If you do not see this option, ensure that the

current working folder has a folder called +vision/+labeler, with a file named
RoadAndSkySegmentation.m in it.

• Click Automate. A new panel opens, displaying directions for using the algorithm.

7 Video and Image Ground Truth Labeling

7-12

• Click Run. The created algorithm executes on each frame of the video, segmenting "Road" and
"Sky" categories. After the run is completed, use the slider or arrow keys to scroll through the
video and verify the result of the automation algorithm.

 Automate Ground Truth Labeling for Semantic Segmentation

7-13

• It is evident that regions outside the camera field of view are incorrectly labeled as "Sky", and
parts of the ego vehicle itself are marked as "Road". These results indicate that the network has
not been previously trained on such data. This workflow allows for making manual corrections to
these results, so that an iterative process of training and labeling (sometimes called active
learning or human in the loop) can be used to further refine the accuracy of the network on
custom data sets. You can manually tweak the results by using the brush tool in the Label Pixels
tab and adding or removing pixel annotations. Other tools like flood fill and smart polygons are
also available in the Label Pixels tab and can be used when appropriate.

7 Video and Image Ground Truth Labeling

7-14

• Once you are satisfied with the pixel label categories for the entire video, click Accept.

Automation for pixel labeling for the video is complete. You can now proceed with labeling other
objects of interest, save the session, or export the results of this labeling run.

Conclusion

This example showed how to use a pretrained semantic segmentation network to accelerate labeling
of road and sky pixels in the Ground Truth Labeler app using the AutomationAlgorithm interface.

References

1 Brostow, Gabriel J., Jamie Shotton, Julien Fauqueur, and Roberto Cipolla. "Segmentation and
Recognition Using Structure from Motion Point Clouds." ECCV. 2008.

2 Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic Object Classes in Video: A
High-Definition Ground Truth Database." Pattern Recognition Letters. 2008.

 Automate Ground Truth Labeling for Semantic Segmentation

7-15

Convert Image Labeler Polygons to Labeled Blocked Image for
Semantic Segmentation

This example shows how to convert polygon labels stored in a groundTruth object into a labeled
blocked image suitable for semantic segmentation workflows.

You can use the Image Labeler app in Computer Vision Toolbox to label images that are too large to
fit into memory and multiresolution images. For more information, see “Label Large Images in the
Image Labeler” on page 9-12. The Image Labeler app does not support pixel labeling of blocked
images. You can only create labels using ROI shapes such as polygons, rectangles, and lines. This
example shows how you can use the polyToBlockedImage function to convert polygon ROIs into a
pixel-labeled blocked image for semantic segmentation workflows.

Create a blocked image using a modified version of a training image of a lymph node containing
tumor tissue, from the CAMELYON16 data set. The modified image has three coarse resolution levels.
The spatial referencing has been adjusted to enforce a consistent aspect ratio and to register features
at each level.

bim = blockedImage("tumor_091R.tif");

Load Label Ground Truth Data

This example loads a presaved groundTruth object, gTruth.mat, created by labeling the blocked
image data in bim using the Image Labeler app. The groundTruth object stores the polygon labels
displayed in the figure. A normal tissue ROI is outlined in green, and tumor tissue ROIs are outlined
in red. You can export your own labeled ground truth data from the Image Labeler app by selecting
Export and then To Workspace. Name the variable gTruth.

7 Video and Image Ground Truth Labeling

7-16

load gTruth.mat

Extract ROI Position and Label Data

The LabelData property of the gTruth object stores the polygon label data as a table with one
column for each label.

labelData = gTruth.LabelData

labelData=1×2 table
 normal tumor
 ____________ __________

 {4×2 double} {4×1 cell}

 Convert Image Labeler Polygons to Labeled Blocked Image for Semantic Segmentation

7-17

Use the helper function gTruthtoXY, defined at the end of this example, to convert the xy-position
data and labels stored in labelData into a format accepted as an input to the
polyToBlockedImage function. gTruthtoXY assigns the numeric label 1 to the normal tissue ROI
and the label 2 to the tumor tissue ROIs.

[roiPositions,roiLabels] = gTruthtoXY(labelData)

roiPositions=5×1 cell array
 { 4×2 double}
 {14×2 double}
 {16×2 double}
 {20×2 double}
 {12×2 double}

roiLabels = 5×1

 1
 2
 2
 2
 2

Create Labeled Blocked Image

Select the desired resolution level for the new blocked image. This choice is a tradeoff between
efficiency and accuracy. Using a coarser resolution level decreases processing time and storage size.
Using a finer resolution level increases the level of detail preserved in the mask. You can use coarse
resolution levels for regular ROIs, like polygons. For small, freehand ROIs, a fine resolution level is
more appropriate. For this example, use an intermediate resolution level.

maskLevel = 2;

Specify the image size for the new blocked image to match that of the original image, bim, at the
desired resolution level.

imageSize = bim.Size(maskLevel,1:2);

Create a labeled blocked image. Maintain the spatial referencing of the original blocked image, bim,
at the desired resolution level. By default, polyToBlockedImage assigns pixels that do not fall
inside any ROI the numeric label 0.

bLabeled = polyToBlockedImage(roiPositions,roiLabels,imageSize, ...
 BlockSize=bim.BlockSize(maskLevel,1:2), ...
 WorldStart=bim.WorldStart(maskLevel,1:2),WorldEnd=bim.WorldEnd(maskLevel,1:2));

Display the labeled blocked image overlaid on the original image. The regions corresponding to the
tumor and normal tissue polygons of the groundTruth object are shown in red and green,
respectively. To distinguish the normal tissue outside of the ROIs from the background using a binary
mask, see “Create Labeled Blocked Image from ROIs and Masks”.

hbim = bigimageshow(bim);
showlabels(hbim,bLabeled,Colormap=[0 0 1; 0 1 0; 1 0 0])

7 Video and Image Ground Truth Labeling

7-18

Supporting Function

The gTruthtoXY helper function converts the polygon ROI coordinates and label data stored in the
table labelData into cell arrays suitable for input into the polyToBlockedImage function.

function [roiPositions,roiLabels] = gTruthtoXY(labelData)

totalROIs = numel(labelData{1,1}) + numel(labelData{1,2}{:});
roiPositions = cell(totalROIs,1);
roiLabels = zeros(totalROIs,1);

% Obtain label names from the labelData table
labelName = labelData.Properties.VariableNames;

roiIdx = 1; % Initialize ROI index

% Loop through all labels
% Assign a numeric label of 2 to tumor tissue; 1 for normal tissue
for j = 1:numel(labelData)

 % All ROIs for a given label

 Convert Image Labeler Polygons to Labeled Blocked Image for Semantic Segmentation

7-19

 data = labelData{1,j}{:};

 if(isequal(labelName{j},"tumor"))
 for k = 1:numel(data)
 roiLabels(roiIdx) = 2;
 roiPositions{roiIdx} = data{k};
 roiIdx = roiIdx + 1;
 end
 else
 % For other ROI labels
 roiLabels(roiIdx) = 1;
 roiPositions{roiIdx} = data;
 roiIdx = roiIdx + 1;
 end

end

end

7 Video and Image Ground Truth Labeling

7-20

Automate Ground Truth Labeling for Object Detection

This example shows how how to create an automation algorithm to automatically label data for object
detection using a pretrained object detector.

Overview

The Image Labeler, Video Labeler, and Ground Truth Labeler (Automated Driving Toolbox)
(Automated Driving Toolbox) apps provide an easy way to interactively label data for training or
validating image classifiers, object detectors, semantic, and instance segmentation networks. These
apps include several built-in automation algorithms and provides an interface to define custom
automation algorithms to accelerate the labeling process.

In this example, a custom automation algorithm is created to label objects using a pretrained YOLO
v4 object detector in the Image Labeler app. The procedure shown in this example can replicated in
the Video Labeler and Ground Truth Labeler apps. For more information, see “Create Automation
Algorithm for Labeling” on page 9-8.

Create Object Detection Algorithm

In this example, you will be using “Getting Started with YOLO v4” on page 17-56.

The pretrained object detector uses CSPDarkNet-53 as the backbone network and is trained on the
MS-COCO dataset and can identify 80 different objects. For simplicity, you will reduce 80 classes to
12 super-classes in the automation algorithm.

Try out the YOLO v4 object detector on a sample image.

% Create YOLO v4 object detector.
detector = yolov4ObjectDetector("csp-darknet53-coco");

% Detect objects in an unknown image by using the detector.
img = imread("highway.png");
[bboxes,scores,labels] = detect(detector,img);

% Display the detection results.
detectedImg = insertObjectAnnotation(img,"Rectangle",bboxes,labels);
figure
imshow(detectedImg)

 Automate Ground Truth Labeling for Object Detection

7-21

https://cocodataset.org/

% Free memory by deleting the detector.
clear detector

Integrate Object Detection Algorithm Into Image Labeler

Incorporate YOLO v4 detector in the Image Labeler app by creating an automation class in MATLAB
that inherits from the abstract base class vision.labeler.AutomationAlgorithm. This base
class defines the API that the app uses to configure and run the algorithm. The Image Labeler app
provides a convenient way to obtain an initial automation class template. The
YOLOv4AutomationAlgorithm class is based on this template and provides a ready-to-use
automation class for object detection.

In this section, some of the key properties and methods of the Automation class are discussed.

The properties section of the automation class specifies the custom properties needed to run the
algorithm. The Model property holds the pretrained detector. The Label and LabelIDs properties
store the labels and their corresponding ids for different object categories. The Map property is a
dicitonary that contains LabelIDs as keys and Labels as values. The Threshold property
determines the lower bound on the prediction value for the detection to be selected for labeling.

properties

 Model

 % Threshold for the object detection score
 Threshold = 0.3

 % Label class names (super-classes)
 Labels = {'person','vehicle','outdoor','animal','accessory','sports', ...
 'kitchen','food','furniture','electonic','appliance','indoor' };

 % IDs corresponding to the labels. Note that be group together
 % similar classes into superclasses defined below:

7 Video and Image Ground Truth Labeling

7-22

 % ["person"] = person
 % ["bicycle", "car", "motorbike", "aeroplane", "bus", "train", "truck", "boat"] = vehicle
 % ["traffic light", "fire hydrant", "stop sign", "parking meter", "bench"] = outdoor
 % ["bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe"] = animal
 % ["backpack", "umbrella", "handbag", "tie", "suitcase"]; = accessory
 % ["frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket"] = sports
 % ["bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl"] = kitchen
 % ["banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake"] = food
 % ["chair", "sofa", "pottedplant", "bed", "diningtable", "toilet"] = furniture
 % ["tvmonitor", "laptop", "mouse", "remote" , "keyboard", "cell phone"] = electronic
 % ["microwave", "oven", "toaster", "sink", "refrigerator"] =appliance
 % ["book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"] = indoor

 LabelIDs = {1, 2:9, 10:14, 15:24, 25:29, 30:39, 40:46, 47:56, 57:62, 63:68, 69:73, 74:80};

 % Dictionary containing LabelID to Label mapping.
 Map = dictionary;
end

In the YOLOv4AutomationAlgorithm class, the initialize function has been customized to load
the pretrained object detection network and populate the dictionary.

function initialize(algObj, ~)

 % Load the detector.
 algObj.Model = yolov4ObjectDetector("csp-darknet53-coco");

 % Populate the dictionary for mapping label IDs with label names.
 for i=1:80
 idx = find(cellfun(@(x) ismember(i,x),algObj.LabelIDs));
 algObj.Map(i) = algObj.Labels(idx);
 end
end

Next, the run function defines the core object detection algorithm of this automation class. run is
called for each image frame, and expects the automation class to return a set of labels. The run
function in YOLOv4AutomationAlgorithm contains the logic for bounding box detection and logic
for passing the detection boxes to the Image Labeler.

function autoLabels = run(algObj, I)

 % Perform detection.
 [bboxes, scores, labels] = detect(algObj.Model,I , Threshold=algObj.Threshold);

 autoLabels = struct('Name', cell(1, size(bboxes, 1)), ...
 'Type', cell(1, size(bboxes, 1)),'Position',zeros([1 4]));

 for i=1:size(bboxes, 1)
 % Add the predicted label to outputs.
 currentLabel = algObj.Map(double(labels(i)));
 autoLabels(i).Name = currentLabel{:};
 autoLabels(i).Type = labelType.Rectangle;
 autoLabels(i).Position = bboxes(i,:);

 end

 Automate Ground Truth Labeling for Object Detection

7-23

end

This algorithm does not require any cleanup, so the terminate function is empty.

Use Object Detection Automation Class in the App

The properties and methods described in the previous section have been implemented in the
YOLOv4AutomationAlgorithm class file. To use this class in the app:

• Create the folder structure +vision/+labeler under the current folder, and copy the
automation class into it.

mkdir('+vision/+labeler');
copyfile('YOLOv4AutomationAlgorithm.m','+vision/+labeler');

Open the Image Labeler app with predefined ground truth data. The helper function,
generateGroundTruth, creates a groundTruth object holding a set of sample images and label
definitions.

gTruth = generateGroundTruth;
imageLabeler(gTruth)

7 Video and Image Ground Truth Labeling

7-24

• Click Algorithm > YOLOv4 Object Detection Automation If you do not see this option, ensure
that the current working folder has a folder called +vision/+labeler, with a file named
YOLOv4AutomationAlgorithm.m in it.

• Click Automate. A new panel will open, displaying directions for using the algorithm.

• Click Run. The automated algorithm executes on each image, detecting various categories. After
the run is completed, use the slider or arrow keys to scroll through all the images and verify the
result of the automation algorithm.

• Automation for object labeling for the images is now complete. You can now proceed with labeling
other objects of interest. Once you are satisfied with the object labellings, click Accept to save
and export the results of this labeling run.

 Automate Ground Truth Labeling for Object Detection

7-25

Conclusion

This example demonstrated how to use YOLO V4 pre-trained object detector to accelerate labeling of
objects in Image Labeler app using the AutomationAlgorithm interface. The model can be
replaced with any other detector by modifying the automation algorithm class accordingly.

References

1 Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4: Optimal Speed and
Accuracy of Object Detection.” 2020, arXiv:2004.10934. https://arxiv.org/abs/2004.10934..

2 Lin, T., et al. "Microsoft COCO: Common objects in context. arXiv 2014." arXiv preprint
arXiv:1405.0312 (2014).

7 Video and Image Ground Truth Labeling

7-26

Tracking and Motion Estimation
Examples

• “Visual Tracking of Occluded and Unresolved Objects” on page 8-2
• “Implement Simple Online and Realtime Tracking” on page 8-23
• “Import Camera-Based Datasets in MOT Challenge Format for Object Tracking” on page 8-32
• “Video Stabilization” on page 8-39
• “Video Stabilization Using Point Feature Matching” on page 8-42
• “Face Detection and Tracking Using CAMShift” on page 8-52
• “Face Detection and Tracking Using the KLT Algorithm” on page 8-57
• “Face Detection and Tracking Using Live Video Acquisition” on page 8-63
• “Motion-Based Multiple Object Tracking” on page 8-68
• “Tracking Pedestrians from a Moving Car” on page 8-77
• “Use Kalman Filter for Object Tracking” on page 8-87
• “Detect Cars Using Gaussian Mixture Models” on page 8-98

8

Visual Tracking of Occluded and Unresolved Objects

This example shows how to resolve challenging tracking scenarios when objects are occluded or
when they are in close proximity to each other. The example revisits the “Motion-Based Multiple
Object Tracking” on page 8-68 example available in the Computer Vision Toolbox™. The problem of
motion-based object tracking can be divided into two parts:

1 Detecting moving objects in each frame
2 Tracking the objects detected in each video frame over time

The example uses multi-object trackers available in the Sensor Fusion and Tracking Toolbox™ to
elaborate on the tracking part, which includes the following stages:

1 Associating the detections corresponding to the same object over time
2 Managing the emergence and disappearance of objects in the scene
3 Filtering the noisy measurements made by the detector

Understand the Challenges in Video-Based Tracking

This section presents two major challenges of tracking moving objects in a video frame: Detecting the
objects in the presence of occlusion and providing resolved detections when the objects are close to
each other.

Video and Detector

Define a video reader and video player. This example is based on the atrium video, in which
individuals are walking in an atrium with some plants that can potentially occlude the people.

filename = "atrium.mp4";
vidReader = VideoReader(filename);
vidPlayer = vision.DeployableVideoPlayer;

One way to detect moving objects when the camera is static is to analyze changes in the video frame,
called foreground, relative to the static frame, considered background. The following code section
creates the detector objects that separate foreground from background and connect areas of
foreground into blobs. A blob detector is a simple, yet effective, detector because it does not require
any prior knowledge about the moving objects.

minBlobArea = 400; % Minimum blob size, in pixels, to be considered as a detection
detectorObjects = setupDetectorObjects(minBlobArea);

Run the video and observe the detection, in purple boxes, that are created.

interestingFrameInds = [150,160,170,330,350,370,Inf];
interestingFrames = cell(1,numel(interestingFrameInds)-1);
ind = 0;
frameCount = 0;
numFrames = vidReader.NumFrames;
bboxes = cell(1,numFrames);
centroids = cell(1,numFrames);
while hasFrame(vidReader)
 % Read a video frame and detect objects in it.
 frame = readFrame(vidReader); % Read frame
 frameCount = frameCount + 1; % Increment frame count

8 Tracking and Motion Estimation Examples

8-2

 % Detect blocs in the video frame
 [centroids{frameCount}, bboxes{frameCount}] = detectBlobs(detectorObjects, frame);

 % Annotate frame with blobs
 frame = insertShape(frame,"rectangle",bboxes{frameCount}, ...
 Color="magenta",LineWidth=4);

 % Add frame count in the top right corner
 frame = insertText(frame,[0,0],"Frame: "+int2str(frameCount), ...
 BoxColor="black",TextColor="yellow",BoxOpacity=1);

 % Display Video
 step(vidPlayer,frame);

 % Grab interesting frames
 if frameCount == interestingFrameInds(ind+1)
 ind = ind + 1;
 interestingFrames{ind} = frame;
 end
end

Occlusion and Missed Detections

The first challenge with vision-based tracking is occlusion. Occlusion happens when a moving object
moves behind another object, whether moving or static. In the series of pictures below, follow the
detection of the person on the left when he is about to go behind the plant (frame 150), when he is
completely occluded by the plant (frame 160), and when he emerges on the other side of the plant
(frame 170).

imshow(interestingFrames{1});

 Visual Tracking of Occluded and Unresolved Objects

8-3

imshow(interestingFrames{2});

imshow(interestingFrames{3});

8 Tracking and Motion Estimation Examples

8-4

Unresolved Detections

A second common challenge in tracking is when the detector is unable to resolve two or more objects
when they are near each other. In this video, two individuals approach each other and then continue
on their way. As long as they are far from each other, the blob detector can resolve two distinct blobs
(frame 330). However, when the two individuals are too close to each other, the blob detector merges
the two blobs into a single unresolved blob (frame 350). Only after the two people separate, the blob
detector can resolve them and provides two separate detections (frame 370).

imshow(interestingFrames{4});

 Visual Tracking of Occluded and Unresolved Objects

8-5

imshow(interestingFrames{5});

imshow(interestingFrames{6});

8 Tracking and Motion Estimation Examples

8-6

Use Multi-Object Trackers to Overcome Challenges

Multi-object trackers provide solutions that overcome the challenges described in the previous
section.

Occlusion: To keep track of objects that are temporarily occluded, a multi-object tracker uses a track
management algorithm. A track management algorithm is responsible for three things:

1 Start a new track when a new object appears in the frame, which is called track initialization.
2 Reduce the number of false tracks, which may be caused by false detections from the detector,

using a confirmation logic. For example, it may count how many detections have been associated
with the track before it is considered as real or confirmed.

3 Keep tracks that are temporarily occluded a while longer using a deletion logic. For example, the
tracker may count how many frames the track was not associated to any detection before it gets
deleted.

Unresolved detections: The way the tracker handles unresolved detections depends on the
association algorithm that it uses. If the tracker makes crisp association decisions, like a global
nearest neighbor tracker does, it can only associate the detection to one track and the other track is
considered undetected. If the tracker uses an association algorithm that is probabilistic or allows for
multiple hypotheses, both tracks may be maintained for a while longer.

Convert Blob Detections to objectDetection Objects

All the trackers in the Sensor Fusion and Tracking Toolbox™ require an input in the
objectDetection (Sensor Fusion and Tracking Toolbox) format. This section shows how to convert
the blob detections provided by the blob detector into this format. The blob detection consists of the
centroid, which the tracker will track, and a bounding box, which the tracker will use to draw the

 Visual Tracking of Occluded and Unresolved Objects

8-7

tracks. In objectDetection terms, the centroid is the Measurement and the bounding box that is
only used for visualization is ObjectAttributes. The objectDetection also requires Time, which
in this case will be the frame count. Since the Measurement is reported in pixels and the Time is
reported in frames, the tracker tracks the centroid position in pixels and velocity in pixels per frame
units.

detectionHistory = cell(1,numFrames);
for frameCount = 1:numFrames
 thisFrameCentroids = centroids{frameCount};
 thisFrameBboxes = bboxes{frameCount};
 numMeasurementsInFrame = size(thisFrameCentroids,1);
 detectionsInFrame = cell(numMeasurementsInFrame,1);
 for detCount = 1:numMeasurementsInFrame
 detectionsInFrame{detCount} = objectDetection(...
 frameCount, ... % Use frame count as time
 thisFrameCentroids(detCount,:), ... % Use centroid as measurement in pixels
 MeasurementNoise = diag([100 100]), ... % Centroid measurement noise in pixels
 ObjectAttributes = struct(BoundingBox = thisFrameBboxes(detCount,:)) ... % Attach bounding box information
);
 end
 detectionHistory{frameCount} = detectionsInFrame;
end

Define Multi-Object Tracker

To use a multi-object tracker, first define the object. The following code section defines a global
nearest neighbor (GNN) tracker, trackerGNN (Sensor Fusion and Tracking Toolbox). The term GNN
relates to how the tracker associates detections with tracks, in this case using the best association as
found by the Hungarian algorithm. The benefit of GNN is its simplicity, but, as the next section shows,
different association algorithms can lead to better tracking.

Generally, trackerGNN can handle any number of sensors and any number of tracks. In this video,
there are only several people and one sensor. Therefore, define the tracker for one sensor and 10
tracks.

tracker = trackerGNN(MaxNumSensors=1,MaxNumTracks=10);

Next, define how to track the people in the video. The video has a high frame rate of 30 frames per
second. Within the short periods of time between frames, people motion can be described as mostly
constant velocity. Therefore, tracking the centroid of the bounding box as a constant velocity linear
Kalman filter is the simplest way. The function initcvkf (Sensor Fusion and Tracking Toolbox)
defines an initialization function for a constant velocity Kalman filter.

tracker.FilterInitializationFcn = @initcvkf;

Finally, a multi-object tracker needs to handle the occlusion and appearance/disappearance of people
from the frame. The ConfirmationThreshold and DeletionThreshold properties control how
quickly a track is confirmed after appearance and how quickly it is deleted after disappearance or in
cases of occlusion. As seen in the previous section, there are very few false detections in the video.
Therefore, ConfirmationThreshold can be as low as 2-out-of-2 or even 1-out-of-1. Setting
DeletionThreshold requires more tuning based on the frame rate and length of occlusion events.
23-out-of-23 means that a track is deleted if it is not associated with any detection for 23 consecutive
frames.

tracker.ConfirmationThreshold = [2 2]; % Quick to confirm
tracker.DeletionThreshold = [23 23]; % Slow to delete

8 Tracking and Motion Estimation Examples

8-8

Run Multi-Object Tracker

The following code block runs the tracker using the detections gathered earlier. The tracker outputs,
called tracks, are displayed using a yellow bounding box annotated over the video frame. When a
track is not assigned to any detections in the current frame, it is marked as predicted in the
annotation.

vidReader.CurrentTime = 0; % Reset the video reader
ind = 0;
frameCount = 0;
numFrames = vidReader.NumFrames;
if isempty(vidPlayer.Location)
 vidPlayer = vision.DeployableVideoPlayer;
end

while hasFrame(vidReader)
 % Read a video frame and detect objects in it.
 frame = readFrame(vidReader); % Read frame
 frameCount = frameCount + 1; % Increment frame count

 % Update the tracker
 if isLocked(tracker) || ~isempty(detectionHistory{frameCount})
 tracks = tracker(detectionHistory{frameCount}, frameCount);
 else
 tracks = objectTrack.empty;
 end

 % Add track information to the frame
 frame = insertTracksToFrame(frame, tracks);

 % Add frame count on the top right corner
 frame = insertText(frame,[0,0],"Frame: "+int2str(frameCount), ...
 BoxColor="black",TextColor="yellow",BoxOpacity=1);

 % Display Video
 step(vidPlayer,frame);

 % Grab interesting frames
 if frameCount == interestingFrameInds(ind+1)
 ind = ind + 1;
 interestingFrames{ind} = frame;
 end
end

Observe the Results

This section reviews the same occlusion and unresolved detection situations showed in the first
section. Observe how the tracker keeps predicting the individuals in the frame even as they are not
detected due to occlusion or when the detection is unresolved. Keeping the same track ID, as
indicated by the integer number above the bounding box, shows that the tracker maintains them as
the same object. This is important for continuity from frame to frame as well as counting the total
number of people in the scene.

figure;imshow(interestingFrames{1});

 Visual Tracking of Occluded and Unresolved Objects

8-9

figure;imshow(interestingFrames{2});

figure;imshow(interestingFrames{3});

8 Tracking and Motion Estimation Examples

8-10

figure;imshow(interestingFrames{4});

figure;imshow(interestingFrames{5});

 Visual Tracking of Occluded and Unresolved Objects

8-11

figure;imshow(interestingFrames{6});

8 Tracking and Motion Estimation Examples

8-12

Explore Other Trackers and Track Management Settings

As mentioned above, GNN is just one type of association algorithm. Other association types include
joint probabilistic data association (JPDA) and multiple hypothesis tracking (MHT). These algorithms
are better at handling cases of ambiguity in the association of detections with tracks, such as the one
that the unresolved detection makes. The Sensor Fusion and Tracking Toolbox provides trackers that
are based on JPDA and MHT, trackerJPDA (Sensor Fusion and Tracking Toolbox) and
trackerTOMHT (Sensor Fusion and Tracking Toolbox). All three trackers follow the same conventions
for inputs and outputs as the trackerGNN. Therefore, you can easily switch between them and see
how well they work.

In this section, you can use the provided controls to set the confirmation and deletion thresholds.
Then click on "Run Section" on the toolstrip to run the tracker with the new settings.

By default, the example shows how the JPDA tracker can have a lower DeletionThreshold setting
because it probabilistically associates the unresolved detection with both tracks and thus both of
them are considered assigned to some degree. Lowering the DeletionThreshold value allows for
faster deletion when an object goes out of frame and the track should be deleted.

tracker = ;

tracker.ConfirmationThreshold = sort([,]); % How fast to confirm a track

tracker.DeletionThreshold = sort([,]); % How long to keep a track
frames = runTracker(vidReader,tracker,detectionHistory,interestingFrameInds);
figure;imshow(frames{1});

figure;imshow(frames{2});

 Visual Tracking of Occluded and Unresolved Objects

8-13

figure;imshow(frames{3});

figure;imshow(frames{4});

8 Tracking and Motion Estimation Examples

8-14

figure;imshow(frames{5});

figure;imshow(frames{6});

 Visual Tracking of Occluded and Unresolved Objects

8-15

Use a Different Filter

While a constant velocity Kalman filter is sufficient in this case, sometimes lower frame rates or more
maneuvering objects may require more sophisticated models and filters. This section shows how to
use a different filter type, in this case a particle filter, trackingPF (Sensor Fusion and Tracking
Toolbox). A particle filter maintains the uncertainty about the track state as a collection of particles,
which are predicted and corrected using nonlinear functions, and are resampled by the filter.
Visualize these particles by small circles to observe how the uncertainty grows when the track is
unassigned to a detection and has to be predicted.

release(tracker);
tracker.FilterInitializationFcn = @initcv2dpf;
frames = runTracker(vidReader, tracker, detectionHistory, interestingFrameInds);
figure;imshow(frames{1});

8 Tracking and Motion Estimation Examples

8-16

figure;imshow(frames{2});

figure;imshow(frames{3})

 Visual Tracking of Occluded and Unresolved Objects

8-17

Summary

This example shows how to use multi-object trackers to track people in a video. The trackers use
different association algorithms and allow you to maintain consistent tracking of individuals in the
video. You can tune various parameters, for example the confirmation and deletion thresholds, of
each tracker to improve tracking results.

The example also shows how you can visualize the tracks and determine which tracker to use and
how to tune it. You can also use track metrics, for example the trackCLEARMetrics (Sensor Fusion
and Tracking Toolbox), as shown in the “Implement Simple Online and Realtime Tracking” (Sensor
Fusion and Tracking Toolbox) example, which requires having ground truth.

This example does not show how to tune the trackers. Tracker tuning is explained in the “Tuning a
Multi-Object Tracker” (Sensor Fusion and Tracking Toolbox) example.

Supporting Functions

Create Detector Objects

This function creates a foreground detector and a blob analysis object. These two objects are used to
detect moving objects in the frame.

The foreground detector segments moving objects from the background. It outputs a binary mask,
where the pixel value of 1 corresponds to the foreground and the value of 0 corresponds to the
background.

Connected groups of foreground pixels are likely to correspond to moving objects. The blob analysis
System object finds such groups (called blobs or connected components) and computes their
characteristics, such as their areas, centroids, and the bounding boxes.

8 Tracking and Motion Estimation Examples

8-18

function detectorObjects = setupDetectorObjects(minBlobArea)
% Create System objects for foreground detection and blob analysis

detectorObjects.detector = vision.ForegroundDetector(NumGaussians = 3, ...
 NumTrainingFrames = 40, MinimumBackgroundRatio = 0.7);

detectorObjects.blobAnalyzer = vision.BlobAnalysis(BoundingBoxOutputPort = true, ...
 AreaOutputPort = true, CentroidOutputPort = true, MinimumBlobArea = minBlobArea);
end

Detect Blobs

Use the two detector objects to detect blobs in the frame.

function [centroids, bboxes] = detectBlobs(detectorObjects, frame)
% Expected uncertainty (noise) for the blob centroid.

% Detect foreground.
mask = detectorObjects.detector.step(frame);

% Apply morphological operations to remove noise and fill in holes.
mask = imopen(mask, strel(rectangle = [6, 6]));
mask = imclose(mask, strel(rectangle = [50, 50]));
mask = imfill(mask, "holes");

% Perform blob analysis to find connected components.
[~, centroids, bboxes] = detectorObjects.blobAnalyzer.step(mask);
end

Insert Tracks Information

This function adds bound box annotations to represent the tracks in the frame.

function frame = insertTracksToFrame(frame, tracks)
numTracks = numel(tracks);
boxes = zeros(numTracks, 4);
ids = zeros(numTracks, 1, "int32");
predictedTrackInds = zeros(numTracks, 1);
for tr = 1:numTracks
 % Get bounding boxes.
 boxes(tr, :) = tracks(tr).ObjectAttributes.BoundingBox;
 boxes(tr, 1:2) = (tracks(tr).State(1:2:3))'-boxes(tr,3:4)/2;

 % Get IDs.
 ids(tr) = tracks(tr).TrackID;

 if tracks(tr).IsCoasted
 predictedTrackInds(tr) = tr;
 end
end

predictedTrackInds = predictedTrackInds(predictedTrackInds > 0);

% Create labels for objects that display the predicted rather
% than the actual location.
labels = cellstr(int2str(ids));

isPredicted = cell(size(labels));

 Visual Tracking of Occluded and Unresolved Objects

8-19

isPredicted(predictedTrackInds) = {' predicted'};
labels = strcat(labels, isPredicted);

% Draw the objects on the frame.
frame = insertObjectAnnotation(frame, "rectangle", boxes, labels, ...
 TextBoxOpacity = 0.5);
end

Run the Tracker

This function reads the video frame, runs the tracker with the detections at each frame, and captures
interesting frames.

function frames = runTracker(vidReader, tracker, detectionHistory, interestingFrameInds)
vidReader.CurrentTime = 0; % Reset the video reader
ind = 0;
frameCount = 0;
frames = cell(1,numel(interestingFrameInds)-1);
vidPlayer = vision.DeployableVideoPlayer;
isPF = isParticleFilterUsed(tracker,detectionHistory);
while hasFrame(vidReader)
 % Read a video frame and detect objects in it.
 frame = readFrame(vidReader); % Read frame
 frameCount = frameCount + 1; % Increment frame count

 % Update the tracker
 if isLocked(tracker) || ~isempty(detectionHistory{frameCount})
 tracks = tracker(detectionHistory{frameCount}, frameCount);
 else
 tracks = objectTrack.empty;
 end

 % Add track information to the frame
 frame = insertTracksToFrame(frame, tracks);

 % Add particles to display
 if isPF
 for trackInd = 1:numel(tracks)
 % Get particles
 particles = getTrackFilterProperties(tracker, tracks(trackInd).TrackID, "Particles");
 positions = particles{1};
 positions = positions([1,3],:)';
 % Add particles on frame
 frame = insertMarker(frame, positions, "circle", Color = "yellow", Size = 1);
 end
 end

 % Add frame count in the top right corner
 frame = insertText(frame, [0,0], "Frame: " + frameCount, ...
 BoxColor = "black", TextColor = "yellow", BoxOpacity = 1);

 % Display Video
 step(vidPlayer,frame);

 % Grab interesting frames
 if frameCount == interestingFrameInds(ind+1)
 ind = ind + 1;
 frames{ind} = frame;

8 Tracking and Motion Estimation Examples

8-20

 end
end
end

isParticleFilterUse

This function returns true if the tracker uses a particle filter.

function isPF = isParticleFilterUsed(tracker, detectionHistory)
isemptyCell = cellfun(@(d) isempty(d), detectionHistory);
ind = find(~isemptyCell, 1, "first");
filter = tracker.FilterInitializationFcn(detectionHistory{ind}{1});
isPF = isa(filter, "trackingPF");
end

cvmeas2d

This function returns the two-dimensional measurement of the filter state.

function meas = cvmeas2d(state, varargin)
% Measurement model for 2d constant velocity
meas3d = cvmeas(state,varargin{:});
meas = meas3d(1:2,:);
end

initcv2dpf

This function initializes a 2-D constant velocity particle filter based on an unassigned detection.

function pf = initcv2dpf(detection)
%INITCV2DPF Filter initialization function 2D constant velocity particle filter
% PF = INITCV2DPF(DETECTION) initialized PF, a trackingPF, filter using
% DETECTION, and objectDetection object. PF uses a 2D constant velocity
% measurement model.
%
% The function follows similar steps as initcvpf, but uses the knowledge
% that the measurement is the position in rectangular coordinates.

classToUse = class(detection.Measurement);

% Create Process Noise matrix
scaleAccel = ones(1, classToUse);
Q = eye(2, classToUse) * scaleAccel;

% Store measurement properties
n = numel(detection.Measurement);
if isscalar(detection.MeasurementNoise)
 measurementNoise = detection.MeasurementNoise * eye(n,n,classToUse);
else
 measurementNoise = cast(detection.MeasurementNoise,classToUse);
end

% Number of particles
numParticles = 1000;

%% Initialize the particle filter in Rectangular frame using state and state covariance
posMeas = detection.Measurement(:);
velMeas = zeros(n,1,classToUse);
posCov = cast(detection.MeasurementNoise,classToUse);

 Visual Tracking of Occluded and Unresolved Objects

8-21

velCov = eye(n,n,classToUse);

H1d = cast([1 0], classToUse);
Hpos = blkdiag(H1d, H1d); % position = Hpos * state
Hvel = [zeros(2,1,classToUse),Hpos(:,1:end-1)]; % velocity = Hvel * state
state = Hpos' * posMeas(:) + Hvel' * velMeas(:);
stateCov = Hpos' * posCov * Hpos + Hvel' * velCov * Hvel;
% Measurement related properties are not set for invalid detection.
pf = trackingPF(@constvel,@cvmeas2d,state, NumParticles = numParticles, ...
 StateCovariance = stateCov, ProcessNoise = Q, ...
 MeasurementNoise = measurementNoise, HasAdditiveProcessNoise = false);
setMeasurementSizes(pf,n,n);
end

8 Tracking and Motion Estimation Examples

8-22

Implement Simple Online and Realtime Tracking

This example shows how to implement the Simple Online and Realtime (SORT) object tracking
algorithm [1] using the Sensor Fusion and Tracking Toolbox™ and the Computer Vision Toolbox™.
The example also shows how to evaluate SORT with the CLEAR MOT metrics.

Download Pedestrian Tracking Video

Download the pedestrian tracking video file.

datasetname="PedestrianTracking";
videoURL = "https://ssd.mathworks.com/supportfiles/vision/data/PedestrianTrackingVideo.avi";
if ~exist("PedestrianTrackingVideo.avi","file")
 disp("Downloading Pedestrian Tracking Video (35 MB)")
 websave("PedestrianTrackingVideo.avi",videoURL);
end

Downloading Pedestrian Tracking Video (35 MB)

Refer to the “Import Camera-Based Datasets in MOT Challenge Format for Object Tracking” (Sensor
Fusion and Tracking Toolbox) example to learn how to import the ground truth and detection data
into appropriate Sensor Fusion and Tracking Toolbox™ formats. You use the same pedestrian
tracking dataset in this example. This example provides two sets of detections for the video. The
PedestrianTrackingACFDetections MAT-file contains detections generated from a people
detector using aggregate channel features (ACF). See the peopleDetectorACF function for more
details. The PedestrianTrackingYOLODetections MAT-file contains detections generated from a
YOLO v4 object detector using CSP-DarkNet-53 network and trained on the COCO dataset. See the
yolov4ObjectDetector object for more details. Both detections sets are saved in the
objectDetection (Sensor Fusion and Tracking Toolbox) format. Use the ACF detections first.

load("PedestrianTrackingACFDetections.mat","detections");

Define Tracker Components for SORT

The SORT algorithm is a multi-object tracker with the following characteristics:

• Estimation Filter: A Kalman filter with a constant velocity motion model.
• Association Cost: Intersection over union of bounding boxes of detections relative to bounding

boxes of predicted tracks.
• Association Type: Global Nearest Neighbor using the Hungarian algorithm.
• Track Maintenance: Initialization and deletion of tracks based on the track history logic. Refer to

the “Introduction to Track Logic” (Sensor Fusion and Tracking Toolbox) example for more details.

Define Kalman Filter

The detection measurement is a 2D bounding box:

Z = x, y, w, h

where x and y are the coordinates of the top-left corner of the bounding box in pixels, and w and h
are the width and height of the bounding box in pixels, respectively.

The state of the estimated bounding box follows the definition below:

 Implement Simple Online and Realtime Tracking

8-23

X = u, v, s, r, u̇, v̇, ṡ, ṙ

where u and v are the coordinates of the center of the bounding box, s is the scale (or area) of the
bounding box, and r is the width-to-height ratio of the bounding box. The last four elements are the
time rate of change of the first four elements, respectively. Unlike in [1], the time rate of change of
the aspect ratio is included in the state in this example.

The equations to convert measurement to state are therefore given by:

u = x + w
2

v = y + h
2

s = w h

r = w
h

Note that the equations are nonlinear. The conversion can be done as a pre-processing step outside of
the filter. As a result you can use a linear Kalman filter with a trackingKF (Sensor Fusion and
Tracking Toolbox) object. Alternatively, the conversion can be done in the Kalman filter measurement
function, which requires an extended Kalman filter to handle the nonlinearity. This example uses the
first approach, which is also adopted in [1]. To set up a measurement function for the second
approach, use the helperBBMeasurementFcn function provided with this example.

Assume the detection noise is zero-mean Gaussian, with a covariance R that corresponds to a
standard deviation of 1 for the center position and the aspect-ratio. It also has a standard deviation of

10 pixels for the scale.

R =

1 0 0 0
0 1 0 0
0 0 10 0
0 0 0 1

Use the helperConvertBoundingBox function to convert all the detections to the state convention
and set the measurement noise covariance.

R = diag([1, 1, 10, 1]);
convertedDets = helperConvertBoundingBox(detections,R);

The state transition from times tk to tk + 1 = tk + δt follows a constant velocity model given by:

Xk + 1 = A Xk =
I4 δt × I4
04 I4

Xk

In this example, the video has 1 frame per second and therefore δt = 1. Adjust the value accordingly if
you use a different video.

Initialize the velocity state with zero velocity and a large standard deviation to represent high motion
uncertainty.

The constant velocity model is a crude approximation and does not accurately describe the actual
motion of the pedestrians in the video, nor the variations of the area and aspect-ratio states. As

8 Tracking and Motion Estimation Examples

8-24

shown in the results below, a larger process noise for the u̇, v̇, ṡ state elements produces desirable
results for this application with the current choice of measurement noise.

The helperInitcvbbkf function constructs the Kalman filter from an initial detection. You can
modify this function for your application.

function filter = helperInitcvbbkf(detection)
% Initialize a linear Constant-Velocity Kalman filter for Bounding Box tracking.

% Detection must have a measurement following the [u, v, s, r] format
measurement = detection.Measurement;

% Initialize state with null velocity
X0 = [measurement(1:4)' ; zeros(4,1)];

% Initialize state covariance with high variance on velocity states
P0 = diag([1 1 10 10 1e4 1e4 1e4 1e2]);

% Add some process noise to capture unknown acceleration
Q = diag([1 1 1 1 10 10 10 1]);

dt = 1;
A = [eye(4), dt*eye(4); zeros(4), eye(4)];
H = [eye(4), zeros(4)];

% Construct the filter
filter = trackingKF(State = X0,...
 StateCovariance = P0,...
 ProcessNoise = Q, ...
 MotionModel = "custom",...
 StateTransitionModel = A,...
 MeasurementModel = H);

end

See “Linear Kalman Filters” (Sensor Fusion and Tracking Toolbox) to learn more about linear Kalman
filters.

Define Association Cost Function and Association Threshold

In SORT, association between bounding box detections and current tracks requires the calculation of
association cost between each detection and each current track. Also, a lower cost must indicate that
the detection is more likely to originate from the paired track. Use the bboxOverlapRatio function
from Computer Vision Toolbox™ to calculate the intersection over union similarity for each detection
and track pair. You must convert the detection measurements and track states back to the initial
bounding box format before using bboxOverlapRatio.

function iou = similarityIoU(tracks, detections)
% Calculate the Intersection over Union similarity between tracks and
% detections

states = [tracks.State];
bbstate = helperBBMeasurementFcn(states); % Convert states to [x, y, w, h] for bboxOverlapRatio
bbmeas = vertcat(detections.Measurement);
bbmeas = helperBBMeasurementFcn(bbmeas')';
iou = bboxOverlapRatio(bbstate', bbmeas); % Bounding boxes must be concatenated vertically
end

 Implement Simple Online and Realtime Tracking

8-25

The overlap ratio is a measure of similarity and a higher value indicates a stronger match. Therefore,
you use the negative of the similarity as the cost value. The helperSORTCost function predicts all
current tracks maintained by the tracker and formulates the cost matrix for all detection-track pairs.

function costMatrix = helperSORTCost(tracker, dets)
D = numel(dets);
T = tracker.NumTracks;

% Return early if no detections or no tracks
if D*T == 0
 costMatrix = zeros(T,D);
 return
end

time = dets(1).Time;
tracks = predictTracksToTime(tracker, "all",time);
costMatrix = -similarityIoU(tracks, dets);
end

Like in most multi-object tracking algorithms, setting a threshold for the association of detections to
tracks is beneficial in SORT. When the association cost exceeds this threshold, the assignment is
forbidden. You formulate the threshold as the minimum similarity IoUmin. This parameter of the
SORT algorithm should be tuned for each application. For the video used in this example, a minimum
similarity value of 0.05 gives good results due to the low density of pedestrian and the low framerate.

IoUmin = ;

Set the AssignmentThreshold property of the tracker to the negative of the minimum similarity in
the following section.

Use Global Nearest Neighbor Association

SORT relies on a one-to-one association between detections and tracks by finding the minimal cost of
association. This is also known as global nearest neighbor (GNN) in the field of multi-object tracking.
Therefore, you can use the trackerGNN (Sensor Fusion and Tracking Toolbox) System Object™ to
implement SORT. When creating the tracker, specify the tracking filter initialization function as
helperInitcvbbkf and set the HasCostMatrixInput property to true to use the custom
helperSortCost function instead of the default cost calculation.

tracker = trackerGNN(FilterInitializationFcn=@helperInitcvbbkf,...
 HasCostMatrixInput=true,...
 AssignmentThreshold= -IoUmin);

Define Track Maintenance

Objects can leave the video frame or become occluded for brief or long periods. You need to define
the maximum number of frames without assigned detections, TLost , before deleting a track. The
tracker parameter TLost can be tuned for each application and a value of 3 shows good results for this
video. Additionally, SORT requires an object to be detected in two consecutive frames before
confirming a track. You set the ConfirmationThreshold property of the tracker accordingly.

TLost = ; % Number of consecutive missed frames to delete a track
tracker.ConfirmationThreshold=[2 2];
tracker.DeletionThreshold=[TLost TLost];

8 Tracking and Motion Estimation Examples

8-26

Run SORT with ACF Detections

Run SORT on the video and detections. Filter out ACF detections with a score lower than 15 to
improve the tracking performance. You can tune the score threshold for specific scenarios. Log the
tracks at each timestep for offline evaluation.

detectionScoreThreshold = 15;
% Initialize track log
acfSORTTrackLog = objectTrack.empty;
reader = VideoReader(datasetname+"Video.avi");

for i=1:reader.NumFrames

 % Parse detections set to retrieve detections on the ith frame
 curFrameDetections = convertedDets{i};
 attributes = [curFrameDetections.ObjectAttributes];
 scores = [attributes.Score];
 highScoreDetections = curFrameDetections(scores > detectionScoreThreshold);

 % Calculate association cost matrix
 iouCost = helperSORTCost(tracker,highScoreDetections);
 % Update tracker
 tracks = tracker(highScoreDetections, reader.CurrentTime, iouCost);

 % Advance reader
 frame = readFrame(reader);
 frame = helperAnnotateTrack(tracks, frame);
 % Uncomment the line below to show detection
 % frame = helperAnnotateConvertedDetection(highScoreDetections, frame);
 imshow(frame);

 % Log tracks for evaluation
 acfSORTTrackLog = [acfSORTTrackLog ; tracks]; %#ok<AGROW>
end

 Implement Simple Online and Realtime Tracking

8-27

By the end of the video, a pedestrian is tracked with a trackID of 45. The sequence contains exactly
16 distinct pedestrians. Apparently, the tracker has confirmed new tracks for the same true object
several times as well as possibly confirmed false positive tracks.

SORT can struggle to initiate for tracking fast moving objects because it initializes a tentative track in
the first frame with zero velocity and the detection of the same object in the next frame may not
overlap with the prediction. This challenge is further accentuated in videos with low framerate like
the video in this example. For instance, track 5 is not confirmed until visible for multiple frames.

Notice that pedestrians who leave the field of view of the camera or are occluded by another person
for a few frames are lost by the tracker. This result is a combination of using the constant velocity
model to predict the position of the track and using the IoU association cost, which cannot associate a
predicted track to a new detection if the positions are too far.

The quality of the detections also has noticeable impacts on tracking results. For example, the ACF
detections of the tree at the end of the street are associated to track 3.

In the next section, you evaluate SORT with the YOLOv4 detections.

8 Tracking and Motion Estimation Examples

8-28

Run SORT with YOLOv4 Detections

In this section you run SORT with the detections obtained from the YOLOv4 detector. The
helperRunSORT function repeats the simulation loop from the previous section. The range of scores
for YOLOv4 is much higher and the detection quality is sufficiently good such that you do not need to
filter out low score detections.

% Load and convert YOLOv4 detections
load("PedestrianTrackingYOLODetections.mat","detections");
convertedDets = helperConvertBoundingBox(detections, R);
detectionScoreThreshold = -1;
showAnimation = true;

yoloSORTTrackLog = helperRunSORT(tracker, convertedDets, detectionScoreThreshold, showAnimation);

The YOLOv4-SORT combination created a total of 24 tracks on the video, indicating that fewer track
fragmentations occurred as compared to the ACF detections. From the results, track fragmentations
and ID switches are still noticeable.

More recent tracking algorithms, such as DeepSORT, modify the association cost to include
appearance features in addition to IoU. These algorithms show great improvements in accuracy and
are able to keep tracks over longer occlusions thanks to re-identification networks.

 Implement Simple Online and Realtime Tracking

8-29

Evaluate SORT with the CLEAR MOT Metrics

The CLEAR multi-object tracking metrics provide a standard set of tracking metrics to evaluate the
quality of tracking algorithm [2]. These metrics are popular for video-based tracking applications.
Use the trackCLEARMetrics (Sensor Fusion and Tracking Toolbox) object to evaluate the CLEAR
metrics for the two SORT runs.

The CLEAR metrics requires a similarity method to match track and true object pairs in each frame.
In this example, you use the IoU2d similarity method and set the SimilarityThreshold property
to 0.1. This means that a track can only be considered a true positive match with a truth object if
their bounding boxes overlap by at least 10%. The metric results can vary depending on the choice of
this threshold.

threshold = ;
tcm = trackCLEARMetrics(SimilarityMethod ="IoU2d", SimilarityThreshold = threshold);

The first step is to convert the objectTrack format to the trackCLEARMetrics input format
specific to the IoU2d similarity method. Convert the two logs of tracks obtained previously.

acfTrackedObjects = repmat(struct("Time",0,"TrackID",1,"BoundingBox", [0 0 0 0]),size(acfSORTTrackLog));
for i=1:numel(acfTrackedObjects)
 acfTrackedObjects(i).Time = acfSORTTrackLog(i).UpdateTime;
 acfTrackedObjects(i).TrackID = acfSORTTrackLog(i).TrackID;
 acfTrackedObjects(i).BoundingBox(:) = helperBBMeasurementFcn(acfSORTTrackLog(i).State(1:4));
end

yoloTrackedObjects = repmat(struct("Time",0,"TrackID",1,"BoundingBox", [0 0 0 0]),size(yoloSORTTrackLog));
for i=1:numel(yoloTrackedObjects)
 yoloTrackedObjects(i).Time = yoloSORTTrackLog(i).UpdateTime;
 yoloTrackedObjects(i).TrackID = yoloSORTTrackLog(i).TrackID;
 yoloTrackedObjects(i).BoundingBox(:) = helperBBMeasurementFcn(yoloSORTTrackLog(i).State(1:4));
end

The PedestrianTrackingGroundTruth MAT-file contains the log of truth objects formatted as an
array of structures. Each structure contains the following fields: TruthID, Time, and BoundingBox.
After loading the ground truth, call the evaluate object function to obtain the metrics as a table.

load("PedestrianTrackingGroundTruth.mat","truths");
acfSORTresults = evaluate(tcm, acfTrackedObjects, truths);
yoloSORTresults = evaluate(tcm, yoloTrackedObjects, truths);

Concatenate the two tables and add a column with the name of each tracker and object detector.

allResults = [table("ACF+SORT",VariableNames = "Tracker") , acfSORTresults ; ...
 table("YOLOv4+SORT",VariableNames = "Tracker"), yoloSORTresults];

disp(allResults);

 Tracker MOTA (%) MOTP (%) Mostly Tracked (%) Partially Tracked (%) Mostly Lost (%) False Positive False Negative Recall (%) Precision (%) False Track Rate ID Switches Fragmentations
 _____________ ________ ________ __________________ _____________________ _______________ ______________ ______________ __________ _____________ ________________ ___________ ______________

 "ACF+SORT" 64.043 66.943 57.143 35.714 7.1429 15 215 66.821 96.652 0.088757 3 15
 "YOLOv4+SORT" 82.099 90.48 78.571 14.286 7.1429 21 94 85.494 96.348 0.12426 1 9

The two main summary metrics are Multi-Object Tracking Accuracy (MOTA) and Multi-Object
Tracking Precision (MOTP). MOTA is a good indicator of the data association quality while MOTP

8 Tracking and Motion Estimation Examples

8-30

indicates the similarity of each track bounding boxes with their matched true bounding boxes. The
metrics confirm that the YOLOv4 and SORT combination tracks better than the ACF and SORT
combination. It scores roughly 20 percent higher for both MOTA and MOTP.

ID switches and fragmentations are two other metrics that provide good insights on a tracker's ability
to track each pedestrian with a unique track ID. Fragmentations can occur when a true object is
obstructed and the tracker cannot maintain the track continuously over several frames. ID switches
can occur when true objects trajectories are crossing and their assigned track IDs switch afterwards.

Refer to the trackCLEARMetrics (Sensor Fusion and Tracking Toolbox) page for additional
information about all the CLEAR metrics quantities and their significance.

Conclusion

In this example you learned how to implement SORT. Also, you evaluated this tracking algorithm on a
pedestrian tracking video. You discovered that the overall tracking performance depends strongly on
the quality of the detections. You can reuse this example with your own video and detections.
Furthermore, you can use the “Import Camera-Based Datasets in MOT Challenge Format for Object
Tracking” (Sensor Fusion and Tracking Toolbox) example to import videos and detections from the
MOT Challenge [3].

Reference

[1] Bewley, Alex, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. "Simple online and
realtime tracking." In 2016 IEEE international conference on image processing (ICIP), pp. 3464-3468.
IEEE, 2016.

[2] Bernardin, Keni, and Rainer Stiefelhagen. "Evaluating multiple object tracking performance: the
clear mot metrics." EURASIP Journal on Image and Video Processing 2008 (2008): 1-10.

[3] https://motchallenge.net/

 Implement Simple Online and Realtime Tracking

8-31

https://motchallenge.net/

Import Camera-Based Datasets in MOT Challenge Format for
Object Tracking

This example shows how to read camera image sequences and convert both ground truth and
detections to Sensor Fusion and Tracking Toolbox™ formats using a custom dataset that stores
ground truth and detetions using the MOT Challenge format [1, 2]. You can modify the example to use
any dataset that stores ground truth in the MOT Challenge format. Prior to using another dataset
with this example, check the dataset license to ensure you have sufficient rights to use the dataset for
your application.

Overview of MOT Challenge Dataset Format

The dataset in this example is based on a camera recording of moving pedestrians. The dataset
contains the video images, annotated ground truth, detections, and video metadata. The data is
organized following the 2D MOT Challenge format [1, 2]. Download the Pedestrian Tracking dataset
as follows. When running a different dataset, modify the datasetName variable accordingly.

datasetName = "PedestrianTracking";
datasetURL = "https://ssd.mathworks.com/supportfiles/vision/data/PedestrianTrackingDataset.zip";
if ~exist(datasetName,"dir")
 disp("Downloading Pedestrian Tracking dataset (350 MB)")
 websave("PedestrianTrackingDataset",datasetURL);
 unzip("PedestrianTrackingDataset.zip");
end

Downloading Pedestrian Tracking dataset (350 MB)

The sequence images saved in PNG format are named sequentially with a 6-digit file name under the
img1 folder. The metadata text file, named seqinfo.ini, contains information such as the number
of frames, number of frames per second, frame size, and file extension.

type(datasetName+"\seqinfo.ini");

[Sequence]
name=PedestrianTracking
imDir=img1
frameRate=1
seqLength=169
imWidth=1288
imHeight=964
imExt=.png

The ground truth and detection files contain comma-separated values and each line represents an
object instance or an object detection as shown in the table below.

Only ground truth entries contain identifier, valid status, class, and visibility. The identifier is an
integer unique to each true object across the full sequence. If a person (or any other class object)

8 Tracking and Motion Estimation Examples

8-32

disappears for an extended period, the person gets a new unique identifier. The class ID is a number
between 1 and 12 with the following definitions:

1 Pedestrian
2 Person on vehicle
3 Car
4 Bicycle
5 Motorbike
6 Non motorized vehicle
7 Static person
8 Distractor
9 Occluder
10 Occluder on the ground
11 Occluder full
12 Reflection

The valid flag is either 0 or 1, and a flag of 1 means that this truth instance is an object of interest for
the tracking task and evaluation. The visibility is a percentage value ranging from 0 to 1,
representing from completely occluded to fully visible. In this video sequence, visibility percentages
are populated manually by visual inspection.

The detection entries report a confidence or score value. The score of each detection can be used as a
parameter for the tracking task. Inspect the first ten lines of the ground truth and detection files.

dbtype(datasetName+filesep+"gt"+filesep+"gt.txt", "1:10")

1 1,1,925.61,357.04,61.68,154.38,1,1,1.0
2 2,1,939.98,355.44,61.31,160.83,1,1,1.0
3 3,1,951.04,354.69,57.98,167.60,1,1,1.0
4 4,1,979.43,353.49,69.72,175.43,1,1,1.0
5 5,1,1000.44,351.30,64.75,188.71,1,1,1.0
6 6,1,1011.07,351.82,78.49,197.55,1,1,1.0
7 7,1,1051.12,348.04,77.49,209.13,1,1,1.0
8 8,1,1086.59,351.90,73.40,220.54,1,1,1.0
9 9,1,1099.16,353.61,91.99,237.83,1,1,1.0
10 10,1,1154.00,350.00,85.00,266.00,1,1,1.0

dbtype(datasetName+filesep+"det"+filesep+"det.txt", "1:10")

1 1,-1,922.00,355.00,63.00,155.00,61.06,-1,-1
2 2,-1,8.00,370.00,41.00,100.00,8.44,-1,-1
3 2,-1,934.00,355.00,63.00,155.00,87.51,-1,-1
4 3,-1,953.00,355.00,63.00,155.00,84.78,-1,-1
5 4,-1,460.00,293.00,53.00,129.00,8.52,-1,-1
6 4,-1,984.00,354.00,69.00,169.00,88.41,-1,-1
7 5,-1,1002.00,355.00,63.00,155.00,82.14,-1,-1
8 6,-1,460.00,293.00,53.00,129.00,9.46,-1,-1
9 6,-1,1015.00,357.00,75.00,184.00,79.75,-1,-1
10 7,-1,8.00,370.00,41.00,100.00,7.23,-1,-1

Following the rules described in [1] to determine the size of each bounding box. Each ground truth
instance is annotated using the Video Labeler from the Computer Vision Toolbox™ . Note that the

 Import Camera-Based Datasets in MOT Challenge Format for Object Tracking

8-33

cars at the end of the street and some visible shadows and reflections are ignored. The detections are
obtained with the Aggregate Channel Feature (ACF) people detector, trained using the INRIA person
data set. See the peopleDetectorACF function for more details.

Visualize Video Sequences

First, import the sequence info into a MATLAB structure using the helperReadMOTSequenceInfo
function provided with this example.

sequenceInfo = helperReadMOTSequenceInfo(datasetName+filesep+"seqinfo.ini")

sequenceInfo = struct with fields:
 FrameRate: 1
 SequenceLength: 169
 ImageWidth: 1288
 ImageHeight: 964
 ImageExtension: ".png"
 ImagePath: "PedestrianTracking\img1\"

Write the images to a video file using the VideoWriter object. This step helps to visualize and
inspect the data and is not required for importing the dataset to perform object tracking.

if ~exist(datasetName+"Video.avi","file")
 v = VideoWriter(datasetName+"Video.avi");
 v.FrameRate = sequenceInfo.FrameRate;
 open(v);
 for i=1:sequenceInfo.SequenceLength
 frameName = sequenceInfo.ImagePath + sprintf("%06d",i) + sequenceInfo.ImageExtension;
 writeVideo(v, imread(frameName));
 imshow(frameName);
 end
 close(v);
end

8 Tracking and Motion Estimation Examples

8-34

Import Ground Truth and Detections

Next, import the ground truth data into the trackCLEARMetrics (Sensor Fusion and Tracking
Toolbox) format. MOT Challenge datasets provide ground truth for training a tracking algorithm and
allow to compute metrics such as the CLEAR metrics. The creation and evaluation of a tracker is
shown in the “Implement Simple Online and Realtime Tracking” (Sensor Fusion and Tracking
Toolbox) example.

Use the helperReadMOTGroundTruth function to convert the ground truth dataset.

truths = helperReadMOTGroundTruth(sequenceInfo);
disp(truths);

 648×1 struct array with fields:

 Time
 TruthID
 BoundingBox
 ClassID
 Visible

 Import Camera-Based Datasets in MOT Challenge Format for Object Tracking

8-35

Next, convert the detections into the objectDetection (Sensor Fusion and Tracking Toolbox)
format. You can use this format as inputs to multi-object trackers in the Sensor Fusion and Tracking
Toolbox™. The helperReadMOTDetection function copies the bounding box information from each
entry into the Measurement field of an objectDetection object. Use the frame number and
framerate to fill in the Time property for each detection. The MOT Challenge format reserves class
information for ground truth, and each detection keeps the default ObjectClassID value of 0 in this
case. The ObjectAttributes field stores the score of each detection as a structure. SensorIndex,
ObjectClassParameters, MeasurementParameters, and MeasurementNoise have default
values. You may need to specify these three properties when using detections with a tracker.

detections = helperReadMOTDetection(sequenceInfo);
disp(detections);

 740×1 objectDetection array with properties:

 Time
 Measurement
 MeasurementNoise
 SensorIndex
 ObjectClassID
 ObjectClassParameters
 MeasurementParameters
 ObjectAttributes

disp(detections(1));

 objectDetection with properties:

 Time: 0
 Measurement: [922 355 63 155]
 MeasurementNoise: [4×4 double]
 SensorIndex: 1
 ObjectClassID: 0
 ObjectClassParameters: []
 MeasurementParameters: {}
 ObjectAttributes: [1×1 struct]

disp(detections(1).ObjectAttributes);

 Score: 61.0600

Visualize Ground Truth and Detections

Annotate each frame with the bounding boxes of the ground truth and detection data. Use the
helperAnnotateGroundTruth and helperAnnotateDetection functions to extract the frame
annotation information.

showDetections = ;

showGroundTruth = ;

reader = VideoReader(datasetName+"Video.avi");
groundTruthHistoryDuration = 3/sequenceInfo.FrameRate; %Time persistence (s) of ground truth trajectories
pastTruths = [];
for i=1:sequenceInfo.SequenceLength
 % Find truths and detection in i-th frame
 time = (i-1)/sequenceInfo.FrameRate;

8 Tracking and Motion Estimation Examples

8-36

 curDets = detections(ismembertol([detections.Time],time));
 curTruths = truths(ismembertol([truths.Time],time));

 frame = readFrame(reader);
 if showDetections
 frame = helperAnnotateDetection(frame, curDets);
 end
 if showGroundTruth
 frame = helperAnnotateGroundTruth(frame, curTruths, pastTruths);
 end
 pastTruths = [pastTruths;curTruths]; %#ok<AGROW>
 pastTruths([pastTruths.Time]<time-groundTruthHistoryDuration)=[];
 imshow(frame);
end

Conclusion

In this example you have learned how to import ground truth and detection data saved in the MOT
Challenge format into MATLAB. You also visualized the bounding boxes of truths and detections while
writing the images to a video file.

 Import Camera-Based Datasets in MOT Challenge Format for Object Tracking

8-37

Reference

[1] Milan, Anton, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler. "MOT16: A
benchmark for multi-object tracking." arXiv preprint arXiv:1603.00831 (2016).

[2] https://motchallenge.net/

8 Tracking and Motion Estimation Examples

8-38

https://motchallenge.net/

Video Stabilization

This example shows how to remove the effect of camera motion from a video stream.

Introduction

In this example we first define the target to track. In this case, it is the back of a car and the license
plate. We also establish a dynamic search region, whose position is determined by the last known
target location. We then search for the target only within this search region, which reduces the
number of computations required to find the target. In each subsequent video frame, we determine
how much the target has moved relative to the previous frame. We use this information to remove
unwanted translational camera motions and generate a stabilized video.

Initialization

Create a System object™ to read video from a multimedia file. We set the output to be of intensity
only video.

% Input video file which needs to be stabilized.
filename = "shaky_car.avi";

hVideoSource = VideoReader(filename);

Create a template matcher System object to compute the location of the best match of the target in
the video frame. We use this location to find translation between successive video frames.

hTM = vision.TemplateMatcher("ROIInputPort", true, ...
 "BestMatchNeighborhoodOutputPort", true);

Create a System object to display the original video and the stabilized video.

hVideoOut = vision.VideoPlayer("Name", "Video Stabilization");
hVideoOut.Position(1) = round(0.4*hVideoOut.Position(1));
hVideoOut.Position(2) = round(1.5*(hVideoOut.Position(2)));
hVideoOut.Position(3:4) = [650 350];

Here we initialize some variables used in the processing loop.

pos.template_orig = [109 100]; % [x y] upper left corner
pos.template_size = [22 18]; % [width height]
pos.search_border = [15 10]; % max horizontal and vertical displacement
pos.template_center = floor((pos.template_size-1)/2);
pos.template_center_pos = (pos.template_orig + pos.template_center - 1);
W = hVideoSource.Width; % Width in pixels
H = hVideoSource.Height; % Height in pixels
BorderCols = [1:pos.search_border(1)+4 W-pos.search_border(1)+4:W];
BorderRows = [1:pos.search_border(2)+4 H-pos.search_border(2)+4:H];
sz = [W, H];
TargetRowIndices = ...
 pos.template_orig(2)-1:pos.template_orig(2)+pos.template_size(2)-2;
TargetColIndices = ...
 pos.template_orig(1)-1:pos.template_orig(1)+pos.template_size(1)-2;
SearchRegion = pos.template_orig - pos.search_border - 1;
Offset = [0 0];
Target = zeros(18,22);
firstTime = true;

 Video Stabilization

8-39

Stream Processing Loop

This is the main processing loop which uses the objects we instantiated above to stabilize the input
video.

while hasFrame(hVideoSource)
 input = im2gray(im2double(readFrame(hVideoSource)));

 % Find location of Target in the input video frame
 if firstTime
 Idx = int32(pos.template_center_pos);
 MotionVector = [0 0];
 firstTime = false;
 else
 IdxPrev = Idx;

 ROI = [SearchRegion, pos.template_size+2*pos.search_border];
 Idx = hTM(input,Target,ROI);

 MotionVector = double(Idx-IdxPrev);
 end

 [Offset, SearchRegion] = updatesearch(sz, MotionVector, ...
 SearchRegion, Offset, pos);

 % Translate video frame to offset the camera motion
 Stabilized = imtranslate(input, Offset, "linear");

 Target = Stabilized(TargetRowIndices, TargetColIndices);

 % Add black border for display
 Stabilized(:, BorderCols) = 0;
 Stabilized(BorderRows, :) = 0;

 TargetRect = [pos.template_orig-Offset, pos.template_size];
 SearchRegionRect = [SearchRegion, pos.template_size + 2*pos.search_border];

 % Draw rectangles on input to show target and search region
 input = insertShape(input, "rectangle", [TargetRect; SearchRegionRect],...
 "Color", "white");
 % Display the offset (displacement) values on the input image
 txt = sprintf("(%+05.1f,%+05.1f)", Offset);
 input = insertText(input(:,:,1),[191 215],txt,"FontSize",16, ...
 "TextColor", "white", "BoxOpacity", 0);
 % Display video
 hVideoOut([input(:,:,1) Stabilized]);
end

8 Tracking and Motion Estimation Examples

8-40

Conclusion

Using the Computer Vision Toolbox™ functionality from MATLAB® command line it is easy to
implement complex systems like video stabilization.

Appendix

The following helper function is used in this example.

• updatesearch.m

 Video Stabilization

8-41

Video Stabilization Using Point Feature Matching

This example shows how to stabilize a video that was captured from a jittery platform. One way to
stabilize a video is to track a salient feature in the image and use this as an anchor point to cancel out
all perturbations relative to it. This procedure, however, must be bootstrapped with knowledge of
where such a salient feature lies in the first video frame. In this example, we explore a method of
video stabilization that works without any such a priori knowledge. It instead automatically searches
for the "background plane" in a video sequence, and uses its observed distortion to correct for
camera motion.

This stabilization algorithm involves two steps. First, we determine the affine image transformations
between all neighboring frames of a video sequence using the estgeotform2d function applied to
point correspondences between two images. Second, we warp the video frames to achieve a
stabilized video. We will use the Computer Vision Toolbox™, both for the algorithm and for display.

Step 1. Read Frames from a Movie File

Here we read in the first two frames of a video sequence. We read them as intensity images since
color is not necessary for the stabilization algorithm, and because using grayscale images improves
speed. Below we show both frames side by side, and we produce a red-cyan color composite to
illustrate the pixel-wise difference between them. There is obviously a large vertical and horizontal
offset between the two frames.

filename = 'shaky_car.avi';
hVideoSrc = VideoReader(filename);

imgA = im2gray(im2single(readFrame(hVideoSrc))); % Read first frame into imgA
imgB = im2gray(im2single(readFrame(hVideoSrc))); % Read second frame into imgB

figure; montage({imgA,imgB});
title(['Frame A',repmat(' ',[1 50]),'Frame B']);

figure
imshowpair(imgA,imgB,ColorChannels='red-cyan');
title('Color composite (frame A = red, frame B = cyan)');

8 Tracking and Motion Estimation Examples

8-42

Step 2. Collect Salient Points from Each Frame

Our goal is to determine a transformation that will correct for the distortion between the two frames.
We can use the estgeotform2d function for this, which will return an affine transformation. As input
we must provide this function with a set of point correspondences between the two frames. To
generate these correspondences, we first collect points of interest from both frames, then select
likely correspondences between them.

In this step we produce these candidate points for each frame. To have the best chance that these
points will have corresponding points in the other frame, we want points around salient image
features such as corners. For this we use the detectFASTFeatures function, which implements one
of the fastest corner detection algorithms.

The detected points from both frames are shown in the figure below. Observe how many of them
cover the same image features, such as points along the tree line, the corners of the large road sign,
and the corners of the cars.

ptThresh = 0.1;
pointsA = detectFASTFeatures(imgA,MinContrast=ptThresh);
pointsB = detectFASTFeatures(imgB,MinContrast=ptThresh);

% Display corners found in images A and B.
figure
imshow(imgA)
hold on
plot(pointsA)
title('Corners in A')

 Video Stabilization Using Point Feature Matching

8-43

figure
imshow(imgB)
hold on
plot(pointsB)
title('Corners in B')

Step 3. Select Correspondences Between Points

Next we pick correspondences between the points derived above. For each point, we extract a Fast
Retina Keypoint (FREAK) descriptor centered around it. The matching cost we use between points is

8 Tracking and Motion Estimation Examples

8-44

the Hamming distance since FREAK descriptors are binary. Points in frame A and frame B are
matched putatively. Note that there is no uniqueness constraint, so points from frame B can
correspond to multiple points in frame A.

% Extract FREAK descriptors for the corners
[featuresA,pointsA] = extractFeatures(imgA,pointsA);
[featuresB,pointsB] = extractFeatures(imgB,pointsB);

Match features which were found in the current and the previous frames. Since the FREAK
descriptors are binary, the matchFeatures function uses the Hamming distance to find the
corresponding points.

indexPairs = matchFeatures(featuresA,featuresB);
pointsA = pointsA(indexPairs(:,1),:);
pointsB = pointsB(indexPairs(:,2),:);

The image below shows the same color composite given above, but added are the points from frame A
in red, and the points from frame B in green. Yellow lines are drawn between points to show the
correspondences selected by the above procedure. Many of these correspondences are correct, but
there is also a significant number of outliers.

figure
showMatchedFeatures(imgA,imgB,pointsA,pointsB)
legend('A','B')

Step 4. Estimating Transformations from Noisy Correspondences

Many of the point correspondences obtained in the previous step are incorrect. But we can still derive
a robust estimate of the geometric transformation between the two images using the M-estimator
SAmple Consensus (MSAC) algorithm, which is a variant of the RANSAC algorithm. The MSAC
algorithm is implemented in the estgeotform2d function. This function, when given a set of point
correspondences, will search for the valid inlier correspondences. From these it will then derive the
affine transformation that makes the inliers from the first set of points match most closely with the
inliers from the second set. This affine transformation will be a 3-by-3 matrix of the form:

 Video Stabilization Using Point Feature Matching

8-45

[a_1 a_2 t_x;
 a_3 a_4 t_y;
 0 0 1]

The parameters a define scale, rotation, and shearing effects of the transformation, while the
parameters t are translation parameters. This transformation can be used to warp the images such
that their corresponding features will be moved to the same image location.

A limitation of the affine transformation is that it can only alter the imaging plane. Thus it is ill-suited
to finding the general distortion between two frames taken of a 3-D scene, such as with this video
taken from a moving car. But it does work under certain conditions that we shall describe shortly.

[tform,inlierIdx] = estgeotform2d(pointsB,pointsA,'affine');
pointsBm = pointsB(inlierIdx,:);
pointsAm = pointsA(inlierIdx,:);
imgBp = imwarp(imgB,tform,OutputView=imref2d(size(imgB)));
pointsBmp = transformPointsForward(tform,pointsBm.Location);

Below is a color composite showing frame A overlaid with the reprojected frame B, along with the
reprojected point correspondences. The results are excellent, with the inlier correspondences nearly
exactly coincident. The cores of the images are both well aligned, such that the red-cyan color
composite becomes almost purely black-and-white in that region.

Note how the inlier correspondences are all in the background of the image, not in the foreground,
which itself is not aligned. This is because the background features are distant enough that they
behave as if they were on an infinitely distant plane. Thus, even though the affine transformation is
limited to altering only the imaging plane, here that is sufficient to align the background planes of
both images. Furthermore, if we assume that the background plane has not moved or changed
significantly between frames, then this transformation is actually capturing the camera motion.
Therefore correcting for this will stabilize the video. This condition will hold as long as the motion of
the camera between frames is small enough, or, conversely, if the video frame rate is high enough.

figure
showMatchedFeatures(imgA,imgBp,pointsAm,pointsBmp)
legend('A','B')

8 Tracking and Motion Estimation Examples

8-46

Step 5. Transformation Approximation and Smoothing

Given a set of video frames Ti, i = 0, 1, 2…, we can now use the above procedure to estimate the
distortion between all frames Ti and Ti + 1 as affine transformations, Hi. Thus the cumulative
distortion of a frame i relative to the first frame will be the product of all the preceding inter-frame
transformations, or

Hcumulative, i = Hi ∏
j = 0

i− 1

We could use all the six parameters of the affine transformation above, but, for numerical simplicity
and stability, we choose to re-fit the matrix as a simpler scale-rotation-translation transformation.
This has only four free parameters compared to the full affine transformation's six: one scale factor,
one angle, and two translations. This new transformation matrix is of the form:

[s*cos(ang) s*sin(ang) t_x;
 s*-sin(ang) s*cos(ang) t_y;
 0 0 1]

We show this conversion procedure below by fitting the above-obtained transformation H with a
scale-rotation-translation equivalent, HsRt. To show that the error of converting the transformation is
minimal, we reproject frame B with both transformations and show the two images below as a red-
cyan color composite. As the image appears black and white, obviously the pixel-wise difference
between the different reprojections is negligible.

% Extract scale and rotation part sub-matrix
tformAffine = tform.A;
R = tformAffine(1:2,1:2);

% Compute theta from mean of two possible arctangents
theta = mean([atan2(-R(3),R(1)) atan2(R(2),R(4))]);

 Video Stabilization Using Point Feature Matching

8-47

% Compute scale from mean of two stable mean calculations
scale = mean(R([1 4])/cos(theta));

% Convert theta to degrees
thetad = rad2deg(theta);

% Translation remains the same
translation = tformAffine(1:2,3);

% Reconstitute new s-R-t transformation and store it in a simtform2d object
tformSRT = simtform2d(scale,thetad,translation);

imgBold = imwarp(imgB,tform,OutputView=imref2d(size(imgB)));
imgBsRt = imwarp(imgB,tformSRT,OutputView=imref2d(size(imgB)));

figure(2)
clf
imshowpair(imgBold,imgBsRt,'ColorChannels','red-cyan'), axis image;
title('Color composite of affine and similarity outputs');

Step 6. Run on the Full Video

Now we apply the above steps to smooth a video sequence. For readability, the above procedure of
estimating the transformation between two images has been placed in the MATLAB® function
cvexEstStabilizationTform. The function cvexTformToSRT also converts a general affine
transformation into a similarity (scale-rotation-translation) transformation.

At each step we calculate the transformation H between the present frames. We fit this as an s-R-t
transform, HsRt. Then we combine this into the cumulative transformation, Hcumulative, which
describes all camera motion since the first frame. The last two frames of the smoothed video are
shown in a Video Player as a red-cyan composite.

With this code, you can also take out the early exit condition to make the loop process the entire
video.

8 Tracking and Motion Estimation Examples

8-48

matlab:edit cvexEstStabilizationTform.m
matlab:edit cvexTformToSRT.m

% Reset the video source to the beginning of the file
read(hVideoSrc,1);

hVPlayer = vision.VideoPlayer; % Create video viewer

% Process all frames in the video
movMean = im2gray(im2single(readFrame(hVideoSrc)));
imgB = movMean;
imgBp = imgB;
correctedMean = imgBp;
ii = 2;
cumulativeTform = simtform2d;

while hasFrame(hVideoSrc) && ii < 10
 % Read in new frame
 imgA = imgB; % z^-1
 imgAp = imgBp; % z^-1
 imgB = im2gray(im2single(readFrame(hVideoSrc)));
 movMean = movMean + imgB;

 % Estimate transformation from frame A to frame B, and fit as an s-R-t
 tformAffine = cvexEstStabilizationTform(imgA,imgB);
 sRtTform = cvexTformToSRT(tformAffine);
 cumulativeTform = simtform2d(cumulativeTform.A * sRtTform.A);
 imgBp = imwarp(imgB,cumulativeTform,OutputView=imref2d(size(imgB)));

 % Display as color composite with last corrected frame
 step(hVPlayer,imfuse(imgAp,imgBp,ColorChannels='red-cyan'));
 correctedMean = correctedMean + imgBp;

 ii = ii+1;
end
correctedMean = correctedMean/(ii-2);
movMean = movMean/(ii-2);

% Here you call the release method on the objects to close any open files
% and release memory.
release(hVPlayer);

 Video Stabilization Using Point Feature Matching

8-49

During computation, we computed the mean of the raw video frames and of the corrected frames.
These mean values are shown side-by-side below. The left image shows the mean of the raw input
frames, proving that there was a great deal of distortion in the original video. The mean of the
corrected frames on the right, however, shows the image core with almost no distortion. While
foreground details have been blurred (as a necessary result of the car's forward motion), this shows
the efficacy of the stabilization algorithm.

figure
montage({movMean,correctedMean})
title(['Raw input mean',repmat(' ',[1 30]),'Corrected sequence mean'])

8 Tracking and Motion Estimation Examples

8-50

References

[1] Tordoff, B; Murray, DW. "Guided sampling and consensus for motion estimation." European
Conference n Computer Vision, 2002.

[2] Lee, KY; Chuang, YY; Chen, BY; Ouhyoung, M. "Video Stabilization using Robust Feature
Trajectories." National Taiwan University, 2009.

[3] Litvin, A; Konrad, J; Karl, WC. "Probabilistic video stabilization using Kalman filtering and
mosaicking." IS&T/SPIE Symposium on Electronic Imaging, Image and Video Communications and
Proc., 2003.

[4] Matsushita, Y; Ofek, E; Tang, X; Shum, HY. "Full-frame Video Stabilization." Microsoft® Research
Asia. CVPR 2005.

 Video Stabilization Using Point Feature Matching

8-51

Face Detection and Tracking Using CAMShift

This example shows how to automatically detect and track a face.

Introduction

Object detection and tracking are important in many computer vision applications including activity
recognition, automotive safety, and surveillance. In this example, you will develop a simple face
tracking system by dividing the tracking problem into three separate problems:

1 Detect a face to track
2 Identify facial features to track
3 Track the face

Step 1: Detect a Face To Track

Before you begin tracking a face, you need to first detect it. Use the
vision.CascadeObjectDetector to detect the location of a face in a video frame. The cascade
object detector uses the Viola-Jones detection algorithm and a trained classification model for
detection. By default, the detector is configured to detect faces, but it can be configured for other
object types.

% Create a cascade detector object.
faceDetector = vision.CascadeObjectDetector();

% Read a video frame and run the detector.
videoFileReader = VideoReader('visionface.avi');
videoFrame = readFrame(videoFileReader);
bbox = step(faceDetector, videoFrame);

% Draw the returned bounding box around the detected face.
videoOut = insertObjectAnnotation(videoFrame,'rectangle',bbox,'Face');
figure, imshow(videoOut), title('Detected face');

8 Tracking and Motion Estimation Examples

8-52

You can use the cascade object detector to track a face across successive video frames. However,
when the face tilts or the person turns their head, you may lose tracking. This limitation is due to the
type of trained classification model used for detection. To avoid this issue, and because performing
face detection for every video frame is computationally intensive, this example uses a simple facial
feature for tracking.

Step 2: Identify Facial Features To Track

Once the face is located in the video, the next step is to identify a feature that will help you track the
face. For example, you can use the shape, texture, or color. Choose a feature that is unique to the
object and remains invariant even when the object moves.

In this example, you use skin tone as the feature to track. The skin tone provides a good deal of
contrast between the face and the background and does not change as the face rotates or moves.

Get the skin tone information by extracting the Hue from the video frame converted to the HSV color
space.

[hueChannel,~,~] = rgb2hsv(videoFrame);

% Display the Hue Channel data and draw the bounding box around the face.
figure, imshow(hueChannel), title('Hue channel data');
rectangle('Position',bbox(1,:),'LineWidth',2,'EdgeColor',[1 1 0])

 Face Detection and Tracking Using CAMShift

8-53

Step 3: Track the Face

With the skin tone selected as the feature to track, you can now use the
vision.HistogramBasedTracker for tracking. The histogram based tracker uses the CAMShift
algorithm, which provides the capability to track an object using a histogram of pixel values. In this
example, the Hue channel pixels are extracted from the nose region of the detected face. These pixels
are used to initialize the histogram for the tracker. The example tracks the object over successive
video frames using this histogram.

Detect the nose within the face region. The nose provides a more accurate measure of the skin tone
because it does not contain any background pixels.

noseDetector = vision.CascadeObjectDetector('Nose', 'UseROI', true);
noseBBox = step(noseDetector, videoFrame, bbox(1,:));

% Create a tracker object.
tracker = vision.HistogramBasedTracker;

% Initialize the tracker histogram using the Hue channel pixels from the
% nose.
initializeObject(tracker, hueChannel, noseBBox(1,:));

8 Tracking and Motion Estimation Examples

8-54

% Create a video player object for displaying video frames.
videoPlayer = vision.VideoPlayer;

% Track the face over successive video frames until the video is finished.
while hasFrame(videoFileReader)

 % Extract the next video frame
 videoFrame = readFrame(videoFileReader);

 % RGB -> HSV
 [hueChannel,~,~] = rgb2hsv(videoFrame);

 % Track using the Hue channel data
 bbox = step(tracker, hueChannel);

 % Insert a bounding box around the object being tracked
 videoOut = insertObjectAnnotation(videoFrame,'rectangle',bbox,'Face');

 % Display the annotated video frame using the video player object
 step(videoPlayer, videoOut);

end

% Release resources
release(videoPlayer);

 Face Detection and Tracking Using CAMShift

8-55

Summary

In this example, you created a simple face tracking system that automatically detects and tracks a
single face. Try changing the input video and see if you are able to track a face. If you notice poor
tracking results, check the Hue channel data to see if there is enough contrast between the face
region and the background.

Reference

[1] G.R. Bradski "Real Time Face and Object Tracking as a Component of a Perceptual User
Interface", Proceedings of the 4th IEEE Workshop on Applications of Computer Vision, 1998.

[2] Viola, Paul A. and Jones, Michael J. "Rapid Object Detection using a Boosted Cascade of Simple
Features", IEEE CVPR, 2001.

8 Tracking and Motion Estimation Examples

8-56

Face Detection and Tracking Using the KLT Algorithm

This example shows how to automatically detect and track a face using feature points. The approach
in this example keeps track of the face even when the person tilts his or her head, or moves toward or
away from the camera.

Introduction

Object detection and tracking are important in many computer vision applications including activity
recognition, automotive safety, and surveillance. In this example, you will develop a simple face
tracking system by dividing the tracking problem into three parts:

1 Detect a face
2 Identify facial features to track
3 Track the face

Detect a Face

First, you must detect the face. Use the vision.CascadeObjectDetector object to detect the
location of a face in a video frame. The cascade object detector uses the Viola-Jones detection
algorithm and a trained classification model for detection. By default, the detector is configured to
detect faces, but it can be used to detect other types of objects.

% Create a cascade detector object.
faceDetector = vision.CascadeObjectDetector();

% Read a video frame and run the face detector.
videoReader = VideoReader("tilted_face.avi");
videoFrame = readFrame(videoReader);
bbox = step(faceDetector, videoFrame);

% Draw the returned bounding box around the detected face.
videoFrame = insertShape(videoFrame, "rectangle", bbox);
figure; imshow(videoFrame); title("Detected face");

 Face Detection and Tracking Using the KLT Algorithm

8-57

% Convert the first box into a list of 4 points
% This is needed to be able to visualize the rotation of the object.
bboxPoints = bbox2points(bbox(1, :));

To track the face over time, this example uses the Kanade-Lucas-Tomasi (KLT) algorithm. While it is
possible to use the cascade object detector on every frame, it is computationally expensive. It may
also fail to detect the face, when the subject turns or tilts his head. This limitation comes from the
type of trained classification model used for detection. The example detects the face only once, and
then the KLT algorithm tracks the face across the video frames.

Identify Facial Features To Track

The KLT algorithm tracks a set of feature points across the video frames. Once the detection locates
the face, the next step in the example identifies feature points that can be reliably tracked. This
example uses the standard, "good features to track" proposed by Shi and Tomasi.

Detect feature points in the face region.

points = detectMinEigenFeatures(im2gray(videoFrame), "ROI", bbox);

% Display the detected points.

8 Tracking and Motion Estimation Examples

8-58

figure, imshow(videoFrame), hold on, title("Detected features");
plot(points);

Initialize a Tracker to Track the Points

With the feature points identified, you can now use the vision.PointTracker System object to
track them. For each point in the previous frame, the point tracker attempts to find the corresponding
point in the current frame. Then the estimateGeometricTransform2D function is used to estimate
the translation, rotation, and scale between the old points and the new points. This transformation is
applied to the bounding box around the face.

Create a point tracker and enable the bidirectional error constraint to make it more robust in the
presence of noise and clutter.

pointTracker = vision.PointTracker("MaxBidirectionalError", 2);

% Initialize the tracker with the initial point locations and the initial
% video frame.
points = points.Location;
initialize(pointTracker, points, videoFrame);

Initialize a Video Player to Display the Results

Create a video player object for displaying video frames.

 Face Detection and Tracking Using the KLT Algorithm

8-59

videoPlayer = vision.VideoPlayer("Position",...
 [100 100 [size(videoFrame, 2), size(videoFrame, 1)]+30]);

Track the Face

Track the points from frame to frame, and use estimateGeometricTransform2D function to
estimate the motion of the face.

Make a copy of the points to be used for computing the geometric transformation between the points
in the previous and the current frames

oldPoints = points;

while hasFrame(videoReader)
 % get the next frame
 videoFrame = readFrame(videoReader);

 % Track the points. Note that some points may be lost.
 [points, isFound] = step(pointTracker, videoFrame);
 visiblePoints = points(isFound, :);
 oldInliers = oldPoints(isFound, :);

 if size(visiblePoints, 1) >= 2 % need at least 2 points

 % Estimate the geometric transformation between the old points
 % and the new points and eliminate outliers
 [xform, inlierIdx] = estimateGeometricTransform2D(...
 oldInliers, visiblePoints, "similarity", "MaxDistance", 4);
 oldInliers = oldInliers(inlierIdx, :);
 visiblePoints = visiblePoints(inlierIdx, :);

 % Apply the transformation to the bounding box points
 bboxPoints = transformPointsForward(xform, bboxPoints);

 % Insert a bounding box around the object being tracked
 bboxPolygon = reshape(bboxPoints', 1, []);
 videoFrame = insertShape(videoFrame, "polygon", bboxPolygon, ...
 "LineWidth", 2);

 % Display tracked points
 videoFrame = insertMarker(videoFrame, visiblePoints, "+", ...
 "Color", "white");

 % Reset the points
 oldPoints = visiblePoints;
 setPoints(pointTracker, oldPoints);
 end

 % Display the annotated video frame using the video player object
 step(videoPlayer, videoFrame);
end

% Clean up
release(videoPlayer);

8 Tracking and Motion Estimation Examples

8-60

release(pointTracker);

Summary

In this example, you created a simple face tracking system that automatically detects and tracks a
single face. Try changing the input video, and see if you are still able to detect and track a face. Make
sure the person is facing the camera in the initial frame for the detection step.

References

Viola, Paul A. and Jones, Michael J. "Rapid Object Detection using a Boosted Cascade of Simple
Features", IEEE CVPR, 2001.

Bruce D. Lucas and Takeo Kanade. An Iterative Image Registration Technique with an Application to
Stereo Vision. International Joint Conference on Artificial Intelligence, 1981.

 Face Detection and Tracking Using the KLT Algorithm

8-61

Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Features. Carnegie Mellon
University Technical Report CMU-CS-91-132, 1991.

Jianbo Shi and Carlo Tomasi. Good Features to Track. IEEE Conference on Computer Vision and
Pattern Recognition, 1994.

Zdenek Kalal, Krystian Mikolajczyk and Jiri Matas. Forward-Backward Error: Automatic Detection of
Tracking Failures. International Conference on Pattern Recognition, 2010

8 Tracking and Motion Estimation Examples

8-62

Face Detection and Tracking Using Live Video Acquisition

This example shows how to automatically detect and track a face in a live video stream, using the KLT
algorithm.

Overview

Object detection and tracking are important in many computer vision applications including activity
recognition, automotive safety, and surveillance. In this example you will develop a simple system for
tracking a single face in a live video stream captured by a webcam. MATLAB provides webcam
support through a Hardware Support Package, which you will need to download and install in order
to run this example. The support package is available via the Support Package Installer.

The face tracking system in this example can be in one of two modes: detection or tracking. In the
detection mode you can use a vision.CascadeObjectDetector object to detect a face in the
current frame. If a face is detected, then you must detect corner points on the face, initialize a
vision.PointTracker object, and then switch to the tracking mode.

In the tracking mode, you must track the points using the point tracker. As you track the points, some
of them will be lost because of occlusion. If the number of points being tracked falls below a
threshold, that means that the face is no longer being tracked. You must then switch back to the
detection mode to try to re-acquire the face.

Setup

Create objects for detecting faces, tracking points, acquiring and displaying video frames.

% Create the face detector object.
faceDetector = vision.CascadeObjectDetector();

% Create the point tracker object.
pointTracker = vision.PointTracker('MaxBidirectionalError', 2);

% Create the webcam object.
cam = webcam();

% Capture one frame to get its size.
videoFrame = snapshot(cam);
frameSize = size(videoFrame);

% Create the video player object.
videoPlayer = vision.VideoPlayer('Position', [100 100 [frameSize(2), frameSize(1)]+30]);

Detection and Tracking

Capture and process video frames from the webcam in a loop to detect and track a face. The loop will
run for 400 frames or until the video player window is closed.

runLoop = true;
numPts = 0;
frameCount = 0;

while runLoop && frameCount < 400

 % Get the next frame.

 Face Detection and Tracking Using Live Video Acquisition

8-63

matlab:supportPackageInstaller

 videoFrame = snapshot(cam);
 videoFrameGray = im2gray(videoFrame);
 frameCount = frameCount + 1;

 if numPts < 10
 % Detection mode.
 bbox = faceDetector.step(videoFrameGray);

 if ~isempty(bbox)
 % Find corner points inside the detected region.
 points = detectMinEigenFeatures(videoFrameGray, 'ROI', bbox(1, :));

 % Re-initialize the point tracker.
 xyPoints = points.Location;
 numPts = size(xyPoints,1);
 release(pointTracker);
 initialize(pointTracker, xyPoints, videoFrameGray);

 % Save a copy of the points.
 oldPoints = xyPoints;

 % Convert the rectangle represented as [x, y, w, h] into an
 % M-by-2 matrix of [x,y] coordinates of the four corners. This
 % is needed to be able to transform the bounding box to display
 % the orientation of the face.
 bboxPoints = bbox2points(bbox(1, :));

 % Convert the box corners into the [x1 y1 x2 y2 x3 y3 x4 y4]
 % format required by insertShape.
 bboxPolygon = reshape(bboxPoints', 1, []);

 % Display a bounding box around the detected face.
 videoFrame = insertShape(videoFrame, 'Polygon', bboxPolygon, 'LineWidth', 3);

 % Display detected corners.
 videoFrame = insertMarker(videoFrame, xyPoints, '+', 'Color', 'white');
 end

 else
 % Tracking mode.
 [xyPoints, isFound] = step(pointTracker, videoFrameGray);
 visiblePoints = xyPoints(isFound, :);
 oldInliers = oldPoints(isFound, :);

 numPts = size(visiblePoints, 1);

 if numPts >= 10
 % Estimate the geometric transformation between the old points
 % and the new points.
 [xform, inlierIdx] = estgeotform2d(...
 oldInliers, visiblePoints, 'similarity', 'MaxDistance', 4);
 oldInliers = oldInliers(inlierIdx, :);
 visiblePoints = visiblePoints(inlierIdx, :);

 % Apply the transformation to the bounding box.
 bboxPoints = transformPointsForward(xform, bboxPoints);

 % Convert the box corners into the [x1 y1 x2 y2 x3 y3 x4 y4]

8 Tracking and Motion Estimation Examples

8-64

 % format required by insertShape.
 bboxPolygon = reshape(bboxPoints', 1, []);

 % Display a bounding box around the face being tracked.
 videoFrame = insertShape(videoFrame, 'Polygon', bboxPolygon, 'LineWidth', 3);

 % Display tracked points.
 videoFrame = insertMarker(videoFrame, visiblePoints, '+', 'Color', 'white');

 % Reset the points.
 oldPoints = visiblePoints;
 setPoints(pointTracker, oldPoints);
 end

 end

 % Display the annotated video frame using the video player object.
 step(videoPlayer, videoFrame);

 % Check whether the video player window has been closed.
 runLoop = isOpen(videoPlayer);
end

% Clean up.
clear cam;
release(videoPlayer);
release(pointTracker);
release(faceDetector);

 Face Detection and Tracking Using Live Video Acquisition

8-65

References

Viola, Paul A. and Jones, Michael J. "Rapid Object Detection using a Boosted Cascade of Simple
Features", IEEE CVPR, 2001.

Bruce D. Lucas and Takeo Kanade. An Iterative Image Registration Technique with an Application to
Stereo Vision. International Joint Conference on Artificial Intelligence, 1981.

Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Features. Carnegie Mellon
University Technical Report CMU-CS-91-132, 1991.

Jianbo Shi and Carlo Tomasi. Good Features to Track. IEEE Conference on Computer Vision and
Pattern Recognition, 1994.

8 Tracking and Motion Estimation Examples

8-66

Zdenek Kalal, Krystian Mikolajczyk and Jiri Matas. Forward-Backward Error: Automatic Detection of
Tracking Failures. International Conference on Pattern Recognition, 2010

 Face Detection and Tracking Using Live Video Acquisition

8-67

Motion-Based Multiple Object Tracking

This example shows how to perform automatic detection and motion-based tracking of moving objects
in a video from a stationary camera.

Detection of moving objects and motion-based tracking are important components of many computer
vision applications, including activity recognition, traffic monitoring, and automotive safety. The
problem of motion-based object tracking can be divided into two parts:

1 Detecting moving objects in each frame
2 Associating the detections corresponding to the same object over time

The detection of moving objects uses a background subtraction algorithm based on Gaussian mixture
models. Morphological operations are applied to the resulting foreground mask to eliminate noise.
Finally, blob analysis detects groups of connected pixels, which are likely to correspond to moving
objects.

The association of detections to the same object is based solely on motion. The motion of each track is
estimated by a Kalman filter. The filter is used to predict the track's location in each frame, and
determine the likelihood of each detection being assigned to each track.

Track maintenance becomes an important aspect of this example. In any given frame, some
detections may be assigned to tracks, while other detections and tracks may remain unassigned. The
assigned tracks are updated using the corresponding detections. The unassigned tracks are marked
invisible. An unassigned detection begins a new track.

Each track keeps count of the number of consecutive frames, where it remained unassigned. If the
count exceeds a specified threshold, the example assumes that the object left the field of view and it
deletes the track.

For more information please see “Multiple Object Tracking” on page 18-2.

This example is a function with the main body at the top and helper routines in the form of nested
functions.

function MotionBasedMultiObjectTrackingExample()

% Create System objects used for reading video, detecting moving objects,
% and displaying the results.
obj = setupSystemObjects();

tracks = initializeTracks(); % Create an empty array of tracks.

nextId = 1; % ID of the next track

% Detect moving objects, and track them across video frames.
while hasFrame(obj.reader)
 frame = readFrame(obj.reader);
 [centroids, bboxes, mask] = detectObjects(frame);
 predictNewLocationsOfTracks();
 [assignments, unassignedTracks, unassignedDetections] = ...
 detectionToTrackAssignment();

 updateAssignedTracks();

8 Tracking and Motion Estimation Examples

8-68

 updateUnassignedTracks();
 deleteLostTracks();
 createNewTracks();

 displayTrackingResults();
end

 Motion-Based Multiple Object Tracking

8-69

Create System Objects

Create System objects used for reading the video frames, detecting foreground objects, and
displaying results.

 function obj = setupSystemObjects()
 % Initialize Video I/O
 % Create objects for reading a video from a file, drawing the tracked
 % objects in each frame, and playing the video.

 % Create a video reader.
 obj.reader = VideoReader('atrium.mp4');

 % Create two video players, one to display the video,
 % and one to display the foreground mask.
 obj.maskPlayer = vision.VideoPlayer('Position', [740, 400, 700, 400]);
 obj.videoPlayer = vision.VideoPlayer('Position', [20, 400, 700, 400]);

 % Create System objects for foreground detection and blob analysis

 % The foreground detector is used to segment moving objects from
 % the background. It outputs a binary mask, where the pixel value
 % of 1 corresponds to the foreground and the value of 0 corresponds
 % to the background.

8 Tracking and Motion Estimation Examples

8-70

 obj.detector = vision.ForegroundDetector('NumGaussians', 3, ...
 'NumTrainingFrames', 40, 'MinimumBackgroundRatio', 0.7);

 % Connected groups of foreground pixels are likely to correspond to moving
 % objects. The blob analysis System object is used to find such groups
 % (called 'blobs' or 'connected components'), and compute their
 % characteristics, such as area, centroid, and the bounding box.

 obj.blobAnalyser = vision.BlobAnalysis('BoundingBoxOutputPort', true, ...
 'AreaOutputPort', true, 'CentroidOutputPort', true, ...
 'MinimumBlobArea', 400);
 end

Initialize Tracks

The initializeTracks function creates an array of tracks, where each track is a structure
representing a moving object in the video. The purpose of the structure is to maintain the state of a
tracked object. The state consists of information used for detection to track assignment, track
termination, and display.

The structure contains the following fields:

• id : the integer ID of the track
• bbox : the current bounding box of the object; used for display
• kalmanFilter : a Kalman filter object used for motion-based tracking
• age : the number of frames since the track was first detected
• totalVisibleCount : the total number of frames in which the track was detected (visible)
• consecutiveInvisibleCount : the number of consecutive frames for which the track was not

detected (invisible).

Noisy detections tend to result in short-lived tracks. For this reason, the example only displays an
object after it was tracked for some number of frames. This happens when totalVisibleCount
exceeds a specified threshold.

When no detections are associated with a track for several consecutive frames, the example assumes
that the object has left the field of view and deletes the track. This happens when
consecutiveInvisibleCount exceeds a specified threshold. A track may also get deleted as noise
if it was tracked for a short time, and marked invisible for most of the frames.

 function tracks = initializeTracks()
 % create an empty array of tracks
 tracks = struct(...
 'id', {}, ...
 'bbox', {}, ...
 'kalmanFilter', {}, ...
 'age', {}, ...
 'totalVisibleCount', {}, ...
 'consecutiveInvisibleCount', {});
 end

 Motion-Based Multiple Object Tracking

8-71

Detect Objects

The detectObjects function returns the centroids and the bounding boxes of the detected objects.
It also returns the binary mask, which has the same size as the input frame. Pixels with a value of 1
correspond to the foreground, and pixels with a value of 0 correspond to the background.

The function performs motion segmentation using the foreground detector. It then performs
morphological operations on the resulting binary mask to remove noisy pixels and to fill the holes in
the remaining blobs.

 function [centroids, bboxes, mask] = detectObjects(frame)

 % Detect foreground.
 mask = obj.detector.step(frame);

 % Apply morphological operations to remove noise and fill in holes.
 mask = imopen(mask, strel('rectangle', [3,3]));
 mask = imclose(mask, strel('rectangle', [15, 15]));
 mask = imfill(mask, 'holes');

 % Perform blob analysis to find connected components.
 [~, centroids, bboxes] = obj.blobAnalyser.step(mask);
 end

Predict New Locations of Existing Tracks

Use the Kalman filter to predict the centroid of each track in the current frame, and update its
bounding box accordingly.

 function predictNewLocationsOfTracks()
 for i = 1:length(tracks)
 bbox = tracks(i).bbox;

 % Predict the current location of the track.
 predictedCentroid = predict(tracks(i).kalmanFilter);

 % Shift the bounding box so that its center is at
 % the predicted location.
 predictedCentroid = int32(predictedCentroid) - bbox(3:4) / 2;
 tracks(i).bbox = [predictedCentroid, bbox(3:4)];
 end
 end

Assign Detections to Tracks

Assigning object detections in the current frame to existing tracks is done by minimizing cost. The
cost is defined as the negative log-likelihood of a detection corresponding to a track.

The algorithm involves two steps:

Step 1: Compute the cost of assigning every detection to each track using the distance method of
the vision.KalmanFilter System object™. The cost takes into account the Euclidean distance
between the predicted centroid of the track and the centroid of the detection. It also includes the
confidence of the prediction, which is maintained by the Kalman filter. The results are stored in an
MxN matrix, where M is the number of tracks, and N is the number of detections.

8 Tracking and Motion Estimation Examples

8-72

Step 2: Solve the assignment problem represented by the cost matrix using the
assignDetectionsToTracks function. The function takes the cost matrix and the cost of not
assigning any detections to a track.

The value for the cost of not assigning a detection to a track depends on the range of values returned
by the distance method of the vision.KalmanFilter. This value must be tuned experimentally.
Setting it too low increases the likelihood of creating a new track, and may result in track
fragmentation. Setting it too high may result in a single track corresponding to a series of separate
moving objects.

The assignDetectionsToTracks function uses the Munkres' version of the Hungarian algorithm
to compute an assignment which minimizes the total cost. It returns an M x 2 matrix containing the
corresponding indices of assigned tracks and detections in its two columns. It also returns the indices
of tracks and detections that remained unassigned.

 function [assignments, unassignedTracks, unassignedDetections] = ...
 detectionToTrackAssignment()

 nTracks = length(tracks);
 nDetections = size(centroids, 1);

 % Compute the cost of assigning each detection to each track.
 cost = zeros(nTracks, nDetections);
 for i = 1:nTracks
 cost(i, :) = distance(tracks(i).kalmanFilter, centroids);
 end

 % Solve the assignment problem.
 costOfNonAssignment = 20;
 [assignments, unassignedTracks, unassignedDetections] = ...
 assignDetectionsToTracks(cost, costOfNonAssignment);
 end

Update Assigned Tracks

The updateAssignedTracks function updates each assigned track with the corresponding
detection. It calls the correct method of vision.KalmanFilter to correct the location estimate.
Next, it stores the new bounding box, and increases the age of the track and the total visible count by
1. Finally, the function sets the invisible count to 0.

 function updateAssignedTracks()
 numAssignedTracks = size(assignments, 1);
 for i = 1:numAssignedTracks
 trackIdx = assignments(i, 1);
 detectionIdx = assignments(i, 2);
 centroid = centroids(detectionIdx, :);
 bbox = bboxes(detectionIdx, :);

 % Correct the estimate of the object's location
 % using the new detection.
 correct(tracks(trackIdx).kalmanFilter, centroid);

 % Replace predicted bounding box with detected
 % bounding box.
 tracks(trackIdx).bbox = bbox;

 % Update track's age.

 Motion-Based Multiple Object Tracking

8-73

 tracks(trackIdx).age = tracks(trackIdx).age + 1;

 % Update visibility.
 tracks(trackIdx).totalVisibleCount = ...
 tracks(trackIdx).totalVisibleCount + 1;
 tracks(trackIdx).consecutiveInvisibleCount = 0;
 end
 end

Update Unassigned Tracks

Mark each unassigned track as invisible, and increase its age by 1.

 function updateUnassignedTracks()
 for i = 1:length(unassignedTracks)
 ind = unassignedTracks(i);
 tracks(ind).age = tracks(ind).age + 1;
 tracks(ind).consecutiveInvisibleCount = ...
 tracks(ind).consecutiveInvisibleCount + 1;
 end
 end

Delete Lost Tracks

The deleteLostTracks function deletes tracks that have been invisible for too many consecutive
frames. It also deletes recently created tracks that have been invisible for too many frames overall.

 function deleteLostTracks()
 if isempty(tracks)
 return;
 end

 invisibleForTooLong = 20;
 ageThreshold = 8;

 % Compute the fraction of the track's age for which it was visible.
 ages = [tracks(:).age];
 totalVisibleCounts = [tracks(:).totalVisibleCount];
 visibility = totalVisibleCounts ./ ages;

 % Find the indices of 'lost' tracks.
 lostInds = (ages < ageThreshold & visibility < 0.6) | ...
 [tracks(:).consecutiveInvisibleCount] >= invisibleForTooLong;

 % Delete lost tracks.
 tracks = tracks(~lostInds);
 end

Create New Tracks

Create new tracks from unassigned detections. Assume that any unassigned detection is a start of a
new track. In practice, you can use other cues to eliminate noisy detections, such as size, location, or
appearance.

 function createNewTracks()
 centroids = centroids(unassignedDetections, :);
 bboxes = bboxes(unassignedDetections, :);

8 Tracking and Motion Estimation Examples

8-74

 for i = 1:size(centroids, 1)

 centroid = centroids(i,:);
 bbox = bboxes(i, :);

 % Create a Kalman filter object.
 kalmanFilter = configureKalmanFilter('ConstantVelocity', ...
 centroid, [200, 50], [100, 25], 100);

 % Create a new track.
 newTrack = struct(...
 'id', nextId, ...
 'bbox', bbox, ...
 'kalmanFilter', kalmanFilter, ...
 'age', 1, ...
 'totalVisibleCount', 1, ...
 'consecutiveInvisibleCount', 0);

 % Add it to the array of tracks.
 tracks(end + 1) = newTrack;

 % Increment the next id.
 nextId = nextId + 1;
 end
 end

Display Tracking Results

The displayTrackingResults function draws a bounding box and label ID for each track on the
video frame and the foreground mask. It then displays the frame and the mask in their respective
video players.

 function displayTrackingResults()
 % Convert the frame and the mask to uint8 RGB.
 frame = im2uint8(frame);
 mask = uint8(repmat(mask, [1, 1, 3])) .* 255;

 minVisibleCount = 8;
 if ~isempty(tracks)

 % Noisy detections tend to result in short-lived tracks.
 % Only display tracks that have been visible for more than
 % a minimum number of frames.
 reliableTrackInds = ...
 [tracks(:).totalVisibleCount] > minVisibleCount;
 reliableTracks = tracks(reliableTrackInds);

 % Display the objects. If an object has not been detected
 % in this frame, display its predicted bounding box.
 if ~isempty(reliableTracks)
 % Get bounding boxes.
 bboxes = cat(1, reliableTracks.bbox);

 % Get ids.
 ids = int32([reliableTracks(:).id]);

 % Create labels for objects indicating the ones for
 % which we display the predicted rather than the actual

 Motion-Based Multiple Object Tracking

8-75

 % location.
 labels = cellstr(int2str(ids'));
 predictedTrackInds = ...
 [reliableTracks(:).consecutiveInvisibleCount] > 0;
 isPredicted = cell(size(labels));
 isPredicted(predictedTrackInds) = {' predicted'};
 labels = strcat(labels, isPredicted);

 % Draw the objects on the frame.
 frame = insertObjectAnnotation(frame, 'rectangle', ...
 bboxes, labels);

 % Draw the objects on the mask.
 mask = insertObjectAnnotation(mask, 'rectangle', ...
 bboxes, labels);
 end
 end

 % Display the mask and the frame.
 obj.maskPlayer.step(mask);
 obj.videoPlayer.step(frame);
 end

Summary

This example created a motion-based system for detecting and tracking multiple moving objects. Try
using a different video to see if you are able to detect and track objects. Try modifying the
parameters for the detection, assignment, and deletion steps.

The tracking in this example was solely based on motion with the assumption that all objects move in
a straight line with constant speed. When the motion of an object significantly deviates from this
model, the example may produce tracking errors. Notice the mistake in tracking the person labeled
#12, when he is occluded by the tree.

The likelihood of tracking errors can be reduced by using a more complex motion model, such as
constant acceleration, or by using multiple Kalman filters for every object. Also, you can incorporate
other cues for associating detections over time, such as size, shape, and color.

end

8 Tracking and Motion Estimation Examples

8-76

Tracking Pedestrians from a Moving Car

This example shows how to track pedestrians using a camera mounted in a moving car.

Overview

This example shows how to perform automatic detection and tracking of people in a video from a
moving camera. It demonstrates the flexibility of a tracking system adapted to a moving camera,
which is ideal for automotive safety applications. Unlike the stationary camera example, The Motion-
Based Multiple Object Tracking, this example contains several additional algorithmic steps. These
steps include people detection, customized non-maximum suppression, and heuristics to identify and
eliminate false alarm tracks. For more information please see “Multiple Object Tracking” on page 18-
2.

This example is a function with the main body at the top and helper routines in the form of “What Are
Nested Functions?” below.

function PedestrianTrackingFromMovingCameraExample()

% Create system objects used for reading video, loading prerequisite data file, detecting pedestrians, and displaying the results.
videoFile = 'vippedtracking.mp4';
scaleDataFile = 'pedScaleTable.mat'; % An auxiliary file that helps to determine the size of a pedestrian at different pixel locations.

obj = setupSystemObjects(videoFile, scaleDataFile);

detector = peopleDetectorACF('caltech');

% Create an empty array of tracks.
tracks = initializeTracks();

% ID of the next track.
nextId = 1;

% Set the global parameters.
option.ROI = [40 95 400 140]; % A rectangle [x, y, w, h] that limits the processing area to ground locations.
option.scThresh = 0.3; % A threshold to control the tolerance of error in estimating the scale of a detected pedestrian.
option.gatingThresh = 0.9; % A threshold to reject a candidate match between a detection and a track.
option.gatingCost = 100; % A large value for the assignment cost matrix that enforces the rejection of a candidate match.
option.costOfNonAssignment = 10; % A tuning parameter to control the likelihood of creation of a new track.
option.timeWindowSize = 16; % A tuning parameter to specify the number of frames required to stabilize the confidence score of a track.
option.confidenceThresh = 2; % A threshold to determine if a track is true positive or false alarm.
option.ageThresh = 8; % A threshold to determine the minimum length required for a track being true positive.
option.visThresh = 0.6; % A threshold to determine the minimum visibility value for a track being true positive.

% Detect people and track them across video frames.
stopFrame = 1629; % stop on an interesting frame with several pedestrians
for fNum = 1:stopFrame
 frame = readFrame(obj.reader);

 [centroids, bboxes, scores] = detectPeople();

 predictNewLocationsOfTracks();

 [assignments, unassignedTracks, unassignedDetections] = ...
 detectionToTrackAssignment();

 Tracking Pedestrians from a Moving Car

8-77

 updateAssignedTracks();
 updateUnassignedTracks();
 deleteLostTracks();
 createNewTracks();

 displayTrackingResults();

 % Exit the loop if the video player figure is closed.
 if ~isOpen(obj.videoPlayer)
 break;
 end
end

Auxiliary Input and Global Parameters of the Tracking System

This tracking system requires a data file that contains information that relates the pixel location in
the image to the size of the bounding box marking the pedestrian's location. This prior knowledge is
stored in a vector pedScaleTable. The n-th entry in pedScaleTable represents the estimated
height of an adult person in pixels. The index n references the approximate Y-coordinate of the
pedestrian's feet.

To obtain such a vector, a collection of training images were taken from the same viewpoint and in a
similar scene to the testing environment. The training images contained images of pedestrians at

8 Tracking and Motion Estimation Examples

8-78

varying distances from the camera. Using the Image Labeler app, bounding boxes of the pedestrians
in the images were manually annotated. The height of the bounding boxes together with the location
of the pedestrians in the image were used to generate the scale data file through regression. Here is
a helper function to show the algorithmic steps to fit the linear regression model:
helperTableOfScales.m

There is also a set of global parameters that can be tuned to optimize the tracking performance. You
can use the descriptions below to learn about how these parameters affect the tracking performance.

• ROI : Region-Of-Interest in the form of [x, y, w, h]. It limits the processing area to ground
locations.

• scThresh : Tolerance threshold for scale estimation. When the difference between the detected
scale and the expected scale exceeds the tolerance, the candidate detection is considered to be
unrealistic and is removed from the output.

• gatingThresh : Gating parameter for the distance measure. When the cost of matching the
detected bounding box and the predicted bounding box exceeds the threshold, the system
removes the association of the two bounding boxes from tracking consideration.

• gatingCost : Value for the assignment cost matrix to discourage the possible tracking to
detection assignment.

• costOfNonAssignment : Value for the assignment cost matrix for not assigning a detection or a
track. Setting it too low increases the likelihood of creating a new track, and may result in track
fragmentation. Setting it too high may result in a single track corresponding to a series of
separate moving objects.

• timeWindowSize : Number of frames required to estimate the confidence of the track.
• confidenceThresh : Confidence threshold to determine if the track is a true positive.
• ageThresh : Minimum length of a track being a true positive.
• visThresh : Minimum visibility threshold to determine if the track is a true positive.

Create System Objects for the Tracking System Initialization

The setupSystemObjects function creates system objects used for reading and displaying the video
frames and loads the scale data file.

The pedScaleTable vector, which is stored in the scale data file, encodes our prior knowledge of the
target and the scene. Once you have the regressor trained from your samples, you can compute the
expected height at every possible Y-position in the image. These values are stored in the vector. The
n-th entry in pedScaleTable represents our estimated height of an adult person in pixels. The index
n references the approximate Y-coordinate of the pedestrian's feet.

 function obj = setupSystemObjects(videoFile,scaleDataFile)
 % Initialize Video I/O
 % Create objects for reading a video from a file, drawing the
 % detected and tracked people in each frame, and playing the video.

 % Create a video file reader.
 obj.reader = VideoReader(videoFile);

 % Create a video player.
 obj.videoPlayer = vision.VideoPlayer('Position', [29, 597, 643, 386]);

 % Load the scale data file
 ld = load(scaleDataFile, 'pedScaleTable');

 Tracking Pedestrians from a Moving Car

8-79

 obj.pedScaleTable = ld.pedScaleTable;
 end

Initialize Tracks

The initializeTracks function creates an array of tracks, where each track is a structure
representing a moving object in the video. The purpose of the structure is to maintain the state of a
tracked object. The state consists of information used for detection-to-track assignment, track
termination, and display.

The structure contains the following fields:

• id : An integer ID of the track.
• color : The color of the track for display purpose.
• bboxes : A N-by-4 matrix to represent the bounding boxes of the object with the current box at

the last row. Each row has a form of [x, y, width, height].
• scores : An N-by-1 vector to record the classification score from the person detector with the

current detection score at the last row.
• kalmanFilter : A Kalman filter object used for motion-based tracking. We track the center point

of the object in image;
• age : The number of frames since the track was initialized.
• totalVisibleCount : The total number of frames in which the object was detected (visible).
• confidence : A pair of two numbers to represent how confident we trust the track. It stores the

maximum and the average detection scores in the past within a predefined time window.
• predPosition : The predicted bounding box in the next frame.

 function tracks = initializeTracks()
 % Create an empty array of tracks
 tracks = struct(...
 'id', {}, ...
 'color', {}, ...
 'bboxes', {}, ...
 'scores', {}, ...
 'kalmanFilter', {}, ...
 'age', {}, ...
 'totalVisibleCount', {}, ...
 'confidence', {}, ...
 'predPosition', {});
 end

Detect People

The detectPeople function returns the centroids, the bounding boxes, and the classification scores
of the detected people. It performs filtering and non-maximum suppression on the raw output of the
detector returned by peopleDetectorACF.

• centroids : An N-by-2 matrix with each row in the form of [x,y].
• bboxes : An N-by-4 matrix with each row in the form of [x, y, width, height].
• scores : An N-by-1 vector with each element is the classification score at the corresponding

frame.

 function [centroids, bboxes, scores] = detectPeople()
 % Resize the image to increase the resolution of the pedestrian.

8 Tracking and Motion Estimation Examples

8-80

 % This helps detect people further away from the camera.
 resizeRatio = 1.5;
 frame = imresize(frame, resizeRatio, 'Antialiasing',false);

 % Run ACF people detector within a region of interest to produce
 % detection candidates.
 [bboxes, scores] = detect(detector, frame, option.ROI, ...
 'WindowStride', 2,...
 'NumScaleLevels', 4, ...
 'SelectStrongest', false);

 % Look up the estimated height of a pedestrian based on location of their feet.
 height = bboxes(:, 4) / resizeRatio;
 y = (bboxes(:,2)-1) / resizeRatio + 1;
 yfoot = min(length(obj.pedScaleTable), round(y + height));
 estHeight = obj.pedScaleTable(yfoot);

 % Remove detections whose size deviates from the expected size,
 % provided by the calibrated scale estimation.
 invalid = abs(estHeight-height)>estHeight*option.scThresh;
 bboxes(invalid, :) = [];
 scores(invalid, :) = [];

 % Apply non-maximum suppression to select the strongest bounding boxes.
 [bboxes, scores] = selectStrongestBbox(bboxes, scores, ...
 'RatioType', 'Min', 'OverlapThreshold', 0.6);

 % Compute the centroids
 if isempty(bboxes)
 centroids = [];
 else
 centroids = [(bboxes(:, 1) + bboxes(:, 3) / 2), ...
 (bboxes(:, 2) + bboxes(:, 4) / 2)];
 end
 end

Predict New Locations of Existing Tracks

Use the Kalman filter to predict the centroid of each track in the current frame, and update its
bounding box accordingly. We take the width and height of the bounding box in previous frame as our
current prediction of the size.

 function predictNewLocationsOfTracks()
 for i = 1:length(tracks)
 % Get the last bounding box on this track.
 bbox = tracks(i).bboxes(end, :);

 % Predict the current location of the track.
 predictedCentroid = predict(tracks(i).kalmanFilter);

 % Shift the bounding box so that its center is at the predicted location.
 tracks(i).predPosition = [predictedCentroid - bbox(3:4)/2, bbox(3:4)];
 end
 end

 Tracking Pedestrians from a Moving Car

8-81

Assign Detections to Tracks

Assigning object detections in the current frame to existing tracks is done by minimizing cost. The
cost is computed using the bboxOverlapRatio function, and is the overlap ratio between the
predicted bounding box and the detected bounding box. In this example, we assume the person will
move gradually in consecutive frames due to the high frame rate of the video and the low motion
speed of a person.

The algorithm involves two steps:

Step 1: Compute the cost of assigning every detection to each track using the bboxOverlapRatio
measure. As people move towards or away from the camera, their motion will not be accurately
described by the centroid point alone. The cost takes into account the distance on the image plane as
well as the scale of the bounding boxes. This prevents assigning detections far away from the camera
to tracks closer to the camera, even if their centroids coincide. The choice of this cost function will
ease the computation without resorting to a more sophisticated dynamic model. The results are
stored in an MxN matrix, where M is the number of tracks, and N is the number of detections.

Step 2: Solve the assignment problem represented by the cost matrix using the
assignDetectionsToTracks function. The function takes the cost matrix and the cost of not
assigning any detections to a track.

The value for the cost of not assigning a detection to a track depends on the range of values returned
by the cost function. This value must be tuned experimentally. Setting it too low increases the
likelihood of creating a new track, and may result in track fragmentation. Setting it too high may
result in a single track corresponding to a series of separate moving objects.

The assignDetectionsToTracks function uses the Munkres' version of the Hungarian algorithm
to compute an assignment which minimizes the total cost. It returns an M x 2 matrix containing the
corresponding indices of assigned tracks and detections in its two columns. It also returns the indices
of tracks and detections that remained unassigned.

 function [assignments, unassignedTracks, unassignedDetections] = ...
 detectionToTrackAssignment()

 % Compute the overlap ratio between the predicted boxes and the
 % detected boxes, and compute the cost of assigning each detection
 % to each track. The cost is minimum when the predicted bbox is
 % perfectly aligned with the detected bbox (overlap ratio is one)
 predBboxes = reshape([tracks(:).predPosition], 4, [])';
 cost = 1 - bboxOverlapRatio(predBboxes, bboxes);

 % Force the optimization step to ignore some matches by
 % setting the associated cost to be a large number. Note that this
 % number is different from the 'costOfNonAssignment' below.
 % This is useful when gating (removing unrealistic matches)
 % technique is applied.
 cost(cost > option.gatingThresh) = 1 + option.gatingCost;

 % Solve the assignment problem.
 [assignments, unassignedTracks, unassignedDetections] = ...
 assignDetectionsToTracks(cost, option.costOfNonAssignment);
 end

8 Tracking and Motion Estimation Examples

8-82

Update Assigned Tracks

The updateAssignedTracks function updates each assigned track with the corresponding
detection. It calls the correct method of vision.KalmanFilter to correct the location estimate.
Next, it stores the new bounding box by taking the average of the size of recent (up to) 4 boxes, and
increases the age of the track and the total visible count by 1. Finally, the function adjusts our
confidence score for the track based on the previous detection scores.

 function updateAssignedTracks()
 numAssignedTracks = size(assignments, 1);
 for i = 1:numAssignedTracks
 trackIdx = assignments(i, 1);
 detectionIdx = assignments(i, 2);

 centroid = centroids(detectionIdx, :);
 bbox = bboxes(detectionIdx, :);

 % Correct the estimate of the object's location
 % using the new detection.
 correct(tracks(trackIdx).kalmanFilter, centroid);

 % Stabilize the bounding box by taking the average of the size
 % of recent (up to) 4 boxes on the track.
 T = min(size(tracks(trackIdx).bboxes,1), 4);
 w = mean([tracks(trackIdx).bboxes(end-T+1:end, 3); bbox(3)]);
 h = mean([tracks(trackIdx).bboxes(end-T+1:end, 4); bbox(4)]);
 tracks(trackIdx).bboxes(end+1, :) = [centroid - [w, h]/2, w, h];

 % Update track's age.
 tracks(trackIdx).age = tracks(trackIdx).age + 1;

 % Update track's score history
 tracks(trackIdx).scores = [tracks(trackIdx).scores; scores(detectionIdx)];

 % Update visibility.
 tracks(trackIdx).totalVisibleCount = ...
 tracks(trackIdx).totalVisibleCount + 1;

 % Adjust track confidence score based on the maximum detection
 % score in the past 'timeWindowSize' frames.
 T = min(option.timeWindowSize, length(tracks(trackIdx).scores));
 score = tracks(trackIdx).scores(end-T+1:end);
 tracks(trackIdx).confidence = [max(score), mean(score)];
 end
 end

Update Unassigned Tracks

The updateUnassignedTracks function marks each unassigned track as invisible, increases its age
by 1, and appends the predicted bounding box to the track. The confidence is set to zero since we are
not sure why it was not assigned to a track.

 function updateUnassignedTracks()
 for i = 1:length(unassignedTracks)
 idx = unassignedTracks(i);
 tracks(idx).age = tracks(idx).age + 1;
 tracks(idx).bboxes = [tracks(idx).bboxes; tracks(idx).predPosition];
 tracks(idx).scores = [tracks(idx).scores; 0];

 Tracking Pedestrians from a Moving Car

8-83

 % Adjust track confidence score based on the maximum detection
 % score in the past 'timeWindowSize' frames
 T = min(option.timeWindowSize, length(tracks(idx).scores));
 score = tracks(idx).scores(end-T+1:end);
 tracks(idx).confidence = [max(score), mean(score)];
 end
 end

Delete Lost Tracks

The deleteLostTracks function deletes tracks that have been invisible for too many consecutive
frames. It also deletes recently created tracks that have been invisible for many frames overall.

Noisy detections tend to result in creation of false tracks. For this example, we remove a track under
following conditions:

• The object was tracked for a short time. This typically happens when a false detection shows up
for a few frames and a track was initiated for it.

• The track was marked invisible for most of the frames.
• It failed to receive a strong detection within the past few frames, which is expressed as the

maximum detection confidence score.

 function deleteLostTracks()
 if isempty(tracks)
 return;
 end

 % Compute the fraction of the track's age for which it was visible.
 ages = [tracks(:).age]';
 totalVisibleCounts = [tracks(:).totalVisibleCount]';
 visibility = totalVisibleCounts ./ ages;

 % Check the maximum detection confidence score.
 confidence = reshape([tracks(:).confidence], 2, [])';
 maxConfidence = confidence(:, 1);

 % Find the indices of 'lost' tracks.
 lostInds = (ages <= option.ageThresh & visibility <= option.visThresh) | ...
 (maxConfidence <= option.confidenceThresh);

 % Delete lost tracks.
 tracks = tracks(~lostInds);
 end

Create New Tracks

Create new tracks from unassigned detections. Assume that any unassigned detection is a start of a
new track. In practice, you can use other cues to eliminate noisy detections, such as size, location, or
appearance.

 function createNewTracks()
 unassignedCentroids = centroids(unassignedDetections, :);
 unassignedBboxes = bboxes(unassignedDetections, :);
 unassignedScores = scores(unassignedDetections);

 for i = 1:size(unassignedBboxes, 1)

8 Tracking and Motion Estimation Examples

8-84

 centroid = unassignedCentroids(i,:);
 bbox = unassignedBboxes(i, :);
 score = unassignedScores(i);

 % Create a Kalman filter object.
 kalmanFilter = configureKalmanFilter('ConstantVelocity', ...
 centroid, [2, 1], [5, 5], 100);

 % Create a new track.
 newTrack = struct(...
 'id', nextId, ...
 'color', 255*rand(1,3), ...
 'bboxes', bbox, ...
 'scores', score, ...
 'kalmanFilter', kalmanFilter, ...
 'age', 1, ...
 'totalVisibleCount', 1, ...
 'confidence', [score, score], ...
 'predPosition', bbox);

 % Add it to the array of tracks.
 tracks(end + 1) = newTrack; %#ok<AGROW>

 % Increment the next id.
 nextId = nextId + 1;
 end
 end

Display Tracking Results

The displayTrackingResults function draws a colored bounding box for each track on the video
frame. The level of transparency of the box together with the displayed score indicate the confidence
of the detections and tracks.

 function displayTrackingResults()

 displayRatio = 4/3;
 frame = imresize(frame, displayRatio);

 if ~isempty(tracks)
 ages = [tracks(:).age]';
 confidence = reshape([tracks(:).confidence], 2, [])';
 maxConfidence = confidence(:, 1);
 avgConfidence = confidence(:, 2);
 opacity = min(0.5,max(0.1,avgConfidence/3));
 noDispInds = (ages < option.ageThresh & maxConfidence < option.confidenceThresh) | ...
 (ages < option.ageThresh / 2);

 for i = 1:length(tracks)
 if ~noDispInds(i)

 % scale bounding boxes for display
 bb = tracks(i).bboxes(end, :);
 bb(:,1:2) = (bb(:,1:2)-1)*displayRatio + 1;
 bb(:,3:4) = bb(:,3:4) * displayRatio;

 frame = insertShape(frame, ...

 Tracking Pedestrians from a Moving Car

8-85

 'FilledRectangle', bb, ...
 'Color', tracks(i).color, ...
 'Opacity', opacity(i));
 frame = insertObjectAnnotation(frame, ...
 'rectangle', bb, ...
 num2str(avgConfidence(i)), ...
 'Color', tracks(i).color);
 end
 end
 end

 frame = insertShape(frame, 'Rectangle', option.ROI * displayRatio, ...
 'Color', [255, 0, 0], 'LineWidth', 3);

 step(obj.videoPlayer, frame);

 end

end

8 Tracking and Motion Estimation Examples

8-86

Use Kalman Filter for Object Tracking

This example shows how to use the vision.KalmanFilter object and configureKalmanFilter
function to track objects.

This example is a function with its main body at the top and helper routines in the form of nested
functions.

function kalmanFilterForTracking

Introduction

The Kalman filter has many uses, including applications in control, navigation, computer vision, and
time series econometrics. This example illustrates how to use the Kalman filter for tracking objects
and focuses on three important features:

• Prediction of object's future location
• Reduction of noise introduced by inaccurate detections
• Facilitating the process of association of multiple objects to their tracks

Challenges of Object Tracking

Before showing the use of Kalman filter, let us first examine the challenges of tracking an object in a
video. The following video shows a green ball moving from left to right on the floor.

showDetections();

 Use Kalman Filter for Object Tracking

8-87

The white region over the ball highlights the pixels detected using vision.ForegroundDetector,
which separates moving objects from the background. The background subtraction only finds a
portion of the ball because of the low contrast between the ball and the floor. In other words, the
detection process is not ideal and introduces noise.

To easily visualize the entire object trajectory, we overlay all video frames onto a single image. The
"+" marks indicate the centroids computed using blob analysis.

showTrajectory();

8 Tracking and Motion Estimation Examples

8-88

Two issues can be observed:

1 The region's center is usually different from the ball's center. In other words, there is an error in
the measurement of the ball's location.

2 The location of the ball is not available when it is occluded by the box, i.e. the measurement is
missing.

Both of these challenges can be addressed by using the Kalman filter.

Track a Single Object Using Kalman Filter

Using the video which was seen earlier, the trackSingleObject function shows you how to:

• Create vision.KalmanFilter by using configureKalmanFilter
• Use predict and correct methods in a sequence to eliminate noise present in the tracking

system
• Use predict method by itself to estimate ball's location when it is occluded by the box

The selection of the Kalman filter parameters can be challenging. The configureKalmanFilter
function helps simplify this problem. More details about this can be found further in the example.

The trackSingleObject function includes nested helper functions. The following top-level
variables are used to transfer the data between the nested functions.

 Use Kalman Filter for Object Tracking

8-89

frame = []; % A video frame
detectedLocation = []; % The detected location
trackedLocation = []; % The tracked location
label = ''; % Label for the ball
utilities = []; % Utilities used to process the video

The procedure for tracking a single object is shown below.

function trackSingleObject(param)
 % Create utilities used for reading video, detecting moving objects,
 % and displaying the results.
 utilities = createUtilities(param);

 isTrackInitialized = false;
 while hasFrame(utilities.videoReader)
 frame = readFrame(utilities.videoReader);

 % Detect the ball.
 [detectedLocation, isObjectDetected] = detectObject(frame);

 if ~isTrackInitialized
 if isObjectDetected
 % Initialize a track by creating a Kalman filter when the ball is
 % detected for the first time.
 initialLocation = computeInitialLocation(param, detectedLocation);
 kalmanFilter = configureKalmanFilter(param.motionModel, ...
 initialLocation, param.initialEstimateError, ...
 param.motionNoise, param.measurementNoise);

 isTrackInitialized = true;
 trackedLocation = correct(kalmanFilter, detectedLocation);
 label = 'Initial';
 else
 trackedLocation = [];
 label = '';
 end

 else
 % Use the Kalman filter to track the ball.
 if isObjectDetected % The ball was detected.
 % Reduce the measurement noise by calling predict followed by
 % correct.
 predict(kalmanFilter);
 trackedLocation = correct(kalmanFilter, detectedLocation);
 label = 'Corrected';
 else % The ball was missing.
 % Predict the ball's location.
 trackedLocation = predict(kalmanFilter);
 label = 'Predicted';
 end
 end

 annotateTrackedObject();
 end % while

 showTrajectory();
end

8 Tracking and Motion Estimation Examples

8-90

There are two distinct scenarios that the Kalman filter addresses:

• When the ball is detected, the Kalman filter first predicts its state at the current video frame, and
then uses the newly detected object location to correct its state. This produces a filtered location.

• When the ball is missing, the Kalman filter solely relies on its previous state to predict the ball's
current location.

You can see the ball's trajectory by overlaying all video frames.

param = getDefaultParameters(); % get Kalman configuration that works well
 % for this example

trackSingleObject(param); % visualize the results

Explore Kalman Filter Configuration Options

Configuring the Kalman filter can be very challenging. Besides basic understanding of the Kalman
filter, it often requires experimentation in order to come up with a set of suitable configuration
parameters. The trackSingleObject function, defined above, helps you to explore the various
configuration options offered by the configureKalmanFilter function.

The configureKalmanFilter function returns a Kalman filter object. You must provide five input
arguments.

 Use Kalman Filter for Object Tracking

8-91

kalmanFilter = configureKalmanFilter(MotionModel, InitialLocation,
 InitialEstimateError, MotionNoise, MeasurementNoise)

The MotionModel setting must correspond to the physical characteristics of the object's motion. You
can set it to either a constant velocity or constant acceleration model. The following example
illustrates the consequences of making a sub-optimal choice.

param = getDefaultParameters(); % get parameters that work well
param.motionModel = 'ConstantVelocity'; % switch from ConstantAcceleration
 % to ConstantVelocity
% After switching motion models, drop noise specification entries
% corresponding to acceleration.
param.initialEstimateError = param.initialEstimateError(1:2);
param.motionNoise = param.motionNoise(1:2);

trackSingleObject(param); % visualize the results

Notice that the ball emerged in a spot that is quite different from the predicted location. From the
time when the ball was released, it was subject to constant deceleration due to resistance from the
carpet. Therefore, constant acceleration model was a better choice. If you kept the constant velocity
model, the tracking results would be sub-optimal no matter what you selected for the other values.

Typically, you would set the InitialLocation input to the location where the object was first detected.
You would also set the InitialEstimateError vector to large values since the initial state may be very

8 Tracking and Motion Estimation Examples

8-92

noisy given that it is derived from a single detection. The following figure demonstrates the effect of
misconfiguring these parameters.

param = getDefaultParameters(); % get parameters that work well
param.initialLocation = [0, 0]; % location that's not based on an actual detection
param.initialEstimateError = 100*ones(1,3); % use relatively small values

trackSingleObject(param); % visualize the results

With the misconfigured parameters, it took a few steps before the locations returned by the Kalman
filter align with the actual trajectory of the object.

The values for MeasurementNoise should be selected based on the detector's accuracy. Set the
measurement noise to larger values for a less accurate detector. The following example illustrates the
noisy detections of a misconfigured segmentation threshold. Increasing the measurement noise
causes the Kalman filter to rely more on its internal state rather than the incoming measurements,
and thus compensates for the detection noise.

param = getDefaultParameters();
param.segmentationThreshold = 0.0005; % smaller value resulting in noisy detections
param.measurementNoise = 12500; % increase the value to compensate
 % for the increase in measurement noise

trackSingleObject(param); % visualize the results

 Use Kalman Filter for Object Tracking

8-93

Typically objects do not move with constant acceleration or constant velocity. You use the
MotionNoise to specify the amount of deviation from the ideal motion model. When you increase the
motion noise, the Kalman filter relies more heavily on the incoming measurements than on its
internal state. Try experimenting with MotionNoise parameter to learn more about its effects.

Now that you are familiar with how to use the Kalman filter and how to configure it, the next section
will help you learn how it can be used for multiple object tracking.

Note: In order to simplify the configuration process in the above examples, we used the
configureKalmanFilter function. This function makes several assumptions. See the function's
documentation for details. If you require greater level of control over the configuration process, you
can use the vision.KalmanFilter object directly.

Track Multiple Objects Using Kalman Filter

Tracking multiple objects poses several additional challenges:

• Multiple detections must be associated with the correct tracks
• You must handle new objects appearing in a scene
• Object identity must be maintained when multiple objects merge into a single detection

The vision.KalmanFilter object together with the assignDetectionsToTracks function can
help to solve the problems of

8 Tracking and Motion Estimation Examples

8-94

• Assigning detections to tracks
• Determining whether or not a detection corresponds to a new object, in other words, track

creation
• Just as in the case of an occluded single object, prediction can be used to help separate objects

that are close to each other

To learn more about using Kalman filter to track multiple objects, see the example titled “Motion-
Based Multiple Object Tracking” on page 8-68.

Utility Functions Used in the Example

Utility functions were used for detecting the objects and displaying the results. This section
illustrates how the example implemented these functions.

Get default parameters for creating Kalman filter and for segmenting the ball.

function param = getDefaultParameters
 param.motionModel = 'ConstantAcceleration';
 param.initialLocation = 'Same as first detection';
 param.initialEstimateError = 1E5 * ones(1, 3);
 param.motionNoise = [25, 10, 1];
 param.measurementNoise = 25;
 param.segmentationThreshold = 0.05;
end

Detect and annotate the ball in the video.

function showDetections()
 param = getDefaultParameters();
 utilities = createUtilities(param);
 trackedLocation = [];

 idx = 0;
 while hasFrame(utilities.videoReader)
 frame = readFrame(utilities.videoReader);
 detectedLocation = detectObject(frame);
 % Show the detection result for the current video frame.
 annotateTrackedObject();

 % To highlight the effects of the measurement noise, show the detection
 % results for the 40th frame in a separate figure.
 idx = idx + 1;
 if idx == 40
 combinedImage = max(repmat(utilities.foregroundMask, [1,1,3]), im2single(frame));
 figure, imshow(combinedImage);
 end
 end % while

 % Close the window which was used to show individual video frame.
 uiscopes.close('All');
end

Detect the ball in the current video frame.

function [detection, isObjectDetected] = detectObject(frame)
 grayImage = im2gray(im2single(frame));
 utilities.foregroundMask = step(utilities.foregroundDetector, grayImage);

 Use Kalman Filter for Object Tracking

8-95

 detection = step(utilities.blobAnalyzer, utilities.foregroundMask);
 if isempty(detection)
 isObjectDetected = false;
 else
 % To simplify the tracking process, only use the first detected object.
 detection = detection(1, :);
 isObjectDetected = true;
 end
end

Show the current detection and tracking results.

function annotateTrackedObject()
 accumulateResults();
 % Combine the foreground mask with the current video frame in order to
 % show the detection result.
 combinedImage = max(repmat(utilities.foregroundMask, [1,1,3]), im2single(frame));

 if ~isempty(trackedLocation)
 shape = 'circle';
 region = trackedLocation;
 region(:, 3) = 5;
 combinedImage = insertObjectAnnotation(combinedImage, shape, ...
 region, {label}, 'Color', 'red');
 end
 step(utilities.videoPlayer, combinedImage);
end

Show trajectory of the ball by overlaying all video frames on top of each other.

function showTrajectory
 % Close the window which was used to show individual video frame.
 uiscopes.close('All');

 % Create a figure to show the processing results for all video frames.
 figure; imshow(utilities.accumulatedImage/2+0.5); hold on;
 plot(utilities.accumulatedDetections(:,1), ...
 utilities.accumulatedDetections(:,2), 'k+');

 if ~isempty(utilities.accumulatedTrackings)
 plot(utilities.accumulatedTrackings(:,1), ...
 utilities.accumulatedTrackings(:,2), 'r-o');
 legend('Detection', 'Tracking');
 end
end

Accumulate video frames, detected locations, and tracked locations to show the trajectory of the ball.

function accumulateResults()
 utilities.accumulatedImage = max(utilities.accumulatedImage, frame);
 utilities.accumulatedDetections ...
 = [utilities.accumulatedDetections; detectedLocation];
 utilities.accumulatedTrackings ...
 = [utilities.accumulatedTrackings; trackedLocation];
end

For illustration purposes, select the initial location used by the Kalman filter.

8 Tracking and Motion Estimation Examples

8-96

function loc = computeInitialLocation(param, detectedLocation)
 if strcmp(param.initialLocation, 'Same as first detection')
 loc = detectedLocation;
 else
 loc = param.initialLocation;
 end
end

Create utilities for reading video, detecting moving objects, and displaying the results.

function utilities = createUtilities(param)
 % Create System objects for reading video, displaying video, extracting
 % foreground, and analyzing connected components.
 utilities.videoReader = VideoReader('singleball.mp4');
 utilities.videoPlayer = vision.VideoPlayer('Position', [100,100,500,400]);
 utilities.foregroundDetector = vision.ForegroundDetector(...
 'NumTrainingFrames', 10, 'InitialVariance', param.segmentationThreshold);
 utilities.blobAnalyzer = vision.BlobAnalysis('AreaOutputPort', false, ...
 'MinimumBlobArea', 70, 'CentroidOutputPort', true);

 utilities.accumulatedImage = 0;
 utilities.accumulatedDetections = zeros(0, 2);
 utilities.accumulatedTrackings = zeros(0, 2);
end

end

 Use Kalman Filter for Object Tracking

8-97

Detect Cars Using Gaussian Mixture Models

This example shows how to detect and count cars in a video sequence using foreground detector
based on Gaussian mixture models (GMMs).

Introduction

Detecting and counting cars can be used to analyze traffic patterns. Detection is also a first step prior
to performing more sophisticated tasks such as tracking or categorization of vehicles by their type.

This example shows how to use the foreground detector and blob analysis to detect and count cars in
a video sequence. It assumes that the camera is stationary. The example focuses on detecting objects.
To learn more about tracking objects, see the example titled “Motion-Based Multiple Object Tracking”
on page 8-68.

Step 1 - Import Video and Initialize Foreground Detector

Rather than immediately processing the entire video, the example starts by obtaining an initial video
frame in which the moving objects are segmented from the background. This helps to gradually
introduce the steps used to process the video.

The foreground detector requires a certain number of video frames in order to initialize the Gaussian
mixture model. This example uses the first 50 frames to initialize three Gaussian modes in the
mixture model.

foregroundDetector = vision.ForegroundDetector('NumGaussians', 3, ...
 'NumTrainingFrames', 50);

videoReader = VideoReader('visiontraffic.avi');
for i = 1:150
 frame = readFrame(videoReader); % read the next video frame
 foreground = step(foregroundDetector, frame);
end

After the training, the detector begins to output more reliable segmentation results. The two figures
below show one of the video frames and the foreground mask computed by the detector.

figure; imshow(frame); title('Video Frame');

8 Tracking and Motion Estimation Examples

8-98

figure; imshow(foreground); title('Foreground');

 Detect Cars Using Gaussian Mixture Models

8-99

Step 2 - Detect Cars in an Initial Video Frame

The foreground segmentation process is not perfect and often includes undesirable noise. The
example uses morphological opening to remove the noise and to fill gaps in the detected objects.

se = strel('square', 3);
filteredForeground = imopen(foreground, se);
figure; imshow(filteredForeground); title('Clean Foreground');

Next, find bounding boxes of each connected component corresponding to a moving car by using
vision.BlobAnalysis object. The object further filters the detected foreground by rejecting blobs which
contain fewer than 150 pixels.

blobAnalysis = vision.BlobAnalysis('BoundingBoxOutputPort', true, ...
 'AreaOutputPort', false, 'CentroidOutputPort', false, ...
 'MinimumBlobArea', 150);
bbox = step(blobAnalysis, filteredForeground);

To highlight the detected cars, we draw green boxes around them.

result = insertShape(frame, 'Rectangle', bbox, 'Color', 'green');

The number of bounding boxes corresponds to the number of cars found in the video frame. Display
the number of found cars in the upper left corner of the processed video frame.

numCars = size(bbox, 1);
result = insertText(result, [10 10], numCars, 'BoxOpacity', 1, ...
 'FontSize', 14);
figure; imshow(result); title('Detected Cars');

8 Tracking and Motion Estimation Examples

8-100

Step 3 - Process the Rest of Video Frames

In the final step, we process the remaining video frames.

videoPlayer = vision.VideoPlayer('Name', 'Detected Cars');
videoPlayer.Position(3:4) = [650,400]; % window size: [width, height]
se = strel('square', 3); % morphological filter for noise removal

while hasFrame(videoReader)

 frame = readFrame(videoReader); % read the next video frame

 % Detect the foreground in the current video frame
 foreground = step(foregroundDetector, frame);

 % Use morphological opening to remove noise in the foreground
 filteredForeground = imopen(foreground, se);

 % Detect the connected components with the specified minimum area, and
 % compute their bounding boxes
 bbox = step(blobAnalysis, filteredForeground);

 % Draw bounding boxes around the detected cars
 result = insertShape(frame, 'Rectangle', bbox, 'Color', 'green');

 % Display the number of cars found in the video frame
 numCars = size(bbox, 1);
 result = insertText(result, [10 10], numCars, 'BoxOpacity', 1, ...
 'FontSize', 14);

 Detect Cars Using Gaussian Mixture Models

8-101

 step(videoPlayer, result); % display the results
end

The output video displays the bounding boxes around the cars. It also displays the number of cars in
the upper left corner of the video.

8 Tracking and Motion Estimation Examples

8-102

Labelers

• “View Summary of ROI and Scene Labels” on page 9-2
• “Create Automation Algorithm Function for Labeling” on page 9-4
• “Create Automation Algorithm for Labeling” on page 9-8
• “Label Large Images in the Image Labeler” on page 9-12
• “Label Pixels for Semantic Segmentation” on page 9-19
• “Label Objects Using Polygons” on page 9-27
• “Get Started with the Image Labeler” on page 9-34
• “Choose an App to Label Ground Truth Data” on page 9-44
• “Get Started with the Video Labeler” on page 9-48
• “Use Custom Image Source Reader for Labeling” on page 9-61
• “Keyboard Shortcuts and Mouse Actions for Video Labeler” on page 9-63
• “Keyboard Shortcuts and Mouse Actions for Image Labeler” on page 9-67
• “Share and Store Labeled Ground Truth Data” on page 9-72
• “View Summary of Ground Truth Labels” on page 9-78
• “Temporal Automation Algorithms” on page 9-82
• “Blocked Image Automation Algorithms” on page 9-84
• “Use Sublabels and Attributes to Label Ground Truth Data” on page 9-85
• “Training Data for Object Detection and Semantic Segmentation” on page 9-89
• “Create Automation Algorithm” on page 9-93

9

View Summary of ROI and Scene Labels
Use the Visual Summary to view and compare the distribution of ROI and scene labels across
images.

The Visual Summary panel is located next to the Image Browser window. You can size the Visual
Summary panel to view the distribution graph for the ROI and scene labels.

By default, the Visual Summary displays the selected label distribution bar graphs that correspond
to the images displayed in the Image Browser. To view the distribution for all images, uncheck Sync
to image browser. The x-axis of the graph displays the distribution of labels for each image across
the duration of the image sequence.

Select an ROI or scene label from the left panels to view it's corresponding distribution. The visual
summary does not include information about sublabels or label attributes.

• For ROI labels, the y-axis displays the number of the selected label in the image.
• For pixel ROI labels, the y-axis displays the percentage of the frame that is labeled for each pixel

label.
• For scene labels, the graph displays the presence or absence of a scene label at each timestamp or

for each image in a collection.

9 Labelers

9-2

To restore the Visual Summary panel in your workspace, click the down arrow located in the

window title bar.

See Also
Apps
Image Labeler

Objects
groundTruth

More About
• “Choose an App to Label Ground Truth Data” on page 9-44
• “Get Started with the Image Labeler” on page 9-34
•

 View Summary of ROI and Scene Labels

9-3

Create Automation Algorithm Function for Labeling
The Image Labeler, Video Labeler, and Ground Truth Labeler apps enable you to label ground
truth data in a collection of images or sequences of images. You can use an automation algorithm in
these apps to automatically label your data by using a built-in automation algorithm or by creating a
custom automation algorithm. You can create an automation algorithm programmatically using a
class or function. The labeler apps provide templates for creating each type of interface.

• Function — This interface enables you to easily create an automation algorithm or migrate your
functional algorithm to work with the app.

• Class — This interface is used to specify a custom automation algorithm with a greater number of
capabilities. You can include user-instructions, methods that check label validity, and runtime
execution behavior. See “Create Automation Algorithm for Labeling” on page 9-8.

Use the class implementation when your automation algorithm requires any of these capabilities:

• Access to temporal information.
• Support for automating blockedImage labels.
• Customized initialization and termination steps.
• Customized settings dialog.
• Customized name and description.
• Customized instructions.
• Customized algorithm state across image frames.
• Support for multiple signals or point cloud signals, such as what you might use with the

Ground Truth Labeler.

How to Specify an Automation Function in an App
To create an automation algorithm using the built-in function template:

1 On the app toolstrip, click Select Algorithm > Custom Automation Function.
2 In the BrowserPanelDisplay pane, select the images for which to automate labeling, then click

Automate in the toolbar.
3 On the app toolstrip, select Settings, and then specify the algorithm function. If you need to

create a new function, you can click the blue information icon to open the automation function
template.

The app invokes the automation algorithm on each image selected for automation. The app returns
the labels created by the automation algorithm in an autoLabels structure. To automate pixel
labeling, the autoLabels structure must be a categorical matrix. Otherwise, autoLabels must be a
structure or a table.

Use a Function to Automate Labeling with Your Custom Detector
The labeler app built-in algorithms may not work to explicitly detect the features unique to your data.
Therefore, you can train a detector using your data, and then create a custom algorithm using the
function template provided within the app. The function requires a minimum set of parameters, which
are related to the type of labels suited to your detector. Specifying a function handle within the app

9 Labelers

9-4

enables you to quickly test different automation algorithms and change the parameters of your
algorithm.

This is an example of a function that creates an algorithm to use with a labeling app. It runs a
pretrained aggregate channel features (ACF) object detector to label people in the input image. The
function returns the predicted labels autoLabels, which is a structure array that contains the Name,
Type, and Position fields.

Example Using a Custom Detector

function autoLabels = exampleAutomationAlgorithmFunction(I)

% One-time initialization of the detector. A one-time initialization saves
% time on subsequent runs.
persistent detector
if isempty(detector)
 detector = peopleDetectorACF();
end

% Run the detector on the input image, I.
bboxes = detect(detector,I);

% Create and fill the autoLabels structure with the predicted bounding box
% locations. The Name and Type of ROI returned by the automation function
% must match one of the labels defined in the labeling app.
autoLabels = struct("Name",{},"Type",{},"Position",{});
for i = 1:size(bboxes,1)
 autoLabels(i).Name = "people";
 autoLabels(i).Type = labelType.Rectangle;
 autoLabels(i).Position = bboxes(i,:);
end

Create an Automation Algorithm Function
The function template contains descriptions for the fields in autoLabels and an example of how to
set the fields. The template also specifies where to insert your custom algorithm function by name, or
by specifying a function handle. Use a function handle to pass additional inputs to your function, if
required. To access the template, select Settings, and then click the blue information icon in the
Custom Automation Function Settings dialog box. The template contains this information:

Template for Automation Function

function autoLabels = myAutomationFunction(I)
% Your automation function is invoked on each image, I, chosen for
% automation in the labeler app. Implement your automation algorithm below
% and return automated labels in autoLabels. autoLabels must be a
% categorical matrix for automating pixel labeling. Otherwise, autoLabels
% must be a struct or table with fields Type, Name, Position and optionally
% Attributes. The Attributes field is valid only when labels with
% attributes are defined in the app.
%
% The fields of the autoLabels struct array are described below:
%
% Type A labelType enumeration that defines the type of label.
% Type can have values Rectangle, Line, Polygon, Projected
% cuboid, or Scene.

 Create Automation Algorithm Function for Labeling

9-5

%
% Name A character vector specifying a label name. Only
% existing label names previously defined in the
% labeler app can be used.
%
% Position Positions of the labels. The type of label determines
% the format of the position data. For more information,
% see the doc page for vision.labeler.AutomationAlgorithmFunction.
%
% Attributes An array of structs representing the attributes
% contained by the automated labels. Each attribute
% is specified as a field of the struct, with the
% name of the field representing the name of the
% attribute and the value of the field representing
% the value of the attribute.
%
% Below is an example of how to specify an autoLabels structure for an
% algorithm that detects a car, finds a lane, and classifies the
% scene as sunny.
%
% % Rectangle labeled 'Car' positioned with top-left at (20,20)
% % with width and height equal to 50.
% autoLabels(1).Name = 'Car';
% autoLabels(1).Type = labelType('Rectangle');
% autoLabels(1).Position = [20 20 50 50];
%
% % Line labeled 'LaneMarker' with 3 points.
% autoLabels(2).Name = 'LaneMarker';
% autoLabels(2).Type = labelType('Line');
% autoLabels(2).Position = [100 100; 100 110; 110 120];
%
% % Scene labeled 'Sunny'
% autoLabels(3).Name = 'Sunny';
% autoLabels(3).Type = labelType('Scene');
% autoLabels(3).Position = true;

%--
% Place your algorithm code here
%--

See Also
Apps
Video Labeler | Image Labeler | Ground Truth Labeler

Classes
vision.labeler.AutomationAlgorithm |
vision.labeler.mixin.BlockedImageAutomation | vision.labeler.mixin.Temporal

Objects
labelType

More About
• “Create Automation Algorithm for Labeling” on page 9-8

9 Labelers

9-6

• “Blocked Image Automation Algorithms” on page 9-84

 Create Automation Algorithm Function for Labeling

9-7

Create Automation Algorithm for Labeling
The Image Labeler, Video Labeler, Lidar Labeler, and Ground Truth Labeler apps enable you to
label ground truth for a variety of data sources. You can use an automation algorithm to automatically
label your data by creating and importing a custom automation algorithm. You can also use a custom
function that creates an automation algorithm. The function, which you can specify in the labeling
apps, enables you to adjust the automation parameters. For more details, see Create Automation
Algorithm Function for Labeling on page 9-4.

Create New Algorithm
The vision.labeler.AutomationAlgorithm class enables you to define a custom label
automation algorithm for use in the labeling apps. You can use the class to define the interface used
by the app to run an automation algorithm.

To define and use a custom automation algorithm, you must first define a class for your algorithm and
save it to the appropriate folder.

Create Automation Folder

Create a +vision/+labeler/ folder within a folder that is on the MATLAB® path. For example, if
the folder /local/MyProject is on the MATLAB path, then create the +vision/+labeler/ folder
hierarchy as follows:

projectFolder = fullfile('local','MyProject');
automationFolder = fullfile('+vision','+labeler');
mkdir(projectFolder,automationFolder)

The resulting folder is located at /local/MyProject/+vision/+labeler.

Define Class That Inherits from AutomationAlgorithm Class

At the MATLAB command prompt, enter the appropriate command to open the labeling app:

• imageLabeler
• videoLabeler
• lidarLabeler
• groundTruthLabeler

Then, load a data source, create at least one label definition, and on the app toolstrip, select Select
Algorithm > Add Algorithm > Create New Algorithm. In the
vision.labeler.AutomationAlgorithm class template that opens, define your custom
automation algorithm. Follow the instructions in the header and comments in the class.

If the algorithm is time-dependent, that is, has a dependence on the timestamp of execution, your
custom automation algorithm must also inherit from the vision.labeler.mixin.Temporal class.
For more details on implementing time-dependent, or temporal, algorithms, see “Temporal
Automation Algorithms” on page 9-82.

If the algorithm is blocked image based, your custom automation algorithm must also inherit from the
vision.labeler.mixin.BlockedImageAutomation class. For more details on implementing
blocked image algorithms, see “Blocked Image Automation Algorithms” on page 9-84.

9 Labelers

9-8

Save Class File to Automation Folder

To use your custom algorithm from within the labeling app, save the file to the +vision/+labeler
folder that you created. Make sure that this folder is on the MATLAB search path. To add a folder to
the path, use the addpath function.

Refresh Algorithm List in Labeling App

To start using your custom algorithm, refresh the algorithm list so that the algorithm displays in the
app. On the app toolstrip, select Select Algorithm > Refresh list.

Import Existing Algorithm
To import an existing custom algorithm into a labeling app, on the app toolstrip, select Select
Algorithm > Add Algorithm > Import Algorithm and then refresh the list.

Custom Algorithm Execution
When you run an automation session in a labeling app, the properties and methods in your
automation algorithm class control the behavior of the app.

Check Label Definitions

When you click Automate, the app checks each label definition in the ROI Labels and Scene Labels
panes by using the checkLabelDefinition method defined in your custom algorithm. Label
definitions that return true are retained for automation. Label definitions that return false are
disabled and not included. Use this method to choose a subset of label definitions that are valid for
your custom algorithm. For example, if your custom algorithm is a semantic segmentation algorithm,
use this method to return false for label definitions that are not of type PixelLabel.

 Create Automation Algorithm for Labeling

9-9

Control Settings

After you select the algorithm, click Automate to start an automation session. Then, click Settings,
which enables you to modify custom app settings. To control the Settings options, use the
settingsDialog method.

Control Algorithm Execution

When you open an automation algorithm session in the app and then click Run, the app calls the
checkSetup method to check if it is ready for execution. If the method returns false, the app does
not execute the automation algorithm. If the method returns true, the app calls the initialize
method and then the run method on every frame selected for automation. Then, at the end of the
automation run, the app calls the terminate method.

The diagram shows this flow of execution for the labeling apps.

• Use the checkSetup method to check whether all conditions needed for your custom algorithm
are set up correctly. For example, before running the algorithm, check that the scene contains at
least one ROI label.

• Use the initialize method to initialize the state for your custom algorithm by using the frame.
• Use the run method to implement the core of the algorithm that computes and returns labels for

each frame.
• Use the terminate method to clean up or terminate the state of the automation algorithm after

the algorithm runs.

9 Labelers

9-10

See Also
Apps
Video Labeler | Image Labeler | Ground Truth Labeler | Lidar Labeler

Functions
vision.labeler.AutomationAlgorithm | vision.labeler.mixin.Temporal |
vision.labeler.mixin.BlockedImageAutomation

See Also

Related Examples
• “Automate Ground Truth Labeling of Lane Boundaries” (Automated Driving Toolbox)
• “Automate Ground Truth Labeling for Semantic Segmentation” (Automated Driving Toolbox)
• “Automate Attributes of Labeled Objects” (Automated Driving Toolbox)

See Also

More About
• “Get Started with the Image Labeler” on page 9-34
• “Get Started with the Video Labeler” on page 9-48
• “Get Started with the Lidar Labeler” (Lidar Toolbox)
• “Get Started with Ground Truth Labelling” (Automated Driving Toolbox)
• “Temporal Automation Algorithms” on page 9-82
• “Blocked Image Automation Algorithms” on page 9-84

 Create Automation Algorithm for Labeling

9-11

Label Large Images in the Image Labeler
The Image Labeler app enables you to label images that might be too large to fit into memory. The
app achieves this by converting the large image into a blocked image. A blocked image divides the
large image into smaller blocks that can fit in memory.

In the Image Labeler app, you can label a blocked image as you would any other image.

Import Blocked Image into Image Labeler
When loading images into the Image Labeler app, if an image appears to be too large to fit into
memory (having at least one dimension larger than 8000 pixels) or is a multiresolution image, the app
displays the Importing Large Images dialog box, which offers you the option to convert the image into
a blocked image. The image on the left side of the dialog box represents a blocked image, with visible
grid lines to show how an image is divided into blocks. To choose to use a blocked image, select
Import as Blocked Image and click OK.

9 Labelers

9-12

Initially, the app loads blocks that form the center of the image (50% of image height and width). For
multiresolution images, the app chooses the resolution to use depending on how much of the image is
visible. As you zoom in on an image, the app switches to a finer resolution. For more information
about displaying multiresolution images, see bigimageshow.

 Label Large Images in the Image Labeler

9-13

When using blocked images, the app also provides a view of the entire image in the Overview pane.
In the Overview pane, the display overlays a box on the image that shows the portion of the image
that is currently visible in the main view pane in the center of the app window. To view other parts of
the image in the app, drag the view box to a different part of the image in the Overview pane. To get
a more detailed view of the image, use the zoom buttons in the axes toolbar that appears when you
move the mouse over the image in the main view pane. The axes toolbar also contains a button to
enable a view of the block boundaries grid over the image. The current resolution level used by the
app can affect the visibility of these block boundaries.

Work with Blocked Images in the Image Labeler
Once you load a blocked image into the Image Labeler app, you can work with the blocked image as
you would with nonblocked images. You can create labels, sublabels, and attributes and, when you
are finished labeling, you can export the labels as a groundTruth object.

9 Labelers

9-14

Limitations

Using blocked images enables you to label images in the app that do not fit in memory. However,
there are some limitations with use of blocked images in the Image Labeler app.

• Pixel labeling is not supported. You can only create labels using ROI shapes, such as rectangles,
lines, and projected cuboid polygons.

• When working with a multiresolution image, the images at every resolution must be in registered
to each other, that is, in alignment.

• Thumbnails of images displayed in the app cannot be rotated.

Use Blocked Image Automation with Images
With blocked images, as with nonblocked images, you can take advantage of automated processing to
help with the labeling process. For example, with medical images, you can do automatic tumor
detection using blocked image automation. You can train a object detector deep learning network and
use that in the app to automatically label tumors with bounding boxes.

 Label Large Images in the Image Labeler

9-15

To use blocked image automation, click Select Algorithm, select Add Blocked Image Algorithm,
and choose to either create a new algorithm, by selecting Create New Blocked Image Algorithm,
or import an existing algorithm, by selecting Import Blocked Image Algorithm.

When you choose to create a new blocked image algorithm, the app opens a class file template in the
editor. The class subclasses vision.labeler.mixin.BlockedImageAutomation. The template
contains stubs for standard methods that you must implement for your algorithm, including the
blockedImageAutomationAlgorithm method. For more information about implementing this
method, see blockedImageAutomationAlgorithm. Add the code you want the algorithm to
execute. For more information about creating labeler automation algorithms and where to save this
class file, see “Create Automation Algorithm for Labeling” on page 9-8.

After saving the class file and adding the location folder to the path, click Select Algorithm in the
Image Labeler app, and select Refresh list. You can select your new blocked image automation
algorithm by clicking Select Algorithm, and then selecting your algorithm.

9 Labelers

9-16

Select My Algorithm and click Automate. The app opens the Automate tab. Use this tab to control
execution of your blocked image automation algorithm.

• Determine what parts of the image the algorithm processes: the whole image, the current region,
or a region that you specify by drawing an ROI.

• Specify which resolution level you want to process. Level 1 is the finest resolution level. The
resolution level with the highest number is the coarsest resolution level.

• Specify the size of the blocks in the blocked image. By default, blocks are 1024-by-1024.
• Click Use Parallel to take advantage of parallel processing techniques
• Click Settings to access other parameters made available by the algorithm

After you select the automation algorithm, the Automate tab appears. Any text instructions included
about your algorithm in the class file, is displayed in the bottom-right pane of the app. The Automate
tab also includes a subset of viewing options from the Visualization tab. It also contains information
about the blocked image, options to select automation regions, and run options. To try out the
algorithm, click Run.

Postprocess Exported Labels to Create a Labeled Blocked Image
You can convert polygon coordinates exported as a groundTruth object from the Image Labeler
app into a labeled blocked image using the polyToBlockedImage function. For more information,
see “Convert Image Labeler Polygons to Labeled Blocked Image for Semantic Segmentation”.

See Also
Image Labeler | vision.labeler.mixin.BlockedImageAutomation |
blockedImageAutomationAlgorithm

Related Examples
• “Get Started with the Image Labeler” on page 9-34
• “Convert Image Labeler Polygons to Labeled Blocked Image for Semantic Segmentation”

 Label Large Images in the Image Labeler

9-17

More About
• “Blocked Image Automation Algorithms” on page 9-84
• “Create Automation Algorithm for Labeling” on page 9-8

9 Labelers

9-18

Label Pixels for Semantic Segmentation
The Image Labeler, Video Labeler, Ground Truth Labeler, and Medical Image Labeler apps
enable you to assign pixel labels manually. Each pixel can have at most one pixel label. The labels are
used to create ground truth data for training semantic segmentation algorithms.

Start Pixel Labeling
Begin by loading an image, video, or image sequence into a labeling app and define pixel ROI labels.
For more details, see:

• Image Labeler — “Get Started with the Image Labeler” on page 9-34
• Video Labeler — “Get Started with the Video Labeler” on page 9-48
• Ground Truth Labeler — “Get Started with Ground Truth Labelling” (Automated Driving

Toolbox)
• Medical Image Labeler — “Get Started with Medical Image Labeler” (Medical Imaging Toolbox)

This example shows pixel labeling with the Video Labeler. You can use the Video Labeler or
Ground Truth Labeler to label videos and image sequences and the Image Labeler for a collection
of images.

Select a pixel label definition from the ROI Labels pane. A Label Pixels tab opens, containing tools
to label pixels manually using polygons, brushes, or flood fill. You can use the labeling tools in any
order. This tab also has controls to adjust the display of the image by zooming and panning and to
adjust the opacity of the labels.

This example uses two general strategies to label pixels in the highway image:

• First use the semi-automated tools, such as Flood Fill, Superpixel, and Smart Polygon. Then,
refine the labels using tools that offer more direct control, such as Polygon, Assisted Freehand
and Brush.

• First label distant objects with a rough estimation of object borders. Then, label nearer objects
with more precise object borders.

Label Pixels Using Flood Fill Tool
The Flood Fill tool labels a group of connected pixels that have a similar color. In this image, the sky
is a good candidate for flood fill because the boundary of the bright sky is clear against the dark
vegetation and overpass. In contrast, flood fill cannot isolate the vegetation because the color of the
vegetation is too similar to the adjacent barriers, roads, and vehicles.

To label pixels using Flood Fill:

1 Select Flood Fill and a label. The pointer changes to a paint can .
2 Click a starting pixel in the image.

 Label Pixels for Semantic Segmentation

9-19

You can undo the flood fill, or any other labeling operation, by pressing Ctrl+Z.

Label Pixels Using Superpixel Tool
The Superpixel tool labels sections of adjustable-sized grids of pixels. It enables you to quickly define
objects in the scene. The Superpixel tool appears in the toolstrip after you create a pixel label
definition.

To label pixels using Superpixel:

1 Select the Superpixel tool from the toolstrip. The app creates a super pixel grid layout over the
image. You can change the grid resolution using the Grid Count slider.

2 Select a predefined pixel label definition and then left-click a grid to select it. The color of the
grid changes to match the color of the pixel label you selected. You can select multiple grids by
left-clicking each grid or by holding down the left mouse button and move the pointer
continuously. Use the refining tools to modify the selection at any time during labeling.

3 Modify the Grid Count, while you are labeling, as needed to best capture an area. For example,
to label large areas, lower the grid count. To more accurately capture the edges of an area,
increase the grid count.

9 Labelers

9-20

Label Pixels Using Smart Polygon Tool
The Smart Polygon tool estimates the shape of an object of interest within a polygon that you draw.
The tool is useful when the shape of the object is not a simple polygon. This example uses Smart
Polygon to label the vegetation, which has a complicated boundary with the sky.

To label pixels using Smart Polygon:

1 Select the tool and a label. The pointer changes to a crosshair .
2 Click to add polygon vertices. Completely surround the object of interest, with some space

between the object and the polygon.
3 Close the polygon by clicking the first vertex after placing the other vertices. Alternatively, you

can double-click to add the last vertex and close the polygon in one step.

After you close the polygon, the tool draws an initial label.
4 Adjust the shape and position of the polygon. When the object of interest extends to the edge of

the image, drag vertices to the edge of the image to ensure that the smart polygon completely
encloses the object. For instance, this example shows the two leftmost vertices placed at the left
edge of the image.

 Label Pixels for Semantic Segmentation

9-21

Smart Polygon Actions

Goal Control
Move vertex Click and drag the vertex.
Add vertex • Right-click the polygon boundary at the position of the new

vertex, and select Add Point.
• Double-click the point on the boundary.

Delete vertex Right-click the vertex and select Delete Vertex.
Move polygon Click and drag any point on the polygon boundary (excluding

vertices).
Delete polygon Right-click the polygon boundary and select Delete Polygon.

5 Use the Smart Polygon Editor tools to refine the label.

• Select Mark Foreground to mark areas inside the region that you want to label. Foreground
marks appear in green.

• Select Mark Background to mark areas inside the region that you do not want to label.
Background marks appear in red.

• Select Erase Marks to remove foreground or background marks that are no longer needed.
• See Tips on page 9-25 for additional suggestions on using the Smart Polygon tool.

6 To finalize the label, press Enter or select a new label from the ROI Labels pane. You can no
longer edit the polygon vertices or mark foreground and background regions.

Label Pixels Using Polygon Tool
The Polygon tool labels all pixels within a polygon that you draw. The controls for defining and
adjusting the vertices of a polygon are similar to the controls of the Smart Polygon tool.

9 Labelers

9-22

Add additional polygons over structures such as barriers and the road. Many vehicle pixels are
incorrectly labeled. The next step shows how to replace the erroneous labels with the correct label.

Label Pixels Using Assisted Freehand Tool
The Assisted Freehand tool enables you to draw an ROI that automatically follows the edge of the
subject in the underlying image. You can also adjust the size and position of the ROI by using your
mouse.

 Label Pixels for Semantic Segmentation

9-23

Replace Pixel Labels
Each pixel can have at most one pixel label. When you apply a label to a pixel, the new label replaces
the previous label.

This example uses the Smart Polygon tool to label pixels belonging to the truck. Foreground marks
assign the vehicle label to subregions. Background marks revert subregions to their prior label. For
instance, in the first pair of images, background marks revert subregions to the sky and vegetation
labels. Similarly, in the second pair of images, background marks revert subregions to the road label.

The border of the truck is jagged because Smart Polygon labels entire subregions, not individual
pixels. The next step shows how to refine the labels along the border of the truck.

Refine Labels Using Brush Tool
The Brush tool labels pixels when you draw over the image with the mouse. This example uses
Brush to remove spurs from the road and to make the edges of the truck smoother.

To label pixels using Brush:

1 Select the tool and a label. The pointer changes to a pen , and a square appears to indicate the
size of the brush.

2 Adjust the size of the brush by using the Brush Size slider.
3 Click and drag the mouse to label pixels.

The Erase tool removes pixel labels when you draw over the image with the mouse.

Visualize Pixel Labels
You can modify the view of the image to facilitate pixel labeling. The Zoom In, Zoom Out, and Pan
options enable you to zoom and pan the image with the mouse. To resume pixel labeling, click the
Label icon.

9 Labelers

9-24

The Label Opacity slider adjusts the opacity of all pixel labels.

• Decrease the opacity to see the image more clearly. For instance, decrease the opacity to make it
easier to find the border between the bottom of the car and the road.

• Increase the opacity to see the segmentation more clearly. For instance, increase the opacity to
see that edge along the front bumper of the car should be smoothed. Also, observe that the barrier
and some distant vehicles have unlabeled pixels.

This is the final pixel-labeled image.

Tips
• The Smart Polygon tool identifies an object of interest by using regional graph-based

segmentation ("GrabCut") [1]. The Smart Polygon tool divides the image into subregions. The
tool treats all subregions that are fully or partially outside the polygon as belonging to the
background. Therefore, to get an optimal segmentation, make sure the object to be labeled is fully
contained within the polygon, surrounded by a few background pixels.

All pixels within a subregion have the same label. Marking pixels outside the polygon has no effect
on the label.

• To delete the most recently labeled ROI, press Ctrl+Z. To delete all pixels in a frame, press Ctrl
+Shift+Delete.

 Label Pixels for Semantic Segmentation

9-25

• To cut or copy all pixels in a frame, press Ctrl+Shift+X or Ctrl+Shift+C. To paste the cut or
copied pixels, press Ctrl+Shift+V.

• Each pixel can have at most one pixel label. When you apply a label to a pixel, the new label
replaces the previous label.

• Pixel labeling is disabled when you pan and zoom the image. You must click the Label button to
resume pixel labeling.

• To ensure that all pixels in an image are labeled, begin by labeling the entire image with a single
label. Pick a label that represents a predominant ROI in the image, such as sky, road, or
background. Then, use the labeling tools to relabel objects with their correct label.

• To fill all or all remaining pixels, select an ROI label from your list and press Shift+Click (you can
use left- or right-click).

References
[1] Rother, C., V. Kolmogorov, and A. Blake. "GrabCut - Interactive Foreground Extraction using

Iterated Graph Cuts". ACM Transactions on Graphics (SIGGRAPH). Vol. 23, Number 3, 2004,
pp. 309–314.

See Also
Image Labeler | Video Labeler | Ground Truth Labeler | Medical Image Labeler

More About
• “Get Started with the Image Labeler” on page 9-34
• “Get Started with the Video Labeler” on page 9-48
• “Get Started with Ground Truth Labelling” (Automated Driving Toolbox)
• “Get Started with Medical Image Labeler” (Medical Imaging Toolbox)
• “How Labeler Apps Store Exported Pixel Labels” on page 17-39

9 Labelers

9-26

Label Objects Using Polygons
The Image Labeler, Video Labeler, and Ground Truth Labeler apps enable you to label images
using a variety of interactive drawing tools. Use these labels to create ground truth data for training
algorithms.

About Polygon Labels
You can draw polygon shapes around objects in your image or video frame, and use the polygons to
label the objects. You can also associate polygon labels with one another, enabling you to label
distinct objects as instances of the same class. Exported polygon labels preserve the stack order of
the polygons across label definitions and are compatible with the ground truth format required by:

• Semantic segmentation networks using an H-by-W label matrix. Using polygons maintains the
order in which the labels are created or reordered (using the Send to Back and Bring to
Front options). Semantic segmentation requires a pixel map of the image with labels. To do this,
you must flatten the labels, (losing the layered order of the labels). Imagine turning the opacity of
all the polygon labels to maximum and preserving all of the filled areas as a label matrix.

• Instance segmentation networks using an H-by-W-by-NumObjects mask stack.
• Raw polygons in a NumObjects-by-1 cell array, where each cell contains M-by-2 points.

In this example, you load an image, create polygon ROI labels, modify preferences related to drawing
polygons, and postprocess the exported ground truth object data to use for instance segmentation
and semantic segmentation training networks.

Load Unlabeled Data
You can load images stored in a datastore, from a folder, or load a previous labeler session. The
images must be readable by imread. In this example, you are loading data that contains a number of
vehicles, including boats, a tanker, and a plane.

Load Data Programmatically

Use this process to programmatically load images from a datastore:

1 Create a datastore from a folder of images. For example, if you had a folder named
"stopSignImages" that contained images, you could create a datastore of the images with this
code.

imageFolder = fullfile(toolboxdir("vision"),"visiondata","stopSignImages");
imds = imageDatastore(imageFolder);

2 Load the datastore into the Image Labeler:

imageLabeler(imds);

Alternatively, you can load the folder of images directly into Image Labeler:

imageFolder = fullfile(toolboxdir("vision"),"visiondata","stopSignImages");
imageLabeler(imageFolder);

Load Data Directly from the App

Click Import to load images or click Open Session to open a saved session.

 Label Objects Using Polygons

9-27

Create Polygon Labels
To follow these steps that use an image of sailboats, a tanker, and an airplane, open the Image
Labeler app and then import the "boats.png" image from the vision/visiondata folder.

1 In the ROI Labels pane on the left, click Label.
2 Select the Polygon label type and name it Sailboat.
3 Optionally, you can change the label color by clicking the preview color.
4 Click OK.

The Sailboat label appears in the ROI Labels pane.
5 Repeat steps 1 through 4 to create a Tanker label and a Airplane label. You can move a label in

the list by left-clicking and dragging the label up or down.

Draw Polygon ROI Labels
1 Select the Sailboat label, and then using the mouse, draw a polygon ROI around each of the

sailboats.
2 Select the Tanker label and draw a polygon ROI around the tanker ship.
3 Select the Airplane label and draw a polygon ROI around the airplane.

Modify Polygon Preferences and Stacking Order
There are a number of ways to modify the appearance of the ROI labels. You can also set the stacking
order for the exported ground truth file. The stacking order indicates whether an object is in front of
or behind another object, and is required in order to resolve overlapping areas to build a semantic
label map.

9 Labelers

9-28

In the next steps, you modify the color of a label, set the appearance of label names while labeling,
modify the opacity of labels, view instances of a class of labels, and set the stacking order.

1 To modify the color of the airplane ROI label, right-click the Airplane label in the ROI Labels
pane and select Edit Label. Click the color preview and select a color.

2 To show ROI label names while labeling, select Always from the Show ROI Labels menu in the
View section.

3 To increase the label opacity, use the Polygon slider in the Label Opacity section. Increasing
the opacity helps to recognize which labels are in front of or behind other labels in the scene.

4 The tanker label is in front of the sailboat label, but it should be behind it. The position affects
the stacking order in the exported ground truth. To modify the stacking order, right-click on the
tanker ROI label in the scene and select Send To Back.

 Label Objects Using Polygons

9-29

5 To view instances of ROI labels, select By Instance from the ROI Color drop-down menu in the
View section.

6 Export the labeled ground truth data by clicking Export and selecting To Workspace. Name the
ground truth data MAT file gTruth.

9 Labelers

9-30

Postprocess Exported Labels for Instance or Semantic Segmentation
Networks
You can use the exported, labeled ground truth for training an instance segmentation network or a
semantic segmentation network.

Follow these steps to process the polygon data for either semantic segmentation or instance
segmentation.

Step Description Procedure
1 — Display ground
truth data

The exported
ground truth object
contains the data
for five objects and
three definitions.

Enter gTruth on the MATLAB command-line.

>> gTruth

gTruth =

 groundTruth with properties:

 DataSource: [1×1 groundTruthDataSource]
 LabelDefinitions: [3×5 table]
 LabelData: [1×3 table]

2 — Get polygon
data

The LabelData
property groups the
data by label name.
The Sailboat label
cell array contains
three elements, the
Tanker cell array
contains one
element, and the
Airplane cell
array contains one
element.

Type gTruth.LabelData.

>> gTruth.LabelData

ans =

 1×3 table

 Sailboat Tanker Airplane
 __________ __________ __________

 {3×1 cell} {1×1 cell} {1×1 cell}

3 — Stack ground
truth polygon data

The sailboat and the
tanker are
overlapping. This
information
(relative ordering of
pixels) is lost in this
format.

Use the
gatherLabelData
object function to
group the data by
label type. This
produces one table
containing five
objects stacked.

Use the gatherLabelData property and store the
output.

>> out = gatherLabelData(gTruth,[labelType.Polygon],'GroupLabelData','LabelType')

out =

 1×1 cell array

 {1×1 table}

Show the contents of the table.

>> out{1}.PolygonData
ans =

 1×1 cell array

 {5×2 cell}

 Label Objects Using Polygons

9-31

Step Description Procedure
4 — View ground
truth data by depth
order

The contents of
PolygonData,
shows the order of
the stacked
polygons. The order
is consistent with
the labeling order,
including the
tanker, which you
sent to the back.
Now that the labels
are flattened, at the
base is the tanker,
and the sailboat
above it overwrites
the tanker where
they overlap.

Show the polygon data.

>> out{1}.PolygonData{1}

ans =

 5×2 cell array

 {12×2 double} {'Airplane'}
 { 6×2 double} {'Sailboat'}
 { 7×2 double} {'Sailboat'}
 {13×2 double} {'Sailboat'}
 { 9×2 double} {'Tanker' }

Convert Polygon Data for Semantic Segmentation

Step Description Procedure
1 — Create a label ID map Create a map associating class

names to class IDs.
classNames = {'Airplane','Sailboat','Tanker'};
classIds = 1:numel(classNames);

labelIDMap = containers.Map(classNames,classIds);

2 — Extract polygons Extract the polygon coordinates
and polygon labels from the
output structure.

polygons = out{1}.PolygonData{1}(:,1);
polygonLabels = out{1}.PolygonData{1}(:,2);

3 — Flatten polygons to a
semantic segmentation map

Convert the label names to IDs.

Convert the polygon coordinates
to a semantic segmentation
map.

polygonLabelIDs = cellfun(@(x)labelIDMap(x),polygonLabels);

imageSize = [645 916]; % size(boats_im)
outputIm = poly2label(polygons,polygonLabelIDs,imageSize);

Convert Polygon Data for Instance Segmentation

Step Description Procedure
Preallocate a mask stack for
instance segmentation

Preallocate the mask stack with
height and width equal to the
image dimensions, and the
channel depth the same as the
number of polygons.

polygons = out{1}.PolygonData{1}(:,1);
numPolygons = size(polygons,1);

imageSize = [645 916]; % size(boats_im)
maskStack = false([imageSize(1:2) numPolygons]);

Convert polygons to instance
masks

Convert each polygon into a
separate mask and insert it into
the mask stack.

for i = 1:numPolygons
 maskStack(:,:,i) = poly2mask(polygons{i}(:,1), ...
 polygons{i}(:,2),imageSize(1),imageSize(2));
end

9 Labelers

9-32

See Also
Apps
Image Labeler | Video Labeler | Ground Truth Labeler

Functions
gatherLabelData

Objects
groundTruth | groundTruthMultisignal

More About
• “Get Started with the Image Labeler” on page 9-34
• “Get Started with the Video Labeler” on page 9-48
• “Get Started with Ground Truth Labelling” (Automated Driving Toolbox)
• “Label Pixels for Semantic Segmentation” on page 9-19

 Label Objects Using Polygons

9-33

Get Started with the Image Labeler
The Image Labeler app provides an easy way to interactively create a variety of shapes to mark as
region of interest (ROI) labels. You can create rectangular, polyline, pixel, and polygon ROI labels and
scene labels in an image or image sequence.

You can use labeled data to validate or train algorithms such as image classifiers, object detectors,
and semantic and instance segmentation networks. Consider your application when choosing a
labeling drawing tool to create ROI labels. For more details on how to select the right label type and
drawing tool for your application, see “ROI Labels, Sublabels, and Attributes”.

ROI and Scene Label Definitions

• An ROI label corresponds to either a rectangular, polyline, pixel, or polygon region of interest.
These labels contain two components: the label name, such as "cars," and the region you create.

• A Scene label describes the nature of a scene, such as "sunny." You can associate this label with a
frame.

Load Images
To begin a new or open an existing project, select Open Project. You can load unlabeled or partially
labeled images, or load images that are ready for review.

Images that need to be labeled can be stored in a datastore, or a folder. The images must be readable
by imread. A previous labeling session can be loaded from a saved project.

Load Data Programmatically

This code programmatically loads images of book covers from a datastore:

1 Create a datastore from a folder of images:

imageFolder = fullfile(toolboxdir("vision"),"visiondata","bookcovers")
imds = imageDatastore(imageFolder)

2 Load the datastore:

imageLabeler(imds)

To programmatically load a folder of images:

imageFolder = fullfile(toolboxdir("vision"),"visiondata","bookcovers")
imageLabeler(imageFolder)

Load Data Directly from the App

In this example, you load an image interactively from the app. To start, open the app from the Apps
tab, under Image Processing and Computer Vision. Click Import to load images from a file or
from a datastore in the workspace.

To load the image used for this example, click Import and then select From File. Select the
boats.png image:

matlab/toolbox/vision/visiondata/boats.png

9 Labelers

9-34

Layout of the Image Labeler App

These are the sections of the Image Labeler app:

• The first image is displayed on the canvas and all of the loaded images are displayed in the Image
Browser at the bottom of the app.

• The Visual Summary browser displays the distribution of ROI and scene labels for the images in
the project.

• The app has two tabs which control which set of options are available on the toolbar. The Image
Labeler tab shown by default, provides file management, label definition options, automated
labeling options, monitoring, a button to view shortcuts and tutorials, and the Export button. The
Visualization tab provides options visualize your work in the app. These options make it easier to
work with labels by modifying the app layout, control how to display the ROI labels (for example,
on hover, always displayed, or never), how to display ROIs, by color (all ROIs of the same label
displayed in the same color) or by instance (each instance of the ROI label is displayed in a
different color), and label opacity variation.

• The ROI Labels pane displays the ROI label definitions to use for the project.
• The Scene Labels pane displays the scene label definitions to use for the project.
• The View Labels, Sublabels, and Attributes pane display the details of the labeled ROIs and

scenes.

 Get Started with the Image Labeler

9-35

Create Label Definitions
Define the labels you intend to draw. In this example, you define labels directly within the app. To
define labels from the MATLAB command line instead, use the labelDefinitionCreator. All label
names must be one word.

Create ROI Label

An ROI label is a label that corresponds to a region of interest (ROI) in an image. You can define these
ROI label types.

• Rectangle — Draw 2-D rectangular bounding box labels around objects in an image, such as
vehicles, boats, buildings.

• Point — Draw a point to identify an object.
• Projected cuboid — Draw 3-D bounding box labels around objects in an image.
• Line — Draw linear ROIs to label lines, such as lane boundaries.
• Polygon — Draw polygon labels around objects. You can label distinct instances of the same

class. For more information on drawing polygon ROI labels for instance and semantic
segmentation networks, see Label Objects Using Polygons on page 9-27

• Pixel label — Draw pixels to label various classes, such as road or sky, for semantic
segmentation. For more information about pixel labeling, see “Label Pixels for Semantic
Segmentation” on page 9-19.

For more details about these ROI label definitions, see “ROI Labels, Sublabels, and Attributes”.

In this example, you define a Boat group for labeling types of boats, and then create a Rectangle
ROI label for a Sailboat and a Tanker. To control showing the ROI label names during labeling,
select On Hover, Always, or Never from the Show ROI Labels drop-down menu.

1 Click Label in the Label Definition section of the toolstrip.
2 Create a Rectangle label type named Sailboat.
3 Optionally, change the label color by clicking the preview color.
4 From the Group drop-down menu, select New Group ... and name the group Boats

5 Click OK.

The Boats group name appears in the ROI Labels pane with the label Sailboat created. You can
move a label in the list to a different position or group in the list by left-clicking and dragging the
label up or down.

6 To add a second type of Boats label, click Label and then Rectangle. Name the label Tanker.
Click OK.

9 Labelers

9-36

7 Select the Sailboat sublabel, then use the mouse to draw rectangular ROIs around the sailboats.
Select the Tanker sublabel to draw an ROI around the tanker ship. Click on the image away from
the ROI to deselect it. Selected ROIs appear with a yellow outline.

Create Sublabels

A sublabel is a type of ROI label that corresponds to a parent ROI label. Each sublabel must belong
to, or be a child of, a specific label defined in the ROI Labels pane. For example, in the ocean scene,
a sailboat label might have sublabels for sails. For more details about sublabels, see “ROI Labels,
Sublabels, and Attributes”.

Define a sublabel for sails.

1 In the ROI Labels pane on the left, click the Sailboat label.
2 Click Sublabel in the Label Definition section of the toolstrip.
3 Select Rectangle and name the sublabel sail. Optionally, select a color (by default, sublabels

have the same color as its parent label), and write a description. Click OK.

The sail sublabel appears in the ROI Labels pane. The sublabel is nested under the selected ROI
label, Sailboat.

You can add multiple sublabels under a label. You can also drag-and-drop the sublabels to reorder
them in the list and you can click any label and then click Edit additional edits.

 Get Started with the Image Labeler

9-37

4 In the ROI Labels pane, select the sail sublabel.
5 In the image frame, select the Sailboat label. The label turns yellow when selected. You must

select the Sailboat label (parent ROI) before you can draw a sublabel for it.

Draw a sail sublabel for each of the sails.

Sublabels cannot have their own sublabels and they can only be used with rectangular or polyline
ROI labels. Notice that the Labels,Sublabels, and Attributes pane provides a tally and stacking
order for the created labels.

Show or Hide Labels and Sublabels

You can show or hide the labels or sublabels in a labeled image by using the icon on the ROI

Labels pane. The appears only after you define a label or sublabel. By default, the app displays
all the labels and the sublabels.

To hide a label or sublabel, click on the icon along side the label or sublabel name. The app hides

the corresponding label or sublabel and displays the icon.

9 Labelers

9-38

Create ROI Attribute

An ROI attribute specifies additional information about an ROI label or sublabel. For example, in a
driving scene, attributes might include the type or color of a vehicle. In the ocean scene, attributes
might include the type of sailboat or number of sails. You can define ROI attributes of these types.

• Numeric Value — Specify a numeric scalar attribute, such as the number of doors on a labeled
vehicle or the number of sails on a sailboat.

• String — Specify a string scalar attribute, such as the color of a vehicle or boat.
• Logical — Specify a logical true or false attribute, such as whether a vehicle is in motion or a

boat is making way.
• List — Specify a drop-down list attribute of predefined strings, such as make or model of a

vehicle or boat.

For more details about these attribute types, see “ROI Labels, Sublabels, and Attributes”.

Add an attribute to a Label.

1 In the ROI Labels pane on the left, select the Sailboat label and then click Attribute in the
Label Definition section of the toolstrip. Select List from the options.

2 In the Attribute Name box, type sailboatType.
3 In the List Items section, type the three different types of sailboats, typing each one on a new

line; Monohull, Catamaran, and Multihull. Optionally, you can give the attribute a
description, and click OK. Hover on any label or sublabel ROI to see its name.

You can also add attributes to sublabels. For example, in this example you could an attribute for the
sail sublabel to indicate whether it is a foresail or a mainsail. Or, in this step, a logical attribute is
added to indicate whether the sail is raised.

1 In the ROI Labels pane on the left, select the sail sublabel, click Attribute, and then click
Logical.

2 In the Attribute Name box, type sailRaised. Leave the Default Value set to Empty,
optionally write a description, and click OK.

3 Select a sail in the scene, when selected, the ROI appears in yellow. Select the attribute
sailRaised and the appropriate logical.

To delete an attribute, right-click an ROI label or sublabel, and select the attribute to delete. Deleting
the attribute removes attribute information from all previously created ROI label annotations.

Create Scene Labels

A scene label defines additional information for the scene. Use scene labels to describe conditions,
such as lighting, weather, or events, such as lane changes or point of sail.

Create a scene label:

1 Select Label and then Scene from the Scene Label Definitions section located at the bottom of
the drop-down list.

2 Enter a scene label named dayTime. Create a new group named TimeOfDay.
3 Create another scene label in the same group named nightTime.
4 To label the scene as day time, click the daytime scene label, then click Apply to Image. A

check-mark appears for the scene label.

 Get Started with the Image Labeler

9-39

Label Images
You can label images manually, use a suitable built-in automation algorithm, create a new algorithm,
or import an algorithm.

Label Ground Truth Manually

The ROI and Scene labels are defined for your entire session and for all of the images in the session.
Unless you use an automation algorithm, you must label all the relevant images.

Label Ground Truth Using an Automation Algorithm

To speed up the labeling process, you can use an automation algorithm to label the remainder of your
images. Select one of these types of automation algorithms from the app toolstrip Automate
Labeling > Select Algorithm section.

• Custom Automation Function — Define a custom algorithm.
• Use one of the built-in automation algorithms — Select a suitable algorithm. Follow the steps that

appear in the right pane.
• Add Whole Image Algorithm — You can create a new automation algorithm or import one. For

details on both options, see “Create Automation Algorithm” on page 9-93.
• Add Blocked Image Algorithm — You can create a new blocked image automation algorithm or

import one. For details on both options, see “Label Large Images in the Image Labeler” on page 9-
12.

After using an automation algorithm you can manually label the remaining frames with sublabel and
attribute information.

To further evaluate your labels, you can view a visual summary of the labeled images. The Visual
Summary information appears below the image pane of the app. Use this summary to compare the
frames, frequency of labels, and scene conditions. For more details, see “View Summary of ROI and
Scene Labels” on page 9-2. This summary does not show sublabels or attributes.

9 Labelers

9-40

Export Labeled Images
You can export the labeled ground truth to a MAT-file or to a variable in the MATLAB workspace. In
both cases, the labeled ground truth is stored as a groundTruth object.

You can use the groundTruth object to train a deep-learning-based computer vision algorithm. For
more details, see “Training Data for Object Detection and Semantic Segmentation” on page 9-89.

Note If you export pixel data, the pixel label data and ground truth data are saved in separate files
but in the same folder. For considerations when working with exported pixel labels, see “How Labeler
Apps Store Exported Pixel Labels” on page 17-39.

In this example, you export the labeled ground truth to the MATLAB workspace. From the app
toolstrip, select Export Labels > To Workspace. The exported MATLAB variable is gTruth.

Display the properties of the exported groundTruth object. The information in your exported object
might differ from the information shown here.

gTruth

gTruth =

 groundTruth with properties:

 DataSource: [1×1 groundTruthDataSource]
 LabelDefinitions: [2x6 table]
 LabelData: [531×3 timetable]

Data Source

DataSource is a groundTruthDataSource object containing the path to the images or video and
timestamps. Display the properties of this object.

gTruth.DataSource

ans =

groundTruthDataSource for a video file with properties

 Source: ...matlab\toolbox\vision\visiondata\visiontraffic.avi
 TimeStamps: [531×1 duration]

Label Definitions

LabelDefinitions is a table containing information about the label definitions. This table does not
contain information about the labels that are drawn on the video frames. To save the label definitions
in their own MAT-file, from the app toolstrip, select Save > Label Definitions. You can then import
these label definitions into another app session by selecting Import Files.

Display the label definitions table. Each row contains information about an ROI label definition or a
scene label definition. If you exported pixel label data, the LabelDefinitions table also includes a
PixelLabelID column containing the ID numbers for each pixel label definition.

gTruth.LabelDefinitions

 Get Started with the Image Labeler

9-41

ans =
 3×6 table

 Name Type LabelColor Group Description Hierarchy
 _________ _________ ____________ ___________ ___________ ____________

 {'Car' } Rectangle {1×3 double} {'Vehicle'} {0×0 char} {1×1 struct}
 {'Truck'} Rectangle {1×3 double} {'Vehicle'} {0×0 char} {0×0 double}
 {'Sunny'} Scene {1×3 double} {'Weather'} {0×0 char} {0×0 double}

Within LabelDefinitions, the Hierarchy column stores information about the sublabel and
attribute definitions of a parent ROI label.

Display the sublabel and attribute information for the Car label.

gTruth.LabelDefinitions.Hierarchy{1}

ans =

 struct with fields:
 numDoors: [1×1 struct]
 color: [1×1 struct]
 inMotion: [1×1 struct]
 carType: [1×1 struct]
 headlight: [1×1 struct]
 Type: Rectangle
 Description: ''

Display information about the headlight sublabel.

gTruth.LabelDefinitions.Hierarchy{1}.headlight

ans =

 struct with fields:
 Type: Rectangle
 Description: ''
 Color: [0.5862 0.8276 0.3103]
 isOn: [1×1 struct]

Display information about the carType attribute.

gTruth.LabelDefinitions.Hierarchy{1}.carType

ans =

 struct with fields:

 ListItems: {3×1 cell}
 Description: ''

Save App Session as a Project

From the app toolstrip, select Save Project then Save as to save a MAT-file of the app session. The
saved session includes the data source, label definitions, and labeled ground truth. It also includes
your session preferences, such as the layout of the app. To change layout options, select Layout.

At any time during a session, you can select New Session to start a new session. You have the option
of saving the current session or cancelling.

9 Labelers

9-42

The app session MAT-file is separate from the ground truth MAT-file that is exported when you select
Export. To share labeled ground truth data, as a best practice, share the ground truth MAT-file
containing the groundTruth object, not the app session MAT-file. For more details, see “Share and
Store Labeled Ground Truth Data” on page 9-72.

See Also
Apps
Image Labeler

Objects
groundTruth | imageDatastore | groundTruthDataSource | labelDefinitionCreator |
vision.labeler.AutomationAlgorithm

More About
• “Training Data for Object Detection and Semantic Segmentation” on page 9-89
• “Keyboard Shortcuts and Mouse Actions for Image Labeler” on page 9-67
• “Use Sublabels and Attributes to Label Ground Truth Data” on page 9-85
• “Label Pixels for Semantic Segmentation” on page 9-19
• “Label Objects Using Polygons” on page 9-27
• “Create Automation Algorithm” on page 9-93

 Get Started with the Image Labeler

9-43

Choose an App to Label Ground Truth Data
You can use Computer Vision Toolbox, Automated Driving Toolbox™, Lidar Toolbox™, Audio
Toolbox™, Signal Processing Toolbox™, and Medical Imaging Toolbox™ apps to label ground truth
data. Use this labeled data to validate or train algorithms such as image classifiers, object detectors,
semantic segmentation networks, instance segmentation networks, and deep learning applications.
The choice of labeling app depends on several factors, including the supported data sources, labels,
and types of automation.

One key consideration is the type of data that you want to label.

• If your data is an image collection, use the Image Labeler app. An image collection is an
unordered set of images that can vary in size. For example, you can use the app to label images of
books for training a classifier. The Image Labeler can also handle very large images (at least one
dimension >8K).

• If your data is a single video or image sequence, use the Video Labeler app. An image sequence
is an ordered set of images that resembles a video. For example, you can use this app to label a
video or image sequence of cars driving on a highway for training an object detector.

• If your data includes multiple time-overlapped signals, such as videos, image sequences, or lidar
signals, use the Ground Truth Labeler app. For example, you can label data for a single scene
captured by multiple sensors mounted on a vehicle.

• If your data is only a lidar signal, use the Lidar Labeler. For example, you can use this app to
label data captured from a point cloud sensor.

• If your data consists of single-channel or multichannel one-dimensional signals, use the Signal
Labeler. For example, you can label biomedical, speech, communications, or vibration data. You
can also use Signal Labeler to perform audio-specific tasks, such as speech detection and
speech-to-text transcription.

• If your data is a 2-D medical image or image series, or a 3-D medical image volume, use the
Medical Image Labeler. For example, you can label computed tomography (CT) image volumes
of the chest to train a semantic segmentation network.

This table summarizes the key features of the labeling apps.

Labeling App Data Sources Label Support Automation Additional
Features

Image Labeler • Image
collections

• Very large
images (at least
one dimension
>8K)

• Rectangle
regions of
interest (ROIs)

• Projected
cuboid (ROIs)

• Line ROIs
• Pixel ROIs
• Polygon ROIs
• Point ROIs
• Sublabels
• Attributes
• Scenes

• Built-in
automation
algorithms

• Custom
automation
algorithms

• Blocked image
automation
algorithms

• View visual
summary of
labeled data

9 Labelers

9-44

Labeling App Data Sources Label Support Automation Additional
Features

Video Labeler • Videos
• Image

sequences
• Custom image

data sources

• Rectangle ROIs
• Projected

cuboid (ROIs)
• Line ROIs
• Pixel ROIs
• Polygon ROIs
• Point ROIs
• Sublabels
• Attributes
• Scenes

• Built-in
automation
algorithms

• Custom
automation
algorithms

• Temporal
automation
algorithms

• View visual
summary of
labeled data

Ground Truth
Labeler

• Videos
• Image

sequences
• Custom image

data sources
• Point cloud

sequences (PCD
or PLY files)

• Velodyne® lidar
files

• Rosbags
(requires ROS
Toolbox)

• Rectangle ROIs
• Projected

cuboid (ROIs)
• Cuboid ROIs
• Line ROIs
• Pixel ROIs
• Polygon ROIs
• Point ROIs
• Sublabels
• Attributes
• Scenes

• Built-in
automation
algorithms,
including
vehicle and
lane detection
algorithms and
a point cloud
temporal
interpolation
algorithm

• Custom
automation
algorithms

• Temporal
automation
algorithms

• Multisignal
automation

• View visual
summary of
labeled data

• Connect
external tool to
app for
displaying time-
synchronized
signals, such as
lidar or CAN
bus data

• Customize
loading
interface to
support
additional data
sources

 Choose an App to Label Ground Truth Data

9-45

Labeling App Data Sources Label Support Automation Additional
Features

Lidar Labeler • Point cloud
sequences (PCD
or PLY files)

• Velodyne lidar
files

• LAS/LAZ file
sequences

• Rosbags
(requires ROS
Toolbox)

• Cuboid ROIs
• Attributes
• Scenes

• Built-in
automation
algorithms,
including a
lidar object
tracker and
point cloud
temporal
interpolator

• Custom
automation
algorithms

• Temporal
automation
algorithms

• View the cuboid
labels in top,
side, and front
views

• Save and reuse
custom camera
views

• Connect to
external tool to
display time-
synchronized
signals for ease
of labeling,
such as videos,
to use as a
reference while
labeling

Signal Labeler • Numeric
arrays,
MATLAB
timetables, and
labeledSigna
lSet objects in
the MATLAB
workspace

• MAT-files and
CSV files

• Audio files
(WAVE, OGG,
FLAC, AU, AIFF,
AIFC, MP3,
MPEG-4 AAC)

• Time-based
ROIs

• Time-based ROI
features

• Time-based
points

• Attributes
• Attribute

features
• File-level labels
• Sublabels

• Built-in peak
labeling

• Built-in feature
extraction

• Custom
automation
algorithms

• Speech
detection

• Speech-to-text
transcription
(requires Audio
Toolbox
extended
functionality for
speech2text)

• Expand,
collapse, and
browse details
of labeled data

• View signal
spectra and
spectrograms

• Label ROIs and
points using the
spectrogram

• Label signals in
bulk

• Use Label
Viewer to view
and compare
labels

• Audio playback
• Inspect audio
file information

• Export
extracted
features to
Classification
Learner

9 Labelers

9-46

Labeling App Data Sources Label Support Automation Additional
Features

Medical Image
Labeler

• 2-D medical
images and
image series
(DICOM or
NIfTI files)

• 3-D medical
image volume
(DICOM, NIfTI,
or NRRD files)

• Pixel ROIs • Built-in
automation
algorithms

• Custom
automation
algorithms

• View 3-D
medical images
in the coronal,
sagittal, and
transverse
anatomical
planes

• View 3-D
medical images
using
customizable
volume
rendering

• Label multiple
related images
or image
volumes in one
app session

See Also

More About
• “Get Started with the Image Labeler” on page 9-34
• “Get Started with the Video Labeler” on page 9-48
• “Get Started with Ground Truth Labelling” (Automated Driving Toolbox)
• “Get Started with the Lidar Labeler” (Lidar Toolbox)
• “Using Signal Labeler App” (Signal Processing Toolbox)
• “Label Spoken Words in Audio Signals” (Signal Processing Toolbox)
• “Get Started with Medical Image Labeler” (Medical Imaging Toolbox)

 Choose an App to Label Ground Truth Data

9-47

Get Started with the Video Labeler
The Video Labeler app provides an easy way to mark rectangular region of interest (ROI) labels,
polyline ROI labels, pixel ROI labels, and scene labels in a video or image sequence.

You can use labeled data to validate or train algorithms such as image classifiers, object detectors,
and semantic and instance segmentation networks. Consider your application when choosing a
labeling drawing tool to create ROI labels. For more details on how to select the right label type and
drawing tool for your application, see “ROI Labels, Sublabels, and Attributes”.

This example gets you started using the app by showing you how to:

• Manually label an image frame from a video.
• Automatically label across image frames using an automation algorithm.
• Export the labeled ground truth data.

ROI and Scene Label Definitions

• An ROI label corresponds to either a rectangular, polyline, pixel, or polygon region of interest.
These labels contain two components: the label name, such as "cars," and the region you create.

• A Scene label describes the nature of a scene, such as "sunny." You can associate this label with a
frame.

Load Unlabeled Data
Programmatically open the app and load a video. Videos must be in a file format readable by
VideoReader.

videoLabeler('visiontraffic.avi')

You can also load a video from the app. Open the app from the Apps tab, under Image Processing
and Computer Vision. Click Import to load a video or image sequence, or click Open Session to
load a saved session.

Explore the video. Click the Play button to play the entire video, or use the slider to navigate
between frames.

To load an image sequence with corresponding timestamps, select Import > Image Sequence. The
app supports all image file formats supported by imread. To read additional file formats, you can
create an imageDatastore and use the ReadFcn property.

To load a custom data source that cannot be read by VideoReader or imread, see “Use Custom
Image Source Reader for Labeling” on page 9-61.

Create Label Definitions
Define the labels you intend to draw. In this example, you define labels directly within the app. To
define labels from the MATLAB command line instead, use the labelDefinitionCreator.

9 Labelers

9-48

Set Time Interval

You can label the entire video or start with a portion of the video. In this example, you label a five-
second time range within the loaded video. In the text boxes below the video, enter these times in
seconds:

1 In the Current Time box, type 5 and press Enter.
2 In the Start Time box, type 5 so that the slider is at the start of the time range.
3 In the End Time box, type 10.

Optionally, to make adjustments to the time range, click and drag the red interval flags.

The entire app is now set up to focus on this specific time range. The video plays only within this
interval, and labeling and automation algorithms apply only to this interval. You can change the
interval at any time by moving the flags.

To expand the time range to fill the entire playback section, click Zoom in Time Range.

Create ROI Label

An ROI label is a label that corresponds to a region of interest (ROI) in an image. You can define these
ROI label types.

• Rectangle — Draw 2-D rectangular bounding box labels around objects in an image, such as
vehicles, boats, buildings.

• Projected cuboid — Draw 3-D bounding box labels around objects in an image, such as
vehicles, boats, buildings.

• Line — Draw linear ROIs to label lines, such as lane boundaries.
• Pixel label — Draw pixels to label various classes, such as road or sky, for semantic

segmentation. For more information about pixel labeling, see “Label Pixels for Semantic
Segmentation” on page 9-19.

• Polygon — Draw polygon labels around objects. You can label distinct instances of the same
class. For more information on drawing polygon ROI labels for instance and semantic
segmentation networks, see “Label Objects Using Polygons” on page 9-27

For more details about these ROI label definitions, see “ROI Labels, Sublabels, and Attributes”.

In this example, you define a vehicle group for labeling types of vehicles, and then create two
Rectangle ROI labels, Car and Truck. After creating labels, you can use the Show ROI Labels
drop-down menu to select On Hover, Always, or Never to control how the ROI label names appear
during labeling. By default, the names will appear when you hover on an ROI.

1 In the ROI Labels pane on the left, click Label.
2 Create a Rectangle label named Car.

 Get Started with the Video Labeler

9-49

3 Optionally, change the label color by clicking the preview color.

4 From the Group drop-down menu, select New Group and name the group Vehicle
5 Click OK.

The Vehicle group name appears in the ROI Labels pane with the label Car created. You can
move a label in the list to a different position or group in the list by left-clicking and dragging the
label up or down.

6 To add the second label, click Label. Name the label Truck and make sure the Vehicle group is
selected. Click OK.

7 Use the mouse to draw rectangular Car ROIs around the two vehicles.

Create Sublabels

A sublabel is a type of ROI label that corresponds to a parent ROI label. Each sublabel must belong
to, or be a child of, a specific label defined in the ROI Labels pane. For example, in a driving scene, a
vehicle label might have sublabels for headlights, license plates, or wheels. For more details about
sublabels, see “ROI Labels, Sublabels, and Attributes”.

Define a sublabel for headlights.

1 In the ROI Labels pane on the left, click the Car label.
2 Click Sublabel.
3 Create a Rectangle sublabel named headlight and optionally write a description. Click OK.

The headlight sublabel appears in the ROI Labels pane. The sublabel is nested under the
selected ROI label, Car, and has the same color as its parent label.

You can add multiple sublabels under a label. You can also drag-and-drop the sublabels to reorder
them in the list. Right-click any label for additional edits.

9 Labelers

9-50

4 In the ROI Labels pane, select the headlight sublabel.
5 In the image frame, select the Car label. The label turns yellow when selected. You must select

the Car label (parent ROI) before you can add a sublabel to it.

Draw headlight sublabels for each of the cars.
6 Repeat the previous steps to label the headlights of the other car. To draw the labels more

precisely, use the pan and zoom options located in the upper-right corner of the labeling window.

Sublabels can only be used with rectangular or polyline ROI labels and cannot have their own
sublabels. For more details on working with sublabels, see “Use Sublabels and Attributes to Label
Ground Truth Data” on page 9-85.

Show or Hide Labels and Sublabels

You can show or hide the labels or sublabels in a labeled video by using the icon on the ROI

Labels pane. The appears only after you define a label or sublabel. By default, the app displays
all the labels and the sublabels.

To hide a label or sublabel, click on the icon along side the label or sublabel name. The app hides

the corresponding label or sublabel and displays the icon.

 Get Started with the Video Labeler

9-51

Create Attributes

An ROI attribute specifies additional information about an ROI label or sublabel. For example, in a
driving scene, attributes might include the type or color of a vehicle. In the ocean scene, attributes
might include the type of sailboat or number of sails. You can define ROI attributes of these types.

• Numeric Value — Specify a numeric scalar attribute, such as the number of doors on a labeled
vehicle or the number of sails on a sailboat.

• String — Specify a string scalar attribute, such as the color of a vehicle or boat.
• Logical — Specify a logical true or false attribute, such as whether a vehicle is in motion or a

boat is making way.
• List — Specify a drop-down list attribute of predefined strings, such as make or model of a

vehicle or boat.

For more details about these attribute types, see “ROI Labels, Sublabels, and Attributes”.

Add an attribute for the vehicle type.

1 In the ROI Labels pane on the left, select the Car label and click Attribute.
2 In the Attribute Name box, type carType. Set the attribute type to List.
3 In the List Items section, type different types of cars, such as Sedan, Hatchback, SUV, and

Wagon, each on its own line. Optionally give the attribute a description, and click OK. You can
hover the information icon that appears next to the attribute field to display the added
description.

4 Select a Car ROI label in the image frame. In the Attributes and Sublabels pane, select the
appropriate carType attribute value for that vehicle.

5 Repeat the previous step to assign a carType attribute to the other vehicle.

9 Labelers

9-52

You can also add attributes to sublabels. Add an attribute for the headlight sublabel that tells
whether the headlight is on.

1 In the ROI Labels pane on the left, select the headlight sublabel and click Attribute.
2 In the Attribute Name box, type isOn. Set the attribute type to Logical. Leave the Default

Value set to Empty, optionally write a description, and click OK.
3 Select a headlight in the video frame. Set the appropriate isOn attribute value, or leave the

attribute value set to Empty.
4 Repeat the previous step to set the isOn attribute for the other headlights.

To delete an attribute, right-click an ROI label or sublabel, and select the attribute to delete. Deleting
the attribute removes attribute information from all previously created ROI label annotations.

Create Scene Labels

A scene label defines additional information for the entire scene. Use scene labels to describe
conditions, such as lighting and weather, or events, such as lane changes.

Create a scene label to apply to an image.

1 In the left pane of the app, select the Scene Labels tab next to the ROI Labels tab.
2 Click Define new scene label, and in the Label Name box, enter a scene label named

daytime.
3 Change the color of the label definition to light blue to reflect the nature of the scene label.

Under the Color parameter, click the color preview and select the standard light blue colors.
Then, click OK to close the color selection window.

 Get Started with the Video Labeler

9-53

4 Leave the Group parameter set to the default of None and click OK. The Scene Labels pane
shows the scene label definition.

5 Click Apply to Image to apply the daytime label to the scene. A checkmark appears for the
scene label.

6 To edit or delete a scene label, right-click on the label and select either Edit Label or Delete
Label.

Label Ground Truth
So far, you have labeled only one frame in the video. To label the remaining frames, choose one of
these options.

9 Labelers

9-54

Label Ground Truth Manually

When you click the right arrow key to advance to the next frame, the ROI labels from the previous
frame do not carry over. Only the sunny scene label applies to each frame, because this label was
applied over the entire time range.

Advance frame by frame and draw the label and sublabel ROIs manually. Also update the attribute
information for these ROIs.

Label Ground Truth Using Automation Algorithm

To speed up the labeling process, you can use an automation algorithm within the app. You can either
define your own automation algorithm, see “Create Automation Algorithm for Labeling” on page 9-8
and “Temporal Automation Algorithms” on page 9-82, or use a built-in automation algorithm. In this
example, you label the ground truth using a built-in point tracking algorithm.

In this example, you automate the labeling of only the Car ROI labels. The built-in automation
algorithms do not support sublabel and attribute automation.

1 Select the labels you want to automate. In the first frame of the video, press Ctrl and click to
select the two Car label annotations. The labels are highlighted in yellow.

2 From the app toolstrip, select Select Algorithm > Point Tracker. This algorithm tracks one or
more rectangle ROIs over short intervals using the Kanade-Lucas-Tomasi (KLT) algorithm.

3 (optional) Configure the automation settings. For example, make sure that Import selected
ROIs is selected so that the Car labels you selected are imported into the automation session.

4 Click Automate to open an automation session. The algorithm instructions appear in the right
pane, and the selected labels are available to automate.

 Get Started with the Video Labeler

9-55

5 Click Run to track the selected ROIs over the interval.
6 Examine the results of running the algorithm.

The vehicles that enter the scene later are unlabeled. The unlabeled vehicles did not have an
initial ROI label, so the algorithm did not track them. Click Undo Run. Use the slider to find the
frames where each vehicle first appears. Draw vehicle ROIs around each vehicle, and then click
Run again.

7 Advance frame by frame and manually move, resize, delete, or add ROIs to improve the results of
the automation algorithm.

When you are satisfied with the algorithm results, click Accept. Alternatively, to discard labels
generated during the session and label manually instead, click Cancel. The Cancel button
cancels only the algorithm session, not the app session.

Optionally, you can now manually label the remaining frames with sublabel and attribute information.

To further evaluate your labels, you can view a visual summary of the labeled ground truth. From the
app toolstrip, select View Label Summary. Use this summary to compare the frames, frequency of
labels, and scene conditions. For more details, see “View Summary of Ground Truth Labels” on page
9-78. This summary does not support sublabels or attributes.

Export Labeled Ground Truth
You can export the labeled ground truth to a MAT-file or to a variable in the MATLAB workspace. In
both cases, the labeled ground truth is stored as a groundTruth object. You can use this object to
train a deep-learning-based computer vision algorithm. For more details, see “Training Data for
Object Detection and Semantic Segmentation” on page 9-89.

Note If you export pixel data, the pixel label data and ground truth data are saved in separate files
but in the same folder. For considerations when working with exported pixel labels, see “How Labeler
Apps Store Exported Pixel Labels” on page 17-39.

In this example, you export the labeled ground truth to the MATLAB workspace. From the app
toolstrip, select Export Labels > To Workspace. The exported MATLAB variable is gTruth.

9 Labelers

9-56

Display the properties of the exported groundTruth object. The information in your exported object
might differ from the information shown here.

gTruth

gTruth =

 groundTruth with properties:

 DataSource: [1×1 groundTruthDataSource]
 LabelDefinitions: [2x6 table]
 LabelData: [531×3 timetable]

Data Source

DataSource is a groundTruthDataSource object containing the path to the images or video and
timestamps. Display the properties of this object.

gTruth.DataSource

ans =

groundTruthDataSource for a video file with properties

 Source: ...matlab\toolbox\vision\visiondata\visiontraffic.avi
 TimeStamps: [531×1 duration]

Label Definitions

LabelDefinitions is a table containing information about the label definitions. This table does not
contain information about the labels that are drawn on the video frames. To save the label definitions
in their own MAT-file, from the app toolstrip, select Save > Label Definitions. You can then import
these label definitions into another app session by selecting Import Files.

Display the label definitions table. Each row contains information about an ROI label definition or a
scene label definition. If you exported pixel label data, the LabelDefinitions table also includes a
PixelLabelID column containing the ID numbers for each pixel label definition.

gTruth.LabelDefinitions

ans =
 3×6 table

 Name Type LabelColor Group Description Hierarchy
 _________ _________ ____________ ___________ ___________ ____________

 {'Car' } Rectangle {1×3 double} {'Vehicle'} {0×0 char} {1×1 struct}
 {'Truck'} Rectangle {1×3 double} {'Vehicle'} {0×0 char} {0×0 double}
 {'Sunny'} Scene {1×3 double} {'Weather'} {0×0 char} {0×0 double}

Within LabelDefinitions, the Hierarchy column stores information about the sublabel and
attribute definitions of a parent ROI label.

Display the sublabel and attribute information for the Car label.

gTruth.LabelDefinitions.Hierarchy{1}

ans =

 Get Started with the Video Labeler

9-57

 struct with fields:
 numDoors: [1×1 struct]
 color: [1×1 struct]
 inMotion: [1×1 struct]
 carType: [1×1 struct]
 headlight: [1×1 struct]
 Type: Rectangle
 Description: ''

Display information about the headlight sublabel.

gTruth.LabelDefinitions.Hierarchy{1}.headlight

ans =

 struct with fields:
 Type: Rectangle
 Description: ''
 Color: [0.5862 0.8276 0.3103]
 isOn: [1×1 struct]

Display information about the carType attribute.

gTruth.LabelDefinitions.Hierarchy{1}.carType

ans =

 struct with fields:

 ListItems: {3×1 cell}
 Description: ''

Label Data
LabelData is a timetable containing information about the ROI labels drawn at each timestamp,
across the entire video. The timetable contains one column per label.

Display the first few rows of the timetable. The first few timestamps indicate that no vehicles were
detected and that the sunny scene label is false. These results are because this portion of the video
was not labeled. Only the time range of 5–10 seconds was labeled.

labelData = gTruth.LabelData;
head(labelData)

ans =

 8×3 timetable

 Time Car Truck sunny
 __________ ____________ ____________ _____

 5.005 sec [1×2 struct] [1×0 struct] true
 5.0384 sec [1×2 struct] [1×0 struct] true
 5.0717 sec [1×2 struct] [1×0 struct] true
 5.1051 sec [1×2 struct] [1×0 struct] true
 5.1385 sec [1×2 struct] [1×0 struct] true
 5.1718 sec [1×2 struct] [1×0 struct] true

9 Labelers

9-58

 5.2052 sec [1×2 struct] [1×0 struct] true
 5.2386 sec [1×2 struct] [1×0 struct] true

Display the first few timetable rows from the 5-10 second interval that contains labels.

gTruthInterval = labelData(timerange('00:00:05','00:00:10'),:);
head(gTruthInterval)

ans =

 8×3 timetable

 Time Car Truck sunny
 __________ ____________ ____________ _____

 5.005 sec [1×2 struct] [1×0 struct] true
 5.0384 sec [1×2 struct] [1×0 struct] true
 5.0717 sec [1×2 struct] [1×0 struct] true
 5.1051 sec [1×2 struct] [1×0 struct] true
 5.1385 sec [1×2 struct] [1×0 struct] true
 5.1718 sec [1×2 struct] [1×0 struct] true
 5.2052 sec [1×2 struct] [1×0 struct] true
 5.2386 sec [1×2 struct] [1×0 struct] true

For each Car label, the structure includes the position of the bounding box and information about its
sublabels and attributes.

Display the bounding box positions for the vehicles at the start of the time range. Your bounding box
positions might differ from the ones shown here.

gTruthInterval(1,:).Car{1}.Position % [x y width height], in pixels

ans =

 1×4 single row vector

 415.8962 82.4737 130.8474 129.3805

ans =

 1×4 single row vector

 235.2182 1.0000 117.0611 55.3500

Save App Session
From the app toolstrip, select Save and save a MAT-file of the app session. The saved session includes
the data source, label definitions, and labeled ground truth. It also includes your session preferences,
such as the layout of the app. To change layout options, select Layout.

At any time during a session, you can select New Session to start a new session. You have the option
of saving the current session or cancelling.

The app session MAT-file is separate from the ground truth MAT-file that is exported when you select
Export > From File. To share labeled ground truth data, as a best practice, share the ground truth

 Get Started with the Video Labeler

9-59

MAT-file containing the groundTruth object, not the app session MAT-file. For more details, see
“Share and Store Labeled Ground Truth Data” on page 9-72.

See Also
Apps
Video Labeler

Objects
labelDefinitionCreator | groundTruth | groundTruthDataSource |
vision.labeler.mixin.Temporal | vision.labeler.AutomationAlgorithm

More About
• “Use Custom Image Source Reader for Labeling” on page 9-61
• “Keyboard Shortcuts and Mouse Actions for Video Labeler” on page 9-63
• “Use Sublabels and Attributes to Label Ground Truth Data” on page 9-85
• “Label Pixels for Semantic Segmentation” on page 9-19
• “Create Automation Algorithm for Labeling” on page 9-8
• “View Summary of Ground Truth Labels” on page 9-78
• “Share and Store Labeled Ground Truth Data” on page 9-72
• “Training Data for Object Detection and Semantic Segmentation” on page 9-89

9 Labelers

9-60

Use Custom Image Source Reader for Labeling
In this section...
“Create Custom Reader Function” on page 9-61
“Import Data Source into Video Labeler App” on page 9-61
“Import Data Source into Ground Truth Labeler App” on page 9-62

The Video Labeler and Ground Truth Labeler apps enable you to label ground truth data in a video
or sequence of images.

You can use a custom reader to import any video or sequence of images that is supported by the
VideoReader object or imread function. First, create a custom reader function. Then, load the
custom reader function and corresponding image data source into the Video Labeler or Ground
Truth Labeler app. The Image Labeler app does not support custom data source readers.

Create Custom Reader Function
First, specify a custom reader as a function handle. The custom reader must have this syntax.

outputImage = readerFcn(sourceName,currentTimestamp)

In this example, readerFcn is the name of the custom reader function.

The custom reader function loads an image from sourceName, which corresponds to the current
timestamp specified by currentTimestamp. For example, suppose you want to load the image at the
third timestamp for a timestamps duration vector that runs from 1 to 5 seconds. To specify
currentTimestamp, at the MATLAB command prompt, enter this code.

timestamps = seconds(1:5);
currIdx = 3;
currentTimestamp = timestamps(currIdx);

The outputImage output from the custom function must be a grayscale or RGB image in any format
supported by the imshow function. The currentTimestamp output is a scalar value that
corresponds to the current frame that the function is executing.

Import Data Source into Video Labeler App
To import a custom data source into the Video Labeler app, first create a
groundTruthDataSource object. This object stores the data source files and timestamps. Specify
the name of the data source, the custom reader function handle that reads the data, and the
timestamps by using this syntax.

gtSource = groundTruthDataSource(sourceName,readerFcn,timestamps)

To load this object into the app, at the MATLAB command prompt, enter this code.

videoLabeler(gtSource)

Alternatively, on the toolstrip of the Video Labeler app, select Import > Custom Reader. Then, in
the Load Custom Data Source dialog box, specify Custom reader function as a function handle and
also specify Data source name. In addition, you must import corresponding timestamps from the
MATLAB workspace.

 Use Custom Image Source Reader for Labeling

9-61

Import Data Source into Ground Truth Labeler App
To import the custom image data source into the Ground Truth Labeler app, on the app toolstrip,
select Import > Add Signals. Then, in the dialog box, set Source Type to Custom Image. You can
then specify the custom reader function, data source name, and timestamps, and then click Add
Source to load the image data source.

See Also
Apps
Ground Truth Labeler | Video Labeler

Objects
groundTruth | groundTruthMultisignal | groundTruthDataSource

More About
• “Get Started with Ground Truth Labelling” (Automated Driving Toolbox)
• “Get Started with the Video Labeler” on page 9-48

9 Labelers

9-62

Keyboard Shortcuts and Mouse Actions for Video Labeler

Note On Macintosh platforms, use the Command (⌘) key instead of Ctrl.

Label Definitions
Task Action
Navigate through ROI labels and their groups in
the ROI Label Definition pane.

Up or Down arrow

Navigate through scene labels and their groups
in the Scene Label Definition pane,

Hold Alt and press the up arrow or down arrow

Reorder labels within a group or move labels
between groups

Click and drag labels

Reorder groups Click and drag groups

Frame Navigation and Time Interval Settings
Navigate between frames and change the time range of the signal. These controls are located in the
bottom pane of the app.

Task Action
Go to the next frame Right arrow
Go to the previous frame Left arrow
Go to the last frame • PC: End

• Mac: Hold Fn and press the right arrow
Go to the first frame • PC: Home

• Mac: Hold Fn and press the left arrow
Navigate through time range boxes and frame
navigation buttons

Tab

Commit time interval settings Press Enter within the active time interval box
(Start Time, Current, or End Time)

Labeling Window
Perform labeling actions, such as adding, moving, and deleting regions of interest (ROIs). The ROIs
can be pixel labels or non-pixel ROI labels that include line, rectangle, cuboid, and projected cuboid.

Task Action
Undo labeling action Ctrl+Z
Redo labeling action Ctrl+Y
Select all non-pixel ROIs Ctrl+A
Select specific non-pixel ROIs Hold Ctrl and click the ROIs you want to select

 Keyboard Shortcuts and Mouse Actions for Video Labeler

9-63

Task Action
Cut selected non-pixel ROIs Ctrl+X
Copy selected non-pixel ROIs to clipboard Ctrl+C
Paste copied non-pixel ROIs

• If a sublabel was copied, both the sublabel
and its parent label are pasted.

• If a parent label was copied, only the parent
label is pasted, not its sublabels.

For more details, see “Use Sublabels and
Attributes to Label Ground Truth Data” on page
9-85.

Ctrl+V

Switch between selected non-pixel ROI labels.

You can switch between labels only of the same
type. For example, if you select a rectangle ROI,
you can switch only between other rectangle
ROIs.

Tab or Shift+Tab

Move a drawn non-pixel ROI label Hold Ctrl and press the up, down, left or right
arrows

Resize a rectangle ROI uniformly across all
dimensions

Ctrl+Plus (+) or Ctrl+Minus (-)

Delete selected non-pixel ROIs Delete
Copy all pixel ROIs Ctrl+Shift+C
Cut all pixel ROIs Ctrl+Shift+X
Paste copied or cut pixel ROIs Ctrl+Shift+V
Delete all pixel ROIs Ctrl+Shift+Delete
Fill all or all remaining pixels Shift+click

Polyline Drawing
Draw ROI line labels on a frame. ROI line labels are polylines, meaning that they are composed of one
or more line segments.

Task Action
Commit a polyline to the frame, excluding the
currently active line segment

Press Enter or right-click while drawing the
polyline

Commit a polyline to the frame, including the
currently active line segment

Double-click while drawing the polyline

A new line segment is committed at the point
where you double-click.

Delete the previously created line segment in a
polyline

Backspace

Cancel drawing and delete the entire polyline Escape

9 Labelers

9-64

Polygon Drawing
Draw polygons to label pixels on a frame.

Task Action
Commit a polygon to the frame, excluding the
currently active line segment

Press Enter or right-click while drawing the
polygon

The polygon closes up by forming a line between
the previously committed point and the first point
in the polygon.

Commit a polygon to the frame, including the
currently active line segment

Double-click while drawing polygon

The polygon closes up by forming a line between
the point where you double-clicked and the first
point in the polygon.

Remove the previously created line segment from
a polygon

Backspace

Cancel drawing and delete the entire polygon Escape

Zooming and Panning
Task Action
Zoom in or out of frame Move the scroll wheel up (zoom in) or down

(zoom out)

If the frame is in pan mode, then zooming is not
supported. To enable zooming, in the upper-right
corner of the frame, either click the Pan button

 to disable panning or click one of the zoom
buttons.

Zoom in on specific section of frame In the upper-right corner of the frame, click the
Zoom In button . Then, draw a box around the
section of the frame that you want to zoom in on.

Pan across frame Press the up, down, left, or right arrows

App Sessions
Task Action
Save current session Ctrl+S

See Also
Video Labeler

 Keyboard Shortcuts and Mouse Actions for Video Labeler

9-65

More About
• “Get Started with the Video Labeler” on page 9-48

9 Labelers

9-66

Keyboard Shortcuts and Mouse Actions for Image Labeler

Note On Macintosh platforms, use the Option (⌥) key instead of Alt.

Label Definitions
Task Action
Navigate through ROI labels and their groups in
the ROI Label Definition pane.

Up or Down arrow

Navigate through scene labels and their groups
in the Scene Label Definition pane,

Up or Down arrow

Reorder labels within a group or move labels
between groups

Click and drag labels

Reorder groups Click and drag groups

Image Browsing and Selection
Browse and select images from the image browser, which is located in the bottom pane of the app.

Task Action
Browse through images one at a time Alt left or right arrow
Browse to the next set of images that is viewable
in the image browser

• PC: Page Up and Page Down
• Mac: Hold Fn and press the up and down

arrows
Go to the first image • PC: Home

• Mac: Hold Fn and press the left arrow
Go to the last image • PC: End

• Mac: Hold Fn and press the right arrow
Select all images from the current image to the
first image

• PC: Shift+Home
• Mac: Hold Fn+Shift and press the left arrow

Select all images from the current image to the
last image

• PC: Shift+End
• Mac: Hold Fn+Shift and press the right

arrow
Select all images from the current image to a
specific image

Hold Shift and click the final image in the range

Select a specific set of images Hold Ctrl and click the images you want to select

Labeling Window
Perform labeling actions, such as adding, moving, and deleting regions of interest (ROIs). The ROIs
can be pixel labels or non-pixel ROI labels that include line, rectangle, cuboid, and projected cuboid.

 Keyboard Shortcuts and Mouse Actions for Image Labeler

9-67

Task Action
Undo labeling action Ctrl+Z
Redo labeling action Ctrl+Y
Select all non-pixel ROIs Ctrl+A
Select specific non-pixel ROIs Hold Ctrl and click the ROIs you want to select
Cut selected non-pixel ROIs Ctrl+X
Copy selected non-pixel ROIs to clipboard Ctrl+C
Paste copied non-pixel ROIs

• If a sublabel was copied, both the sublabel
and its parent label are pasted.

• If a parent label was copied, only the parent
label is pasted, not its sublabels.

For more details, see “Use Sublabels and
Attributes to Label Ground Truth Data” on page
9-85.

Ctrl+V

Switch between selected non-pixel ROI labels.

You can switch between labels only of the same
type. For example, if you select a rectangle ROI,
you can switch only between other rectangle
ROIs.

Tab or Shift+Tab

Move a drawn non-pixel ROI label Hold Ctrl and press the up, down, left or right
arrows

Resize a rectangle ROI uniformly across all
dimensions

Ctrl+Plus (+) or Ctrl+Minus (-)

Delete selected non-pixel ROIs Delete
Copy all pixel ROIs Ctrl+Shift+C
Cut all pixel ROIs Ctrl+Shift+X
Paste copied or cut pixel ROIs Ctrl+Shift+V
Delete all pixel ROIs Ctrl+Shift+Delete
Fill all or all remaining pixels Shift+click

Polyline Drawing
Draw ROI line labels on a frame. ROI line labels are polylines, meaning that they are composed of one
or more line segments.

Task Action
Commit a polyline to the frame, excluding the
currently active line segment

Press Enter or right-click while drawing the
polyline

9 Labelers

9-68

Task Action
Commit a polyline to the frame, including the
currently active line segment

Double-click while drawing the polyline

A new line segment is committed at the point
where you double-click.

Delete the previously created line segment in a
polyline

Backspace

Cancel drawing and delete the entire polyline Escape

Polygon Drawing
Draw polygons to label pixels on a frame.

Task Action
Commit a polygon to the frame, excluding the
currently active line segment

Press Enter or right-click while drawing the
polygon

The polygon closes up by forming a line between
the previously committed point and the first point
in the polygon.

Commit a polygon to the frame, including the
currently active line segment

Double-click while drawing polygon

The polygon closes up by forming a line between
the point where you double-clicked and the first
point in the polygon.

Remove the previously created line segment from
a polygon

Backspace

Cancel drawing and delete the entire polygon Escape

Zooming
Task Action
Zoom in or out of frame Move the scroll wheel up (zoom in) or down

(zoom out)

The scroll wheel works in Zoom In, Zoom Out,
and Label mode but not Pan mode.

Zoom in on specific section of frame From the app toolstrip, under Modes, select
Zoom In. Then, draw a box around the section of
the frame you want to zoom in on.

 Keyboard Shortcuts and Mouse Actions for Image Labeler

9-69

Zooming and Panning
Task Action
Zoom in or out of frame Move the scroll wheel up (zoom in) or down

(zoom out)

If the frame is in pan mode, then zooming is not
supported. To enable zooming, in the upper-right
corner of the frame, either click the Pan button

 to disable panning or click one of the zoom
buttons.

Zoom in on specific section of frame In the upper-right corner of the frame, click the
Zoom In button . Then, draw a box around the
section of the frame that you want to zoom in on.

Pan across frame Press the up, down, left, or right arrows

App Sessions
Task Action
Save current session Ctrl+S

Label and Sublabel Attribute Panel
Task Action
Navigate through all elements in the pane from
top to bottom, including buttons on the top of the
treetable.

Tab key

View Labels, Sublabels, and Attributes Right-Panel
Task Action
Navigate through cells in table Left, right, up, and down
Navigate through actionable elements in
treetable from top to bottom

Tab

Navigate through actionable elements in
treetable from bottom to top

Shift and Tab

Attribute Column: Drop-down Menu
Task Action
Open drop-down list Space (with focus on list)
Select an entry in list Enter (with focus on list)
Browse the entries in the list Up or Down arrow (afterEnter action)

9 Labelers

9-70

Task Action
Select entry Enter (with focus on list)

Attribute Column: Edit Field
Task Action
Confirm text content Enter

See Also
Image Labeler

More About
• “Get Started with the Image Labeler” on page 9-34

 Keyboard Shortcuts and Mouse Actions for Image Labeler

9-71

Share and Store Labeled Ground Truth Data
The Image Labeler, Video Labeler, and Ground Truth Labeler apps enable you to label images,
videos, and other ground truth data sources. You can then export the ground truth labels as a
groundTruth object or, for the Ground Truth Labeler app, a groundTruthMultisignal object.
The ground truth object contains information about the:

• Data source (or data sources)
• Label definitions
• Drawn ground truth labels

You can share this object with:

• Other labeling colleagues, who can use it to continue labeling
• Algorithm developers, who can use it to train algorithms, such as an object detector or semantic

segmentation network
• Validation engineers, who can use it to validate algorithms

Share Ground Truth
To export and share labeled ground truth data from one of the labeling apps, select Export Labels >
To File. Then, either share the exported MAT-file directly with individuals on your team or place it in
a shared network location.

If the exported ground truth data contains pixel labels, the app also generates a PixelLabelData
folder containing the pixel label data. The label data table stored in the ground truth object
references the path to this folder. Share this folder along with the ground truth object.

The labeling apps also enable you to save a MAT-file of the entire app session. Do not share this file.
Because the session file contains app preferences that are specific to your local machine, this file
might not work on other machines.

9 Labelers

9-72

If you re-export a ground truth object containing pixel label data, the app generates a new
PixelLabelData folder. Even if you overwrite the original ground truth object, the app generates a
new PixelLabelData folder. When re-exporting the ground truth object, the generated folders are
named PixelLabelData_1, PixelLabelData_2, and so on, depending on how many times you re-
export the object to the same folder.

When sharing a ground truth object, share the correct PixelLabelData folder associated with it.
For example, if you overwrite the original ground truth object, share the overwritten object and the
newly created PixelLabelData_1 folder.

 Share and Store Labeled Ground Truth Data

9-73

In addition to sharing the ground truth object, you must also share the data source (or data sources)
and any associated files. These tables show the files to share for each data source in each app.

Image Labeler App Files to Share

Data Source Files to Share
Image collection • groundTruth object MAT-file

• PixelLabelData folder (pixel labels only)
• Folders containing image collections (if not in

a shared location)

Video Labeler App Files to Share

Data Source Files to Share
Video • groundTruth object MAT-file

• PixelLabelData folder (pixel labels only)
• Video source file (if not in a shared location)

Image sequence • groundTruth object MAT-file
• PixelLabelData folder (pixel labels only)
• Folder containing image sequence (if not in a

shared location)
• Timestamps duration vector (if specified)

9 Labelers

9-74

Data Source Files to Share
Custom image data source reader • groundTruth object MAT-file

• PixelLabelData folder (pixel labels only)
• Data source files (if not in a shared location)
• Custom reader function

Ground Truth Labeler App Files to Share

Data Source Files to Share
Video • groundTruthMultisignal object MAT-file

• PixelLabelData folder (pixel labels only)
• Video source file (if not in a shared location)

Image sequence • groundTruthMultisignal object MAT-file
• PixelLabelData folder (pixel labels only)
• Folder containing image sequence (if not in a

shared location)
• Timestamps duration vector (if specified)

Custom image data source reader • groundTruthMultisignal object MAT-file
• PixelLabelData folder (pixel labels only)
• Data source files (if not in a shared location)
• Custom reader function

Point cloud sequence • groundTruthMultisignal object MAT-file
• PixelLabelData folder (pixel labels only)
• Folder containing point cloud sequence (if not

in a shared location)
• Timestamps duration vector (if specified)

Velodyne packet capture (PCAP) file • groundTruthMultisignal object MAT-file
• PixelLabelData folder (pixel labels only)
• PCAP source file (if not in a shared location)
• PCAP calibration file
• Timestamps duration vector (if specified)

Rosbag • groundTruthMultisignal object MAT-file
• PixelLabelData folder (pixel labels only)
• Rosbag file

Move Ground Truth
In the exported ground truth object, the DataSource property contains the absolute paths to the
data source files. For example, suppose you want to view the paths for a groundTruth object,
gTruth, that was exported from the Image Labeler app. At the MATLAB command prompt, enter
this code.

gTruth.DataSource

 Share and Store Labeled Ground Truth Data

9-75

ans =

groundTruthDataSource for an image collection with properties

 Source: {
 ' ...\matlab\toolbox\vision\visiondata\imageSets\cups\bigMug.jpg';
 ' ...\matlab\toolbox\vision\visiondata\imageSets\cups\blueCup.jpg';
 ' ...\matlab\toolbox\vision\visiondata\imageSets\cups\handMade.jpg'
 ... and 9 more
 }

If you move the ground truth object to a new location, you might need to change the file paths stored
in the data source (or data sources). Even if the data source files are on a shared network, if other
people map a different drive letter to their network folder, the file paths can be incorrect.

To update these paths, use the changeFilePaths function. Specify the ground truth object as an
input argument to this function. If the paths changed but the files names did not, specify a string
vector containing the old and new path. The function returns any paths that it is unable to resolve.
For example, this code sample shows how to change the drive letter for an image folder.

alternativePaths = ["C:\Shared\ImgFolder" "D:\Shared\ImgFolder"];
unresolvedPaths = changeFilePaths(gTruth,alternativePaths);

If the file names also changed, specify a cell array of string vectors containing the old and new paths.
For example, this code sample shows how to change the drive letter for individual files and how to
append a suffix to each file.

alternativePaths = ...
 {["C:\Shared\ImgFolder\Img1.png" "D:\Shared\ImgFolder\Img1_new.png"], ...
 ["C:\Shared\ImgFolder\Img2.png" "D:\Shared\ImgFolder\Img2_new.png"], ...
 .
 .
 .
 ["C:\Shared\ImgFolder\ImgN.png" "D:\Shared\ImgFolder\ImgN_new.png"]};
unresolvedPaths = changeFilePaths(gTruth,alternativePaths);

If the ground truth object contains pixel label data, you can also use the changeFilePaths function
to update the path names to the pixel label data stored in the PixelLabelData folder.

Store Ground Truth
Store the ground truth object in a location that is on the MATLAB search path. For more details, see
“What Is the MATLAB Search Path?”.

For data sources whose contents reside in a single folder, consider storing the ground truth object in
the parent folder of the data source. For image collections containing images from different folders,
no specific recommendations exist for where to store the object. To label image collections, use the
Image Labeler app.

Extract Labeled Video Scenes
You can extract labeled video scenes and corresponding labels from a groundTruth or
groundTruthMultisignal object exported by the Video Labeler or Ground Truth Labeler apps
in a form that can be loaded using a datastore. These labeled video scenes can be used for training,
validation, and evaluation. Extracted videos scenes enable you to employ video labels on specific

9 Labelers

9-76

durations of a long video and apply deep learning techniques to detect anomalies or recognize a
specific activity in a video.

• Use the sceneTimeRanges function to obtain labeled scene time ranges from a ground truth
object.

• Use the writeVideoScenes function to take a ground truth object array and labeled scene time
ranges information from the sceneTimeRanges function to write video scenes to a folder. This
data can be directly used with datastore based deep learning training and evaluation workflows.

See Also
Apps
Video Labeler | Ground Truth Labeler | Image Labeler

Objects
groundTruth | groundTruthDataSource | groundTruthMultisignal

Functions
changeFilePaths (groundTruth) | changeFilePaths (groundTruthMultisignal) |
writeVideoScenes | sceneTimeRanges

More About
• “How Labeler Apps Store Exported Pixel Labels” on page 17-39

 Share and Store Labeled Ground Truth Data

9-77

View Summary of Ground Truth Labels
In this section...
“View Label Summary” on page 9-78
“Compare Selected Labels” on page 9-80

You can use the Image Labeler, Video Labeler, and Ground Truth Labeler (requires Automated
Driving Toolbox) apps to interactively label ground truth data in image collections, videos, image
sequences, or lidar point clouds. For details about the supported data sources, see “Choose an App to
Label Ground Truth Data” on page 9-44.

You can view and compare the distribution of ROI and scene labels by clicking View Label Summary
on the app toolstrip.

View Label Summary
Clicking View Label Summary opens dockable distribution graphs for the ROI and scene labels.

The x-axis of the graph displays the timestamps across the duration of the video, image sequence, or
lidar signal. Units are in seconds. For image collections (Image Labeler app only), the x-axis displays
the numeric ID of each image in the collection.

For all ROI labels except pixels, the y-axis displays the number of ROIs at each timestamp or for each
image. The visual summary does not include information about sublabels or label attributes.

For pixel ROI labels, the y-axis displays the percentage of the frame that is labeled for each pixel
label.

9 Labelers

9-78

For scene labels, the graph displays the presence or absence of a scene label at each timestamp or
for each image in a collection.

In the Ground Truth Labeler app, you can view labels by signal. From Signal Name, select a signal
to view a summary of the labels for that signal.

 View Summary of Ground Truth Labels

9-79

Use the graphs to examine the occurrence of labels over time or in relation to each other. Drag the
black vertical line in any graph to move to a different timestamp or image in a collection.

To dock the Label Summary window in your workspace, select Layout > Dock Label Summary.

Compare Selected Labels
To selectively compare labels, select specific label check boxes and then click Compare Selected
Labels. The Label Summary window displays ROI labels selected for comparison on a single graph.

9 Labelers

9-80

See Also
Apps
Ground Truth Labeler | Image Labeler | Video Labeler

Objects
groundTruth | groundTruthMultisignal

More About
• “Choose an App to Label Ground Truth Data” on page 9-44
• “Get Started with the Image Labeler” on page 9-34
• “Get Started with the Video Labeler” on page 9-48
• “Get Started with Ground Truth Labelling” (Automated Driving Toolbox)

 View Summary of Ground Truth Labels

9-81

Temporal Automation Algorithms
The labeling apps in Computer Vision Toolbox, Lidar Toolbox, and Automated Driving Toolbox enable
you to create and import a custom automation algorithm to automatically label your data. Automation
algorithms can be time-independent or time-dependent.

• Time-independent (nontemporal) algorithms can operate independently on each timestamp (or
image). For example, a detection algorithm, such as the built-in people detector, is a time-
independent algorithm.

• Time-dependent (temporal) algorithms have a dependence on the timestamp of execution. For
example, a tracking algorithm, such as the temporal built-in Point Tracker, uses tracking from a
previous time stamp to track objects in the current time stamp.

The Image Labeler app supports only nontemporal algorithms. The Video Labeler, Lidar Labeler,
and Ground Truth Labeler apps support nontemporal and temporal algorithms.

Create Temporal Automation Algorithm
To create a temporal automation algorithm to use with a labeling app, on the app toolstrip, select
Select Algorithm > Add Algorithm > Create New Algorithm. A class template opens, enabling
you to define your algorithm. By default, the class inherits from the
vision.labeler.AutomationAlgorithm and vision.labeler.mixin.Temporal classes, as
shown by the class definition of the template:
classdef MyCustomAlgorithm < vision.labeler.AutomationAlgorithm && vision.labeler.mixin.Temporal

Time-based algorithms must inherit from both of these classes. Inheriting from the temporal mixin
class enables you to access properties such as StartTime, CurrentTime and EndTime to design
time-based algorithms. For more details on enabling temporal properties, see the
vision.labeler.mixin.Temporal class reference page. For more details on defining custom
automation algorithms in general, see the vision.labeler.AutomationAlgorithm class
reference page.

After creating your algorithm, follow the instructions in the class template on where to save the
algorithm.

Run Temporal Automation Algorithm
To run your temporal algorithm from the labeling, first refresh the algorithm list. On the app
toolstrip, select Select Algorithm > Refresh list. Then, reopen the Select Algorithm list, select
your algorithm, and run it on your data as you would any of the built-in automation algorithms.

For temporal algorithms, you can additionally configure the direction of automation. Click Configure
Automation. By default, automation algorithms apply labels from the start of the time interval to the
end. To change the direction and start time of the algorithm, choose one of the options shown in this
table.

9 Labelers

9-82

Direction of automation Run automation from Example

See Also
Apps
Lidar Labeler | Image Labeler | Ground Truth Labeler

Functions
vision.labeler.AutomationAlgorithm | vision.labeler.mixin.Temporal

 Temporal Automation Algorithms

9-83

Blocked Image Automation Algorithms
The labeling apps enable you to create and import a custom automation algorithm to automatically
label your data. Automation algorithms can be time-independent or time-dependent.

The Image Labeler app supports blocked image algorithms.

Create Blocked Image Automation Algorithm
To create a blocked image automation algorithm to use with a labeling app, on the app toolstrip,
select Select Algorithm > Add Algorithm > Create New Algorithm. A class template opens,
enabling you to define your algorithm. By default, the class inherits from the
vision.labeler.AutomationAlgorithm and
vision.labeler.mixin.BlockedImageAutomation classes, as shown by the class definition of
the template:
classdef MyCustomAlgorithm < vision.labeler.AutomationAlgorithm && vision.labeler.mixin.BlockedImageAutomation

Blocked image algorithms must inherit from both of these classes. Inheriting from the blocked image
mixin class enables you to access properties such as BatchSize, BorderSize and
InclusionThreshold to design blocked image based algorithms. For more details on enabling
blocked image properties, see the vision.labeler.mixin.BlockedImageAutomation class
reference page. For more details on defining custom automation algorithms in general, see the
vision.labeler.AutomationAlgorithm class reference page.

After creating your algorithm, follow the instructions in the class template on where to save the
algorithm.

Run Blocked Image Automation Algorithm
To run your blocked image algorithm from the labeling app, first refresh the algorithm list. On the
app toolstrip, select Select Algorithm > Refresh list. Then, reopen the Select Algorithm list,
select your algorithm, and run it on your data as you would any of the built-in automation algorithms.

See Also
Apps
Image Labeler

Functions
vision.labeler.AutomationAlgorithm |
vision.labeler.mixin.BlockedImageAutomation

Related Examples
• “Get Started with the Image Labeler” on page 9-34

9 Labelers

9-84

Use Sublabels and Attributes to Label Ground Truth Data
In the Image Labeler, Video Labeler, and Ground Truth Labeler apps, a sublabel is a type of label
for drawing regions of interest (ROIs) around objects that belong to a parent label. You can use
sublabels to provide a greater level of detail about the ROIs in your labeled ground truth data. For
example:

• For a bird label, you can define wing or beak sublabels.
• For a vehicle label, you can define headlight, licensePlate, and wheel sublabels.

When to Use Sublabels vs. Attributes
A sublabel can be anything that is drawable and is part of a parent label. An attribute provides
information about labels. However, attributes are not drawable and they can be associated with either
a label or a sublabel.

Consider the possible sublabel and attribute candidates for the label vehicle:

• A wheel is a good candidate for a sublabel. A wheel is part of a vehicle, and you can draw a label
around a wheel.

• Vehicle color is a good candidate for an attribute. You cannot draw a label around the color of a
vehicle.

• Vehicle type (car, truck, and so on) is a good candidate for an attribute. Although you can draw a
label around cars and trucks, they are not part of a vehicle. Instead, you can define a list attribute
with types car and truck, or define logical attributes named isCar, isTruck, and so on.

 Use Sublabels and Attributes to Label Ground Truth Data

9-85

Draw Sublabels
Within each frame, each sublabel that you draw must be associated with a parent label. Therefore,
before you can draw a sublabel on a frame, you must:

1 From the ROI Labels pane, select the type of sublabel that you want to draw.
2 Within the frame, select a parent ROI label.

For example, to label the headlights of a vehicle, you must first select the headlight sublabel
definition. On the frame, however, you cannot yet create a sublabel.

After you select a vehicle label on the frame, you can draw a sublabel that is associated with that
vehicle. Once you create a sublabel, you cannot add another sublabel to the vehicle unless you select
the vehicle label again.

Notice that sublabels do not have to be completely enclosed within the parent label. You can drag
sublabels outside the bounds of the parent label and the parent-child relationship remains
unchanged.

Copy and Paste Sublabels
When labeling, it is common to copy (Ctrl+C) and paste (Ctrl+V) labels from one frame into another.

9 Labelers

9-86

If you copy a sublabel into another frame, the parent label is copied over as well. That way, the
parent-child relationship is maintained between frames. Any sublabels that you did not select to copy
do not appear in the new frame.

If you copy a parent label, however, the associated sublabels are not copied over.

Delete Sublabels
To delete an ROI sublabel from a frame, right-click the sublabel and select the Delete option for the
sublabel shape.

To delete an ROI sublabel definition, from the ROI Labels pane, right-click the sublabel and select
Delete.

 Use Sublabels and Attributes to Label Ground Truth Data

9-87

Caution If you delete a sublabel, all ROI sublabel annotations currently on the frames are deleted as
well. Attribute definitions for that sublabel are deleted as well.

Sublabel Limitations
• Sublabels can be used only with rectangle, polygon, line, and projected cuboid labels.
• Sublabels cannot have their own sublabels.
• The built-in automation algorithms do not support sublabel automation.
• When you click View Label Summary, the Label Summary window does not display sublabel

information.

See Also
Apps
Image Labeler | Video Labeler | Ground Truth Labeler

More About
• “Get Started with the Image Labeler” on page 9-34
• “Get Started with the Video Labeler” on page 9-48
• “Get Started with Ground Truth Labelling” (Automated Driving Toolbox)
• “Label Pixels for Semantic Segmentation” on page 9-19
• “Automate Attributes of Labeled Objects” (Automated Driving Toolbox)

9 Labelers

9-88

Training Data for Object Detection and Semantic Segmentation
You can use a labeling app and Computer Vision Toolbox objects and functions to train algorithms
from ground truth data. Use the labeling app to interactively label ground truth data in a video,
image sequence, image collection, or custom data source. Then, use the labeled data to create
training data to train an object detector or to train a semantic segmentation network.

This workflow applies to the Image Labeler and Video Labeler apps only. To create training data for
the Ground Truth Labeler app in Automated Driving Toolbox, use the gatherLabelData function.

 Training Data for Object Detection and Semantic Segmentation

9-89

9 Labelers

9-90

1 Load data for labeling

• Image Labeler — Load an image collection from a file or ImageDatastore object into the
app.

• Video Labeler — Load a video, image sequence, or a custom data source into the app.
2 Label data and select an automation algorithm: Create ROI and scene labels within the app.

For more details, see:

• Image Labeler — “Get Started with the Image Labeler” on page 9-34
• Video Labeler — “Get Started with the Video Labeler” on page 9-48

You can choose from one of the built-in algorithms or create your own custom algorithm to label
objects in your data. To learn how to create your own automation algorithm, see “Create
Automation Algorithm for Labeling” on page 9-8.

3 Export labels: After labeling your data, you can export the labels. Use the steps outlined
depending on whether you are working on a team-based or individual project:

• Team-based project — To export labeled images when you are working as part of a team-
based project, follow the directions outlined in .

• Individual project — You can export the labels to the workspace or save them to a file. The
labels are exported as a groundTruth object. If your data source consists of multiple image
collections, label the entire set of image collections to obtain an array of groundTruth
objects. For details about sharing groundTruth objects, see “Share and Store Labeled
Ground Truth Data” on page 9-72.

4 Create training data: To create training data from the groundTruth object, use one of these
functions:

• Training data for object detectors — Use the objectDetectorTrainingData function.
• Training data for semantic segmentation networks — Use the pixelLabelTrainingData

function.

For objects created using a video file or custom data source, the
objectDetectorTrainingData and pixelLabelTrainingData functions write images to
disk for groundTruth. Sample the ground truth data by specifying a sampling factor. Sampling
mitigates overtraining an object detector on similar samples.

5 Train algorithm:

• Object detectors — Use one of several Computer Vision Toolbox object detectors. For a list of
detectors, see “Object Detection”. For object detectors specific to automated driving, see the
Automated Driving Toolbox object detectors listed in “Visual Perception” (Automated Driving
Toolbox).

• Semantic segmentation network — For details on training a semantic segmentation network,
see “Getting Started with Semantic Segmentation Using Deep Learning” on page 17-75.

See Also
Apps
Image Labeler | Video Labeler

 Training Data for Object Detection and Semantic Segmentation

9-91

Functions
semanticseg | objectDetectorTrainingData | trainRCNNObjectDetector |
trainRCNNObjectDetector | trainFasterRCNNObjectDetector | trainACFObjectDetector
| trainYOLOv2ObjectDetector | trainSSDObjectDetector | pixelLabelTrainingData

Objects
groundTruth | groundTruthDataSource

More About
• “Get Started with the Image Labeler” on page 9-34
• “Get Started with the Video Labeler” on page 9-48
• “Create Automation Algorithm for Labeling” on page 9-8
• “Getting Started with Object Detection Using Deep Learning” on page 17-34
• “Getting Started with Semantic Segmentation Using Deep Learning” on page 17-75
• “Getting Started with Point Clouds Using Deep Learning” on page 12-3
• “Anchor Boxes for Object Detection” on page 17-44

9 Labelers

9-92

Create Automation Algorithm
The Image Labeler enable you to label ground truth for a variety of data sources. You can use an
automation algorithm to automatically label your data by creating and importing a custom
automation algorithm. You can also use a custom function that creates an automation algorithm. The
function, which you can specify in the labeling apps, enables you to adjust the automation
parameters. For more details, see Create Automation Algorithm Function for Labeling on page 9-4.

Create New Algorithm
The vision.labeler.AutomationAlgorithm class enables you to define a custom label
automation algorithm for use in the labeling apps. You can use the class to define the interface used
by the app to run an automation algorithm.

To define and use a custom automation algorithm, you must first define a class for your algorithm and
save it to the appropriate folder.

Create Automation Folder

Create a +vision/+labeler/ folder within a folder that is on the MATLAB path. For example, if the
folder /local/MyProject is on the MATLAB path, then create the +vision/+labeler/ folder
hierarchy as follows:

projectFolder = fullfile("local","MyProject");
automationFolder = fullfile("+vision","+labeler");
mkdir(projectFolder,automationFolder)

The resulting folder is located at /local/MyProject/+vision/+labeler.

Define Class That Inherits from AutomationAlgorithm Class

At the MATLAB command prompt, type imageLabeler to open the labeling app.

1 Load a data source and create at least one label definition.
2 Select Select Algorithm > Add Whole Image Algorithm > Create New Algorithm

In the vision.labeler.AutomationAlgorithm class template that opens, define your custom
automation algorithm. Follow the instructions in the header and comments in the class.

If the algorithm is time-dependent, that is, has a dependence on the timestamp of execution, your
custom automation algorithm must also inherit from the vision.labeler.mixin.Temporal class.
For more details on implementing time-dependent, or temporal, algorithms, see “Temporal
Automation Algorithms” on page 9-82.

If the algorithm is blocked image based, your custom automation algorithm must also inherit from the
vision.labeler.mixin.BlockedImageAutomation class. For more details on implementing
blocked image algorithms, see “Blocked Image Automation Algorithms” on page 9-84.

Save Class File to Automation Folder

To use your custom algorithm from within the labeling app, save the file to the +vision/+labeler
folder that you created. Make sure that this folder is on the MATLAB search path. To add a folder to
the path, use the addpath function.

 Create Automation Algorithm

9-93

Refresh Algorithm List in Labeling App

To start using your custom algorithm, refresh the algorithm list so that the algorithm displays in the
app. On the app toolstrip, select Select Algorithm > Refresh list.

Import Existing Algorithm
To import an existing custom algorithm into a labeling app, on the app toolstrip, select Select
Algorithm > Add Algorithm > Import Algorithm and then refresh the list.

Custom Algorithm Execution
When you run an automation session in a labeling app, the properties and methods in your
automation algorithm class control the behavior of the app.

Check Label Definitions

When you click Automate, the app checks each label definition in the ROI Labels and Scene Labels
panes by using the checkLabelDefinition method defined in your custom algorithm. Label
definitions that return true are retained for automation. Label definitions that return false are
disabled and not included. Use this method to choose a subset of label definitions that are valid for
your custom algorithm. For example, if your custom algorithm is a semantic segmentation algorithm,
use the checkLabelDefinition method to return false for label definitions that are not of type
PixelLabel.

Control Settings

After you select the algorithm, click Automate to start an automation session. Then, click Settings,
which enables you to modify custom app settings. To control the Settings options, use the
settingsDialog method.

Control Algorithm Execution

When you open an automation algorithm session in the app and then click Run, the app calls the
checkSetup method to check if it is ready for execution. If the method returns false, the app does
not execute the automation algorithm. If the method returns true, the app calls the initialize
method and then the run method on every frame selected for automation. Then, at the end of the
automation run, the app calls the terminate method.

The diagram shows this flow of execution for the labeling apps.

9 Labelers

9-94

• Use the checkSetup method to check whether all conditions needed for your custom algorithm
are set up correctly. For example, before running the algorithm, check that the scene contains at
least one ROI label.

• Use the initialize method to initialize the state for your custom algorithm by using the frame.
• Use the run method to implement the core of the algorithm that computes and returns labels for

each frame.
• Use the terminate method to clean up or terminate the state of the automation algorithm after

the algorithm runs.

See Also
Apps
Image Labeler

Objects
vision.labeler.AutomationAlgorithm | vision.labeler.mixin.Temporal |
vision.labeler.mixin.BlockedImageAutomation

See Also

Related Examples
• “Automate Ground Truth Labeling of Lane Boundaries” (Automated Driving Toolbox)
• “Automate Ground Truth Labeling for Semantic Segmentation” (Automated Driving Toolbox)
• “Automate Attributes of Labeled Objects” (Automated Driving Toolbox)

 Create Automation Algorithm

9-95

See Also

More About
• “Get Started with the Image Labeler” on page 9-34
• “Get Started with Ground Truth Labelling” (Automated Driving Toolbox)
• “Temporal Automation Algorithms” on page 9-82
• “Blocked Image Automation Algorithms” on page 9-84

9 Labelers

9-96

Featured Examples

• “Localize and Read Multiple Barcodes in Image” on page 10-2
• “Monocular Visual Odometry” on page 10-18
• “Detect and Track Vehicles Using Lidar Data” on page 10-30
• “Semantic Segmentation Using Dilated Convolutions” on page 10-49
• “Define Custom Pixel Classification Layer with Tversky Loss” on page 10-54
• “Track a Face in Scene” on page 10-61
• “Create 3-D Stereo Display” on page 10-66
• “Measure Distance from Stereo Camera to a Face” on page 10-67
• “Reconstruct 3-D Scene from Disparity Map” on page 10-68
• “Visualize Stereo Pair of Camera Extrinsic Parameters” on page 10-71
• “Remove Distortion from an Image Using Camera Parameters Object” on page 10-74

10

Localize and Read Multiple Barcodes in Image

This example shows how to use the readBarcode function from the Computer Vision Toolbox™ to
detect and decode 1-D and 2-D barcodes in an image. Barcodes are widely used to encode data in a
visual, machine-readable format. They are useful in many applications such as item identification,
warehouse inventory tracking, and compliance tracking. For 1-D barcodes, the readBarcode
function returns the location of the barcode endpoints. For 2-D barcodes, the function returns the
locations of the finder patterns. This example uses two approaches for localizing multiple barcodes in
an image. One approach is clustering-based, which is more robust to different imaging conditions and
requires the Statistics and Machine Learning Toolbox™. The second approach uses a segmentation-
based workflow and might require parameter tuning based on the imaging conditions.

Barcode Detection using the readBarcode Function

Read a QR code from an image.

I = imread("barcodeQR.jpg");

% Search the image for a QR Code.
[msg, ~, loc] = readBarcode(I);

% Annotate the image with the decoded message.
xyText = loc(2,:);
Imsg = insertText(I, xyText, msg, "BoxOpacity", 1, "FontSize", 25);

% Insert filled circles at the finder pattern locations.
Imsg = insertShape(Imsg, "filled-circle", [loc, ...
 repmat(10, length(loc), 1)], "Color", "red", "Opacity", 1);

% Display image.
imshow(Imsg)

Read a 1-D barcode from an image.

10 Featured Examples

10-2

I = imread("barcode1D.jpg");

% Read the 1-D barcode and determine the format..
[msg, format, locs] = readBarcode(I);

% Display the detected message and format.
disp("Detected format and message: " + format + ", " + msg)

Detected format and message: EAN-13, 1234567890128

% Insert a line to show the scan row of the barcode.
xyBegin = locs(1,:); imSize = size(I);
I = insertShape(I,"line",[1 xyBegin(2) imSize(2) xyBegin(2)], ...
 "LineWidth", 7);

% Insert markers at the end locations of the barcode.
I = insertShape(I, "filled-circle", [locs, ...
 repmat(10, length(locs), 1)], "Color", "red", "Opacity", 1);

% Display image.
imshow(I)

Improving Barcode Detection

For a successful detection, the barcode must be clearly visible. The barcode must also be as closely
aligned to a horizontal or vertical position as possible. The readBarcode function is inherently more
robust to rotations for 2-D or matrix codes than it is to 1-D or linear barcodes. For example, the
barcode cannot be detected in this image.

I = imread("rotated1DBarcode.jpg");

% Display the image.
imshow(I)

 Localize and Read Multiple Barcodes in Image

10-3

% Pass the image to the readBarcode function.
readBarcode(I)

ans =
""

Rotate the image using the imrotate so that the barcode is roughly horizontal. Use readBarcode
on the rotated image.

% Rotate the image by 30 degrees clockwise.
Irot = imrotate(I, -30);

% Display the rotated image.
imshow(Irot)

% Pass the rotated image to the readBarcode function.
readBarcode(Irot)

10 Featured Examples

10-4

ans =
"012345678905"

Detect Multiple Barcodes

The readBarcode function detects only a single barcode in each image. In order to detect multiple
barcodes, you must specify a region-of-interest (ROI). To specify an ROI, you can use the
drawrectangle function to interactively determine the ROIs. You can also use image analysis
techniques to detect the ROI of multiple barcodes in the image.

 Localize and Read Multiple Barcodes in Image

10-5

Interactively determine ROIs

I = imread("multiple1DBarcodes.jpg");

10 Featured Examples

10-6

Use the drawrectangle function to draw and obtain rectangle parameters.

roi1 = drawrectangle;

pos = roi1.Position;

% ROIs obtained using drawrectangle
roi = [180 100 330 180
 180 320 330 180
 180 550 330 180];

imSize = size(I);
for i = 1:size(roi,1)
 [msg, format, locs] = readBarcode(I, roi(i,:));
 disp("Decoded format and message: " + format + ", " + msg)

 % Insert a line to indicate the scan row of the barcode.
 xyBegin = locs(1,:);
 I = insertShape(I,"line",[1 xyBegin(2) imSize(2) xyBegin(2)], ...
 "LineWidth", 5);

 % Annotate image with decoded message.
 I = insertText(I, xyBegin, msg, "BoxOpacity", 1, "FontSize", 20);
end

Decoded format and message: UPC-A, 012345678905
Decoded format and message: EAN-13, 4567891324562
Decoded format and message: CODE-39, ABC-123

imshow(I)

 Localize and Read Multiple Barcodes in Image

10-7

Image analysis to determine ROIs

Use image analysis techniques to automate the detection of multiple barcodes. This requires
localizing multiple barcodes in an image, determining their orientation, and correcting for the
orientation. Without preprocessing, barcodes cannot be detected in the image containing multiple
rotated barcodes.

I = imread("multiple1DBarcodesRotated.jpg");
Igray = im2gray(I);

% Display the image.
imshow(I)

10 Featured Examples

10-8

% Pass the unprocessed image to the readBarcode function.
readBarcode(Igray, '1D')

ans =
""

Detection on the unprocessed image resulted in no detection.

Step 1: Detect candidate regions for the barcodes using MSER

Detect regions of interest in the image using the detectMSERFeatures function. Then, you can
eliminate regions of interest based on a specific criteria such as the aspect ratio. You can use the
binary image from the filtered results for further processing.

% Detect MSER features.
[~, cc] = detectMSERFeatures(Igray);

% Compute region properties MajorAxisLength and MinorAxisLength.
regionStatistics = regionprops(cc, 'MajorAxisLength', 'MinorAxisLength');

% Filter out components that have a low aspect ratio as unsuitable
% candidates for the bars in the barcode.
minAspectRatio = 10;
candidateRegions = find(([regionStatistics.MajorAxisLength]./[regionStatistics.MinorAxisLength]) > minAspectRatio);

% Binary image to store the filtered components.
BW = false(size(Igray));

% Update the binary image.
for i = 1:length(candidateRegions)
 BW(cc.PixelIdxList{candidateRegions(i)}) = true;
end

% Display the binary image with the filtered components.

 Localize and Read Multiple Barcodes in Image

10-9

imshow(BW)
title("Candidate regions for the barcodes")

Step 2: Extract barcode line segments using hough transform

Detect prominent edges in the image using the edge function. Then use the hough transform to find
lines of interest. The lines represent possible candidates for the vertical bars in the barcode.

% Perform hough transform.
BW = edge(BW,'canny');
[H,T,R] = hough(BW);

% Display the result of the edge detection operation.
imshow(BW)

10 Featured Examples

10-10

% Determine the size of the suppression neighborhood.
reductionRatio = 500;
nhSize = floor(size(H)/reductionRatio);
idx = mod(nhSize,2) < 1;
nhSize(idx) = nhSize(idx) + 1;

% Identify the peaks in the Hough transform.
P = houghpeaks(H,length(candidateRegions),'NHoodSize',nhSize);

% Detect the lines based on the detected peaks.
lines = houghlines(BW,T,R,P);

% Display the lines detected using the houghlines function.
Ihoughlines = ones(size(BW));

% Start and end points of the detected lines.
startPts = reshape([lines(:).point1], 2, length(lines))';
endPts = reshape([lines(:).point2], 2, length(lines))';

Ihoughlines = insertShape(Ihoughlines, 'line', [startPts, endPts], ...
 'LineWidth', 2, 'Color', 'green');

% Display the original image overlayed with the detected lines.
Ibarlines = imoverlay(I, ~Ihoughlines(:,:,1));
imshow(Ibarlines)

 Localize and Read Multiple Barcodes in Image

10-11

Step 3: Localize barcodes in image

After extracting the line segments, two methods are presented for localizing the individual barcodes
in the image:

• Method 1: A clustering-based technique that uses functionalities from the Statistics and Machine
Learning Toolbox™ to identify individual barcodes. This technique is more robust to outliers that
were detected using the image analysis techniques above. It can also be extended to a wide range
of imaging conditions without having to tune parameters.

• Method 2: A segmentation-based workflow to separate the individual barcodes. This method uses
other image analysis techniques to localize and rotation correct the extracted barcodes. While this
works fairly well, it might require some parameter tuning to prevent detection of outliers.

Method 1: Clustering based workflow

There are two steps in this workflow:

1. Determine bisectors of barcode line segments

While it is common practice to directly use the lines (that were obtained using the Hough transform)
to localize the barcode, this method uses the lines to further detect the perpendicular bisectors for
each of the lines. The bisector lines are represented as points in cartesian space, which makes them
suitable for identifying individual barcodes. Using the bisectors make the detection of the individual
barcodes more robust, since it results in less misclassifications of lines that are similar but belonging
to different barcodes.

2. Perform clustering on the bisectors to identity the individual barcodes

Since all of the bars in a barcode are approximately parallel to each other, the bisectors of each of
these bars should ideally be the same line, and their corresponding points should therefore cluster
around a single point. In practice, these bisectors will vary from segment to segment, but still remain
similar enough to allow the use of a density-based clustering algorithm. The result of performing this
clustering operation is a set of clusters, each of which points to a separate barcode. This example

10 Featured Examples

10-12

uses the dbscan (Statistics and Machine Learning Toolbox) function, which does not require prior
knowledge of the number of clusters. The different clusters (barcodes) are visualized in this example.

The example checks for a Statistics and Machine Learning Toolbox™ license. If a license is found, the
example uses the clustering method. Otherwise, the example uses the segmentation method.

useClustering = license('test','statistics_toolbox');

if useClustering
 [boundingBox, orientation, Iclusters] = clusteringLocalization(lines, size(I));

 % Display the detected clusters.
 imshow(Iclusters)
else
 disp("The clustering based workflow requires a license for the Statistics and Machine Learning Toolbox")
end

Method 2: Segmentation based workflow

Having removed the background noise and variation, the detected vertical bars are grouped into
individual barcodes using morphological operations, like imdilate. The example uses the
regionprops function to determine the bounding box and orientation for each of the barcodes. The
results are used to crop the individual barcodes from the original image and to orient them to be
roughly horizontal.

if ~useClustering
 [boundingBox, orientation, Idilated] = segmentationLocalization(Ihoughlines);

 % Display the dilated image.
 imshow(Idilated)
end

Step 4: Crop the Barcodes and correct their rotation

 Localize and Read Multiple Barcodes in Image

10-13

The barcodes are cropped from the original image using the bounding boxes obtained from the
segmentation. The orientation results are used to align the barcodes to be approximately horizontal.

% Localize and rotate the barcodes in the image.
correctedImages = cell(1, length(orientation));

% Store the cropped and rotation corrected images of the barcodes.
for i = 1:length(orientation)

 I = insertShape(I, 'rectangle', boundingBox(i,:), 'LineWidth',3, 'Color', 'red');

 if orientation(i) > 0
 orientation(i) = -(90 - orientation(i));
 else
 orientation(i) = 90 + orientation(i);
 end

 % Crop the barcode from the original image and rotate it using the
 % detected orientation.
 correctedImages{i} = imrotate(imcrop(Igray,boundingBox(i,:)), orientation(i));
end

% Display the image with the localized barcodes.
imshow(I)

Step 5: Detect barcodes in the cropped and rotation corrected images

The cropped and rotation corrected images of the barcodes are then used with the readBarcode
function to decode them.

% Pass each of the images to the readBarcode function.
for i = 1:length(correctedImages)
 [msg, format, ~] = readBarcode(correctedImages{i}, '1D');
 disp("Decoded format and message: " + format + ", " + msg)
end

10 Featured Examples

10-14

Decoded format and message: UPC-A, 012345678905
Decoded format and message: EAN-13, 4567891324562
Decoded format and message: CODE-39, ABC-123

This example showed how the readBarcode function can be used to detect, decode and localize
barcodes in an image. While the function works well when the alignment of the barcodes is roughly
horizontal or vertical, it needs additional pre-processing when the barcodes appear rotated. The
preprocessing steps detailed above is a good starting point to work with multiple barcodes that are
not aligned in an image.

Supporting Functions

clusteringLocalization uses a clustering-based workflow to localize individual barcodes.

function [boundingBox, orientation, Iclusters] = clusteringLocalization(lines, imSize)

%--
% Determine Bisectors of Barcode Line Segments
%--

% Table to store the properties of the bisectors of the detected lines.
linesBisector = array2table(zeros(length(lines), 4), 'VariableNames', {'theta', 'rho', 'x', 'y'});

% Use the orientation values of the lines to determine the orientation.
% values of the bisectors
idxNeg = find([lines.theta] < 0);
idxPos = find([lines.theta] >= 0);

negAngles = 90 + [lines(idxNeg).theta];
linesBisector.theta(idxNeg) = negAngles;

posAngles = [lines(idxPos).theta] - 90;
linesBisector.theta(idxPos) = posAngles;

% Determine the midpoints of the detected lines.
midPts = zeros(length(lines),2);

% Determine the 'rho' values of the bisectors.
for i = 1:length(lines)
 midPts(i,:) = (lines(i).point1 + lines(i).point2)/2;
 linesBisector.rho(i) = abs(midPts(i,2) - tand(lines(i).theta) * midPts(i,1))/...
 ((tand(lines(i).theta)^2 + 1) ^ 0.5);
end

% Update the [x,y] locations of the bisectors using their polar
% coordinates.
[linesBisector.x, linesBisector.y] = pol2cart(deg2rad(linesBisector.theta),linesBisector.rho,'ro');

%--
% Perform Clustering on the Bisectors to Identity the Individual Barcodes
%--

% Store the [x,y] data of the bisectors to be used for clustering.
X = [linesBisector.x,linesBisector.y];

% Get pairwise distance between the points
D = pdist2(X,X);

 Localize and Read Multiple Barcodes in Image

10-15

% Perform density-based spatial clustering to separate the different
% barcodes in the image.
searchRadius = max(imSize/5);
minPoints = 10;
idx = dbscan(D,searchRadius, minPoints);

% Identify the number of clusters (barcodes).
numClusters = unique(idx(idx > 0));

% Store the endpoints of the detected lines.
dataXY = cell(1, length(numClusters));

% Image to show the detected clusters (barcodes).
Iclusters = ones(imSize);

for i = 1:length(numClusters)
 classIdx = find(idx == i);

 rgbColor = rand(1,3);
 startPts = reshape([lines(classIdx).point1], 2, length(classIdx))';
 endPts = reshape([lines(classIdx).point2], 2, length(classIdx))';

 % Insert lines corresponding to the current cluster (barcode).
 Iclusters = insertShape(Iclusters, 'line', [startPts, endPts], ...
 'LineWidth', 2, 'Color', rgbColor);

 % Update the endpoints of the lines in each cluster (barcode).
 dataXY{i} = [startPts; endPts];
end

%--
% Localization parameters for the barcode
%--

orientation = zeros(1,length(numClusters));
boundingBox = zeros(length(numClusters), 4);

% Padding the cropped images of barcodes.
padding = 40;

% Determine the ROI and orientation of the individual clusters (barcodes).
for i = 1:length(numClusters)

 % Bounding box coordinates with padding.
 x1 = min(dataXY{i}(:,1)) - padding;
 x2 = max(dataXY{i}(:,1)) + padding;
 y1 = min(dataXY{i}(:,2)) - padding;
 y2 = max(dataXY{i}(:,2)) + padding;

 boundingBox(i,:) = [x1, y1, x2-x1, y2-y1];

 % Orientation of the barcode.
 orientation(i) = mean(linesBisector.theta(idx == i));

end

end

10 Featured Examples

10-16

segmentationLocalization uses a segmentation-based workflow to localize individual barcodes.

function [boundingBox, orientation, Idilated] = segmentationLocalization(Ihoughlines)

%--
% Use image dilation to separate the barcodes
%--

% Create binary image with the detected lines.
Ibw = ~Ihoughlines(:,:,1);
Ibw(Ibw > 0) = true;

% Dilate the image using a disk structuring element.
diskRadius = 10; % Might need tuning depending on the input image.
se = strel('disk', diskRadius);
Idilated = imdilate(Ibw, se);

%--
% Localization parameters for the barcode
%--

% Compute region properties Orientation and BoundingBox.
regionStatistics = regionprops(Idilated, 'Orientation', 'BoundingBox');

% Padding for the cropped images of barcodes.
padding = 40;

boundingBox = zeros(length(regionStatistics), 4);

for idx = 1:length(regionStatistics)

 boundingBox(idx,:) = regionStatistics(idx).BoundingBox;

 % Bounding box coordinates with padding.
 boundingBox(idx,1) = boundingBox(idx,1) - padding;
 boundingBox(idx,2) = boundingBox(idx,2) - padding;
 boundingBox(idx,3) = boundingBox(idx,3) + 2*padding;
 boundingBox(idx,4) = boundingBox(idx,4) + 2*padding;

end

orientation = [regionStatistics(:).Orientation];

end

References

[1] Creusot, Clement, et al. "Real-time Barcode Detection in the Wild." IEEE Winter Conference on
Applications of Computer Vision, 2015.

 Localize and Read Multiple Barcodes in Image

10-17

Monocular Visual Odometry

Visual odometry is the process of determining the location and orientation of a camera by analyzing a
sequence of images. Visual odometry is used in a variety of applications, such as mobile robots, self-
driving cars, and unmanned aerial vehicles. This example shows you how to estimate the trajectory of
a single calibrated camera from a sequence of images.

Overview

This example shows how to estimate the trajectory of a calibrated camera from a sequence of 2-D
views. This example uses images from the New Tsukuba Stereo Dataset created at Tsukuba
University's CVLAB. (https://cvlab.cs.tsukuba.ac.jp). The dataset consists of synthetic images,
generated using computer graphics, and includes the ground truth camera poses.

Without additional information, the trajectory of a monocular camera can only be recovered up to an
unknown scale factor. Monocular visual odometry systems used on mobile robots or autonomous
vehicles typically obtain the scale factor from another sensor (e.g. wheel odometer or GPS), or from
an object of a known size in the scene. This example computes the scale factor from the ground truth.

The example is divided into three parts:

1 Estimating the pose of the second view relative to the first view. Estimate the pose of the
second view by estimating the essential matrix and decomposing it into camera location and
orientation.

2 Bootstrapping estimating camera trajectory using global bundle adjustment. Eliminate
outliers using the epipolar constraint. Find 3D-to-2D correspondences between points
triangulated from the previous two views and the current view. Compute the world camera pose
for the current view by solving the perspective-n-point (PnP) problem. Estimating the camera
poses inevitably results in errors, which accumulate over time. This effect is called the drift. To
reduce the drift, the example refines all the poses estimated so far using bundle adjustment.

3 Estimating remaining camera trajectory using windowed bundle adjustment. With each
new view the time it takes to refine all the poses increases. Windowed bundle adjustment is a
way to reduce computation time by only optimizing the last n views, rather than the entire
trajectory. Computation time is further reduced by not calling bundle adjustment for every view.

Read Input Image Sequence and Ground Truth

This example uses images from the New Tsukuba Stereo Dataset created at Tsukuba University's
CVLAB. If you use these images in your own work or publications, please cite the following papers:

[1] Martin Peris Martorell, Atsuto Maki, Sarah Martull, Yasuhiro Ohkawa, Kazuhiro Fukui, "Towards a
Simulation Driven Stereo Vision System". Proceedings of ICPR, pp.1038-1042, 2012.

[2] Sarah Martull, Martin Peris Martorell, Kazuhiro Fukui, "Realistic CG Stereo Image Dataset with
Ground Truth Disparity Maps", Proceedings of ICPR workshop TrakMark2012, pp.40-42, 2012.

images = imageDatastore(fullfile(toolboxdir('vision'), 'visiondata', 'NewTsukuba'));

% Load ground truth camera poses.
load("visualOdometryGroundTruth.mat")

10 Featured Examples

10-18

http://cvlab-home.blogspot.com/2012/05/h2fecha-2581457116665894170-displaynone.html

Create a View Set Containing the First View of the Sequence

Use an imageviewset object to store and manage the image points and the camera pose associated
with each view, as well as point matches between pairs of views. Once you populate an
imageviewset object, you can use it to find point tracks across multiple views and retrieve the
camera poses to be used by triangulateMultiview and bundleAdjustment functions.

% Create an empty imageviewset object to manage the data associated with each view.
vSet = imageviewset;

% Read and display the first image.
Irgb = readimage(images, 1);
player = vision.VideoPlayer(Position=[20, 400, 650, 510]);
step(player, Irgb);

 Monocular Visual Odometry

10-19

% Create the camera intrinsics object using camera intrinsics from the
% New Tsukuba dataset.
focalLength = [615 615]; % specified in units of pixels
principalPoint = [320 240]; % in pixels [x, y]
imageSize = size(Irgb,[1,2]); % in pixels [mrows, ncols]
intrinsics = cameraIntrinsics(focalLength, principalPoint, imageSize);

Convert to gray scale and undistort. In this example, undistortion has no effect, because the images
are synthetic, with no lens distortion. However, for real images, undistortion is necessary.

prevI = undistortImage(im2gray(Irgb), intrinsics);

% Detect features.
prevPoints = detectSURFFeatures(prevI, MetricThreshold=500);

% Select a subset of features, uniformly distributed throughout the image.
numPoints = 200;
prevPoints = selectUniform(prevPoints, numPoints, size(prevI));

% Extract features. Using 'Upright' features improves matching quality if
% the camera motion involves little or no in-plane rotation.
prevFeatures = extractFeatures(prevI, prevPoints, Upright=true);

% Add the first view. Place the camera associated with the first view
% at the origin, oriented along the Z-axis.
viewId = 1;
vSet = addView(vSet, viewId, rigidtform3d(eye(3), [0 0 0]), Points=prevPoints);

Plot Initial Camera Pose

Create two graphical camera objects representing the estimated and the actual camera poses based
on ground truth data from the New Tsukuba dataset.

% Setup axes.
figure
axis([-220, 50, -140, 20, -50, 300]);

% Set Y-axis to be vertical pointing down.
view(gca, 3);
set(gca, CameraUpVector=[0, -1, 0]);
camorbit(gca, -120, 0, data=[0, 1, 0]);

grid on
xlabel('X (cm)');
ylabel('Y (cm)');
zlabel('Z (cm)');
hold on

% Plot estimated camera pose.
cameraSize = 7;
camPose = poses(vSet);
camEstimated = plotCamera(camPose, Size=cameraSize,...
 Color="g", Opacity=0);

% Plot actual camera pose.
camActual = plotCamera(Size=cameraSize, ...
 AbsolutePose=rigidtform3d(groundTruthPoses.Orientation{1}', ...

10 Featured Examples

10-20

 groundTruthPoses.Location{1}), ...
 Color="b", Opacity=0);

% Initialize camera trajectories.
trajectoryEstimated = plot3(0, 0, 0, "g-");
trajectoryActual = plot3(0, 0, 0, "b-");

legend('Estimated Trajectory', 'Actual Trajectory');
title('Camera Trajectory');

Estimate the Pose of the Second View

Detect and extract features from the second view, and match them to the first view using
helperDetectAndMatchFeatures. Estimate the pose of the second view relative to the first view
using helperEstimateRelativePose, and add it to the imageviewset.

% Read and display the image.
viewId = 2;
Irgb = readimage(images, viewId);
step(player, Irgb);

 Monocular Visual Odometry

10-21

% Convert to gray scale and undistort.
I = undistortImage(im2gray(Irgb), intrinsics);

% Match features between the previous and the current image.
[currPoints, currFeatures, indexPairs] = helperDetectAndMatchFeatures(...
 prevFeatures, I);

% Estimate the pose of the current view relative to the previous view.
[relPose, inlierIdx] = helperEstimateRelativePose(...
 prevPoints(indexPairs(:,1)), currPoints(indexPairs(:,2)), intrinsics);

% Exclude epipolar outliers.
indexPairs = indexPairs(inlierIdx, :);

10 Featured Examples

10-22

% Add the current view to the view set.
vSet = addView(vSet, viewId, relPose, Points=currPoints);

% Store the point matches between the previous and the current views.
vSet = addConnection(vSet, viewId-1, viewId, Matches=indexPairs);

The location of the second view relative to the first view can only be recovered up to an unknown
scale factor. Compute the scale factor from the ground truth using helperNormalizeViewSet,
simulating an external sensor, which would be used in a typical monocular visual odometry system.

vSet = helperNormalizeViewSet(vSet, groundTruthPoses);

Update camera trajectory plots using helperUpdateCameraPlots and
helperUpdateCameraTrajectories.

helperUpdateCameraPlots(viewId, camEstimated, camActual, poses(vSet), ...
 groundTruthPoses);
helperUpdateCameraTrajectories(viewId, trajectoryEstimated, trajectoryActual,...
 poses(vSet), groundTruthPoses);

prevI = I;
prevFeatures = currFeatures;
prevPoints = currPoints;

Bootstrap Estimating Camera Trajectory Using Global Bundle Adjustment

Find 3D-to-2D correspondences between world points triangulated from the previous two views and
image points from the current view. Use helperFindEpipolarInliers to find the matches that
satisfy the epipolar constraint, and then use helperFind3Dto2DCorrespondences to triangulate
3-D points from the previous two views and find the corresponding 2-D points in the current view.

Compute the world camera pose for the current view by solving the perspective-n-point (PnP)
problem using estworldpose. For the first 15 views, use global bundle adjustment to refine the

 Monocular Visual Odometry

10-23

entire trajectory. Using global bundle adjustment for a limited number of views bootstraps estimating
the rest of the camera trajectory, and it is not prohibitively expensive.

for viewId = 3:15
 % Read and display the next image
 Irgb = readimage(images, viewId);
 step(player, Irgb);

 % Convert to gray scale and undistort.
 I = undistortImage(im2gray(Irgb), intrinsics);

 % Match points between the previous and the current image.
 [currPoints, currFeatures, indexPairs] = helperDetectAndMatchFeatures(...
 prevFeatures, I);

 % Eliminate outliers from feature matches.
 [~, inlierIdx] = helperEstimateRelativePose(prevPoints(indexPairs(:,1)),...
 currPoints(indexPairs(:, 2)), intrinsics);
 indexPairs = indexPairs(inlierIdx, :);

 % Triangulate points from the previous two views, and find the
 % corresponding points in the current view.
 [worldPoints, imagePoints] = helperFind3Dto2DCorrespondences(vSet,...
 intrinsics, indexPairs, currPoints);

 % Since RANSAC involves a stochastic process, it may sometimes not
 % reach the desired confidence level and exceed maximum number of
 % trials. Disable the warning when that happens since the outcomes are
 % still valid.
 warningstate = warning('off','vision:ransac:maxTrialsReached');

 % Estimate the world camera pose for the current view.
 absPose = estworldpose(imagePoints, worldPoints, intrinsics);

 % Restore the original warning state
 warning(warningstate)

 % Add the current view to the view set.
 vSet = addView(vSet, viewId, absPose, Points=currPoints);

 % Store the point matches between the previous and the current views.
 vSet = addConnection(vSet, viewId-1, viewId, Matches=indexPairs);

 tracks = findTracks(vSet); % Find point tracks spanning multiple views.

 camPoses = poses(vSet); % Get camera poses for all views.

 % Triangulate initial locations for the 3-D world points.
 xyzPoints = triangulateMultiview(tracks, camPoses, intrinsics);

 % Refine camera poses using bundle adjustment.
 [~, camPoses] = bundleAdjustment(xyzPoints, tracks, camPoses, ...
 intrinsics, PointsUndistorted=true, AbsoluteTolerance=1e-12,...
 RelativeTolerance=1e-12, MaxIterations=200, FixedViewID=1);

 vSet = updateView(vSet, camPoses); % Update view set.

 % Bundle adjustment can move the entire set of cameras. Normalize the

10 Featured Examples

10-24

 % view set to place the first camera at the origin looking along the
 % Z-axes and adjust the scale to match that of the ground truth.
 vSet = helperNormalizeViewSet(vSet, groundTruthPoses);

 % Update camera trajectory plot.
 helperUpdateCameraPlots(viewId, camEstimated, camActual, poses(vSet), ...
 groundTruthPoses);
 helperUpdateCameraTrajectories(viewId, trajectoryEstimated, ...
 trajectoryActual, poses(vSet), groundTruthPoses);

 prevI = I;
 prevFeatures = currFeatures;
 prevPoints = currPoints;
end

 Monocular Visual Odometry

10-25

Estimate Remaining Camera Trajectory Using Windowed Bundle Adjustment

Estimate the remaining camera trajectory by using windowed bundle adjustment to only refine the
last 15 views, in order to limit the amount of computation. Furthermore, bundle adjustment does not
have to be called for every view, because estworldpose computes the pose in the same units as the
3-D points. This section calls bundle adjustment for every 7th view. The window size and the
frequency of calling bundle adjustment have been chosen experimentally.

for viewId = 16:numel(images.Files)
 % Read and display the next image
 Irgb = readimage(images, viewId);
 step(player, Irgb);

 % Convert to gray scale and undistort.

10 Featured Examples

10-26

 I = undistortImage(im2gray(Irgb), intrinsics);

 % Match points between the previous and the current image.
 [currPoints, currFeatures, indexPairs] = helperDetectAndMatchFeatures(...
 prevFeatures, I);

 % Triangulate points from the previous two views, and find the
 % corresponding points in the current view.
 [worldPoints, imagePoints] = helperFind3Dto2DCorrespondences(vSet, ...
 intrinsics, indexPairs, currPoints);

 % Since RANSAC involves a stochastic process, it may sometimes not
 % reach the desired confidence level and exceed maximum number of
 % trials. Disable the warning when that happens since the outcomes are
 % still valid.
 warningstate = warning('off','vision:ransac:maxTrialsReached');

 % Estimate the world camera pose for the current view.
 absPose = estworldpose(imagePoints, worldPoints, intrinsics);

 % Restore the original warning state
 warning(warningstate)

 % Add the current view and connection to the view set.
 vSet = addView(vSet, viewId, absPose, Points=currPoints);
 vSet = addConnection(vSet, viewId-1, viewId, Matches=indexPairs);

 % Refine estimated camera poses using windowed bundle adjustment. Run
 % the optimization every 7th view.
 if mod(viewId, 7) == 0
 % Find point tracks in the last 15 views and triangulate.
 windowSize = 15;
 startFrame = max(1, viewId - windowSize);
 tracks = findTracks(vSet, startFrame:viewId);
 camPoses = poses(vSet, startFrame:viewId);
 [xyzPoints, reprojErrors] = triangulateMultiview(tracks, camPoses, intrinsics);

 % Hold the first two poses fixed, to keep the same scale.
 fixedIds = [startFrame, startFrame+1];

 % Exclude points and tracks with high reprojection errors.
 idx = reprojErrors < 2;

 [~, camPoses] = bundleAdjustment(xyzPoints(idx, :), tracks(idx), ...
 camPoses, intrinsics, FixedViewIDs=fixedIds, ...
 PointsUndistorted=true, AbsoluteTolerance=1e-12,...
 RelativeTolerance=1e-12, MaxIterations=200);

 vSet = updateView(vSet, camPoses); % Update view set.
 end

 % Update camera trajectory plot.
 helperUpdateCameraPlots(viewId, camEstimated, camActual, poses(vSet), ...
 groundTruthPoses);
 helperUpdateCameraTrajectories(viewId, trajectoryEstimated, ...
 trajectoryActual, poses(vSet), groundTruthPoses);

 prevI = I;

 Monocular Visual Odometry

10-27

 prevFeatures = currFeatures;
 prevPoints = currPoints;
end

hold off

10 Featured Examples

10-28

Summary

This example showed how to estimate the trajectory of a calibrated monocular camera from a
sequence of views. Notice that the estimated trajectory does not exactly match the ground truth.
Despite the non-linear refinement of camera poses, errors in camera pose estimation accumulate,
resulting in drift. In visual odometry systems this problem is typically addressed by fusing
information from multiple sensors, and by performing loop closure.

References

[1] Martin Peris Martorell, Atsuto Maki, Sarah Martull, Yasuhiro Ohkawa, Kazuhiro Fukui, "Towards a
Simulation Driven Stereo Vision System". Proceedings of ICPR, pp.1038-1042, 2012.

[2] Sarah Martull, Martin Peris Martorell, Kazuhiro Fukui, "Realistic CG Stereo Image Dataset with
Ground Truth Disparity Maps", Proceedings of ICPR workshop TrakMark2012, pp.40-42, 2012.

[3] M.I.A. Lourakis and A.A. Argyros (2009). "SBA: A Software Package for Generic Sparse Bundle
Adjustment". ACM Transactions on Mathematical Software (ACM) 36 (1): 1-30.

[4] R. Hartley, A. Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University
Press, 2003.

[5] B. Triggs; P. McLauchlan; R. Hartley; A. Fitzgibbon (1999). "Bundle Adjustment: A Modern
Synthesis". Proceedings of the International Workshop on Vision Algorithms. Springer-Verlag. pp.
298-372.

[6] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, "Complete Solution Classification for the
Perspective-Three-Point Problem," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no.
8, pp. 930-943, 2003.

 Monocular Visual Odometry

10-29

Detect and Track Vehicles Using Lidar Data

This example shows you how to track vehicles using measurements from a lidar sensor mounted on
top of an ego vehicle. Lidar sensors report measurements as a point cloud. The example illustrates
the workflow in MATLAB® for processing the point cloud and tracking the objects. For a Simulink®
version of the example, refer to “Track Vehicles Using Lidar Data in Simulink” (Sensor Fusion and
Tracking Toolbox). The lidar data used in this example is recorded from a highway driving scenario.
In this example, you use the recorded data to track vehicles with a joint probabilistic data association
(JPDA) tracker and an interacting multiple model (IMM) approach.

3-D Bounding Box Detector Model

Due to high resolution capabilities of the lidar sensor, each scan from the sensor contains a large
number of points, commonly known as a point cloud. This raw data must be preprocessed to extract
objects of interest, such as cars, cyclists, and pedestrians. For more details about segmentation of
lidar data into objects such as the ground plane and obstacles, refer to the “Ground Plane and
Obstacle Detection Using Lidar” (Automated Driving Toolbox) example. In this example, the point
clouds belonging to obstacles are further classified into clusters using the pcsegdist function, and
each cluster is converted to a bounding box detection with the following format:

, and refer to the x-, y- and z-positions of the bounding box and , and refer to its length,
width, and height, respectively.

The bounding box is fit onto each cluster by using minimum and maximum of coordinates of points in
each dimension. The detector is implemented by a supporting class HelperBoundingBoxDetector,
which wraps around point cloud segmentation and clustering functionalities. An object of this class
accepts a pointCloud input and returns a list of objectDetection objects with bounding box
measurements.

The diagram shows the processes involved in the bounding box detector model and the Computer
Vision Toolbox™ functions used to implement each process. It also shows the properties of the
supporting class that control each process.

The lidar data is available at the following link: https://ssd.mathworks.com/supportfiles/lidar/data/
TrackVehiclesUsingLidarExampleData.zip

10 Featured Examples

10-30

https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip
https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip

Download the data into your temporary directory, whose location is specified by MATLAB's tempdir
function. If you want to place the files in a different folder, change the directory name in subsequent
instructions.

% Load data if unavailable. The lidar data is stored as a cell array of
% pointCloud objects.
if ~exist('lidarData','var')
 dataURL = 'https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip';
 datasetFolder = fullfile(tempdir,'LidarExampleDataset');
 if ~exist(datasetFolder,'dir')
 unzip(dataURL,datasetFolder);
 end
 % Specify initial and final time for simulation.
 initTime = 0;
 finalTime = 35;
 [lidarData, imageData] = loadLidarAndImageData(datasetFolder,initTime,finalTime);
end

% Set random seed to generate reproducible results.
S = rng(2018);

% A bounding box detector model.
detectorModel = HelperBoundingBoxDetector(...
 'XLimits',[-50 75],... % min-max
 'YLimits',[-5 5],... % min-max
 'ZLimits',[-2 5],... % min-max
 'SegmentationMinDistance',1.6,... % minimum Euclidian distance
 'MinDetectionsPerCluster',1,... % minimum points per cluster
 'MeasurementNoise',eye(6),... % measurement noise in detection report
 'GroundMaxDistance',0.3); % maximum distance of ground points from ground plane

Target State and Sensor Measurement Model

The first step in tracking an object is defining its state, and the models that define the transition of
state and the corresponding measurement. These two sets of equations are collectively known as the
state-space model of the target. To model the state of vehicles for tracking using lidar, this example
uses a cuboid model with following convention:

 refers to the portion of the state that controls the kinematics of the motion center, and is the
yaw angle. The length, width, and height of the cuboid are modeled as a constants, whose estimates
evolve in time during correction stages of the filter.

In this example, you use two state-space models: a constant velocity (cv) cuboid model and a constant
turn-rate (ct) cuboid model. These models differ in the way they define the kinematic part of the
state, as described below:

For information about their state transition, refer to the helperConstvelCuboid and
helperConstturnCuboid functions used in this example.

 Detect and Track Vehicles Using Lidar Data

10-31

The helperCvmeasCuboid and helperCtmeasCuboid measurement models describe how the
sensor perceives the constant velocity and constant turn-rate states respectively, and they return
bounding box measurements. Because the state contains information about the size of the target, the
measurement model includes the effect of center-point offset and bounding box shrinkage, as
perceived by the sensor, due to effects like self-occlusion [1]. This effect is modeled by a shrinkage
factor that is directly proportional to the distance from the tracked vehicle to the sensor.

The image below demonstrates the measurement model operating at different state-space samples.
Notice the modeled effects of bounding box shrinkage and center-point offset as the objects move
around the ego vehicle.

Set Up Tracker and Visualization

The image below shows the complete workflow to obtain a list of tracks from a pointCloud input.

10 Featured Examples

10-32

Now, set up the tracker and the visualization used in the example.

A joint probabilistic data association tracker (trackerJPDA) coupled with an IMM filter
(trackingIMM) is used to track objects in this example. The IMM filter uses a constant velocity and
constant turn-rate model and is initialized using the supporting function, helperInitIMMFilter,
included with this example. The IMM approach helps a track to switch between motion models and
thus achieve good estimation accuracy during events like maneuvering or lane changing. The
animation below shows the effect of mixing the constant velocity and constant turn-rate model during
prediction stages of the IMM filter.

The IMM filter updates the probability of each model when it is corrected with detections from the
object. The animation below shows the estimated trajectory of a vehicle during a lane change event
and the corresponding estimated probabilities of each model.

 Detect and Track Vehicles Using Lidar Data

10-33

Set the HasDetectableTrackIDsInput property of the tracker as true, which enables you to
specify a state-dependent probability of detection. The detection probability of a track is calculated
by the helperCalcDetectability function, listed at the end of this example.

assignmentGate = [50 100]; % Assignment threshold;
confThreshold = [7 10]; % Confirmation threshold for history logic
delThreshold = [8 10]; % Deletion threshold for history logic
Kc = 1e-5; % False-alarm rate per unit volume

% IMM filter initialization function
filterInitFcn = @helperInitIMMFilter;

% A joint probabilistic data association tracker with IMM filter
tracker = trackerJPDA('FilterInitializationFcn',filterInitFcn,...
 'TrackLogic','History',...
 'AssignmentThreshold',assignmentGate,...

10 Featured Examples

10-34

 'ClutterDensity',Kc,...
 'ConfirmationThreshold',confThreshold,...
 'DeletionThreshold',delThreshold,...
 'HasDetectableTrackIDsInput',true,...
 'InitializationThreshold',0);

The visualization is divided into these main categories:

1 Lidar Preprocessing and Tracking - This display shows the raw point cloud, segmented ground,
and obstacles. It also shows the resulting detections from the detector model and the tracks of
vehicles generated by the tracker.

2 Ego Vehicle Display - This display shows the 2-D bird's-eye view of the scenario. It shows the
obstacle point cloud, bounding box detections, and the tracks generated by the tracker. For
reference, it also displays the image recorded from a camera mounted on the ego vehicle and its
field of view.

3 Tracking Details - This display shows the scenario zoomed around the ego vehicle. It also shows
finer tracking details, such as error covariance in estimated position of each track and its motion
model probabilities, denoted by cv and ct.

% Create display
displayObject = HelperLidarExampleDisplay(imageData{1},...
 'PositionIndex',[1 3 6],...
 'VelocityIndex',[2 4 7],...
 'DimensionIndex',[9 10 11],...
 'YawIndex',8,...
 'MovieName','',... % Specify a movie name to record a movie.
 'RecordGIF',false); % Specify true to record new GIFs

Loop Through Data

Loop through the recorded lidar data, generate detections from the current point cloud using the
detector model and then process the detections using the tracker.

time = 0; % Start time
dT = 0.1; % Time step

% Initiate all tracks.
allTracks = struct([]);

% Initiate variables for comparing MATLAB and MEX simulation.
numTracks = zeros(numel(lidarData),2);

% Loop through the data
for i = 1:numel(lidarData)
 % Update time
 time = time + dT;

 % Get current lidar scan
 currentLidar = lidarData{i};

 % Generator detections from lidar scan.
 [detections,obstacleIndices,groundIndices,croppedIndices] = detectorModel(currentLidar,time);

 % Calculate detectability of each track.
 detectableTracksInput = helperCalcDetectability(allTracks,[1 3 6]);

 % Pass detections to track.

 Detect and Track Vehicles Using Lidar Data

10-35

 [confirmedTracks,tentativeTracks,allTracks] = tracker(detections,time,detectableTracksInput);
 numTracks(i,1) = numel(confirmedTracks);

 % Get model probabilities from IMM filter of each track using
 % getTrackFilterProperties function of the tracker.
 modelProbs = zeros(2,numel(confirmedTracks));
 for k = 1:numel(confirmedTracks)
 c1 = getTrackFilterProperties(tracker,confirmedTracks(k).TrackID,'ModelProbabilities');
 modelProbs(:,k) = c1{1};
 end

 % Update display
 if isvalid(displayObject.PointCloudProcessingDisplay.ObstaclePlotter)
 % Get current image scan for reference image
 currentImage = imageData{i};

 % Update display object
 displayObject(detections,confirmedTracks,currentLidar,obstacleIndices,...
 groundIndices,croppedIndices,currentImage,modelProbs);
 end

 % Snap a figure at time = 18
 if abs(time - 18) < dT/2
 snapnow(displayObject);
 end
end

% Write movie if requested
if ~isempty(displayObject.MovieName)
 writeMovie(displayObject);
end

% Write new GIFs if requested.
if displayObject.RecordGIF
 % second input is start frame, third input is end frame and last input
 % is a character vector specifying the panel to record.
 writeAnimatedGIF(displayObject,10,170,'trackMaintenance','ego');
 writeAnimatedGIF(displayObject,310,330,'jpda','processing');
 writeAnimatedGIF(displayObject,150,180,'imm','details');
end

10 Featured Examples

10-36

The figure above shows the three displays at time = 18 seconds. The tracks are represented by green
bounding boxes. The bounding box detections are represented by orange bounding boxes. The
detections also have orange points inside them, representing the point cloud segmented as obstacles.
The segmented ground is shown in purple. The cropped or discarded point cloud is shown in blue.

Generate C Code

You can generate C code from the MATLAB® code for the tracking and the preprocessing algorithm
using MATLAB Coder™. C code generation enables you to accelerate MATLAB code for simulation. To
generate C code, the algorithm must be restructured as a MATLAB function, which can be compiled
into a MEX file or a shared library. For this purpose, the point cloud processing algorithm and the
tracking algorithm is restructured into a MATLAB function, mexLidarTracker. Some variables are
defined as persistent to preserve their state between multiple calls to the function (see
persistent). The inputs and outputs of the function can be observed in the function description
provided in the "Supporting Files" section at the end of this example.

MATLAB Coder requires specifying the properties of all the input arguments. An easy way to do this
is by defining the input properties by example at the command line using the -args option. For more
information, see “Define Input Properties by Example at the Command Line” (MATLAB Coder). Note
that the top-level input arguments cannot be objects of the handle class. Therefore, the function
accepts the x, y and z locations of the point cloud as an input. From the stored point cloud, this
information can be extracted using the Location property of the pointCloud object. This
information is also directly available as the raw data from the lidar sensor.

% Input lists
inputExample = {lidarData{1}.Location, 0};

% Create configuration for MEX generation

 Detect and Track Vehicles Using Lidar Data

10-37

cfg = coder.config('mex');

% Replace cfg with the following to generate static library and perform
% software-in-the-loop simulation. This requires Embedded Coder license.
%
% cfg = coder.config('lib'); % Static library
% cfg.VerificationMode = 'SIL'; % Software-in-the-loop

% Generate code if file does not exist.
if ~exist('mexLidarTracker_mex','file')
 h = msgbox({'Generating code. This may take a few minutes...';'This message box will close when done.'},'Codegen Message');
 % -config allows specifying the codegen configuration
 % -o allows specifying the name of the output file
 codegen -config cfg -o mexLidarTracker_mex mexLidarTracker -args inputExample
 close(h);
else
 clear mexLidarTracker_mex;
end

Rerun simulation with MEX Code

Rerun the simulation using the generated MEX code, mexLidarTracker_mex.

% Reset time
time = 0;

for i = 1:numel(lidarData)
 time = time + dT;

 currentLidar = lidarData{i};

 [detectionsMex,obstacleIndicesMex,groundIndicesMex,croppedIndicesMex,...
 confirmedTracksMex, modelProbsMex] = mexLidarTracker_mex(currentLidar.Location,time);

 % Record data for comparison with MATLAB execution.
 numTracks(i,2) = numel(confirmedTracksMex);
end

Compare results between MATLAB and MEX Execution

disp(isequal(numTracks(:,1),numTracks(:,2)));

 1

Notice that the number of confirmed tracks is the same for MATLAB and MEX code execution. This
assures that the lidar preprocessing and tracking algorithm returns the same results with generated
C code as with the MATLAB code.

Results

Now, analyze different events in the scenario and understand how the combination of lidar
measurement model, joint probabilistic data association, and interacting multiple model filter, helps
achieve a good estimation of the vehicle tracks.

Track Maintenance

10 Featured Examples

10-38

The animation above shows the simulation between time = 3 seconds and time = 16 seconds. Notice
that tracks such as T10 and T6 maintain their IDs and trajectory during the time span. However,
track T9 is lost because the tracked vehicle was missed (not detected) for a long time by the sensor.
Also, notice that the tracked objects are able to maintain their shape and kinematic center by
positioning the detections onto the visible portions of the vehicles. For example, as Track T7 moves
forward, bounding box detections start to fall on its visible rear portion and the track maintains the
actual size of the vehicle. This illustrates the offset and shrinkage effect modeled in the measurement
functions.

Capturing Maneuvers

The animation shows that using an IMM filter helps the tracker to maintain tracks on maneuvering
vehicles. Notice that the vehicle tracked by T4 changes lanes behind the ego vehicle. The tracker is
able maintain a track on the vehicle during this maneuvering event. Also notice in the display that its
probability of following the constant turn model, denoted by ct, increases during the lane change
maneuver.

Joint Probabilistic Data Association

 Detect and Track Vehicles Using Lidar Data

10-39

This animation shows that using a joint probabilistic data association tracker helps in maintaining
tracks during ambiguous situations. Here, vehicles tracked by T24 and T62, have a low probability of
detection due to their large distance from the sensor. Notice that the tracker is able to maintain
tracks during events when one of the vehicles is not detected. During the event, the tracks first
coalesce, which is a known phenomenon in JPDA, and then separate as soon as the vehicle was
detected again.

Summary

This example showed how to use a JPDA tracker with an IMM filter to track objects using a lidar
sensor. You learned how a raw point cloud can be preprocessed to generate detections for
conventional trackers, which assume one detection per object per sensor scan. You also learned how
to define a cuboid model to describe the kinematics, dimensions, and measurements of extended
objects being tracked by the JPDA tracker. In addition, you generated C code from the algorithm and
verified its execution results with the MATLAB simulation.

Supporting Files

helperLidarModel

This function defines the lidar model to simulate shrinkage of the bounding box measurement and
center-point offset. This function is used in the helperCvmeasCuboid and helperCtmeasCuboid
functions to obtain bounding box measurement from the state.

function meas = helperLidarModel(pos,dim,yaw)
% This function returns the expected bounding box measurement given an
% object's position, dimension, and yaw angle.

10 Featured Examples

10-40

% Copyright 2019 The MathWorks, Inc.

% Get x,y and z.
x = pos(1,:);
y = pos(2,:);
z = pos(3,:) - 2; % lidar mounted at height = 2 meters.

% Get spherical measurement.
[az,~,r] = cart2sph(x,y,z);

% Shrink rate
s = 3/50; % 3 meters radial length at 50 meters.
sz = 2/50; % 2 meters height at 50 meters.

% Get length, width and height.
L = dim(1,:);
W = dim(2,:);
H = dim(3,:);

az = az - deg2rad(yaw);

% Shrink length along radial direction.
Lshrink = min(L,abs(s*r.*(cos(az))));
Ls = L - Lshrink;

% Shrink width along radial direction.
Wshrink = min(W,abs(s*r.*(sin(az))));
Ws = W - Wshrink;

% Shrink height.
Hshrink = min(H,sz*r);
Hs = H - Hshrink;

% Measurement is given by a min-max detector hence length and width must be
% projected along x and y.
Lmeas = Ls.*cosd(yaw) + Ws.*sind(yaw);
Wmeas = Ls.*sind(yaw) + Ws.*cosd(yaw);

% Similar shift is for x and y directions.
shiftX = Lshrink.*cosd(yaw) + Wshrink.*sind(yaw);
shiftY = Lshrink.*sind(yaw) + Wshrink.*cosd(yaw);
shiftZ = Hshrink;

% Modeling the affect of box origin offset
x = x - sign(x).*shiftX/2;
y = y - sign(y).*shiftY/2;
z = z + shiftZ/2 + 2;

% Measurement format
meas = [x;y;z;Lmeas;Wmeas;Hs];

end

helperInverseLidarModel

 Detect and Track Vehicles Using Lidar Data

10-41

This function defines the inverse lidar model to initiate a tracking filter using a lidar bounding box
measurement. This function is used in the helperInitIMMFilter function to obtain state estimates
from a bounding box measurement.

function [pos,posCov,dim,dimCov,yaw,yawCov] = helperInverseLidarModel(meas,measCov)
% This function returns the position, dimension, yaw using a bounding
% box measurement.

% Copyright 2019 The MathWorks, Inc.

% Shrink rate.
s = 3/50;
sz = 2/50;

% x,y and z of measurement
x = meas(1,:);
y = meas(2,:);
z = meas(3,:);

[az,~,r] = cart2sph(x,y,z);

% Shift x and y position.
Lshrink = abs(s*r.*(cos(az)));
Wshrink = abs(s*r.*(sin(az)));
Hshrink = sz*r;

shiftX = Lshrink;
shiftY = Wshrink;
shiftZ = Hshrink;

x = x + sign(x).*shiftX/2;
y = y + sign(y).*shiftY/2;
z = z + sign(z).*shiftZ/2;

pos = [x;y;z];
posCov = measCov(1:3,1:3,:);

yaw = zeros(1,numel(x),'like',x);
yawCov = ones(1,1,numel(x),'like',x);

% Dimensions are initialized for a standard passenger car with low
% uncertainity.
dim = [4.7;1.8;1.4];
dimCov = 0.01*eye(3);
end

HelperBoundingBoxDetector

This is the supporting class HelperBoundingBoxDetector to accept a point cloud input and return
a list of objectDetection

classdef HelperBoundingBoxDetector < matlab.System
 % HelperBoundingBoxDetector A helper class to segment the point cloud
 % into bounding box detections.
 % The step call to the object does the following things:

10 Featured Examples

10-42

 %
 % 1. Removes point cloud outside the limits.
 % 2. From the survived point cloud, segments out ground
 % 3. From the obstacle point cloud, forms clusters and puts bounding
 % box on each cluster.

 % Cropping properties
 properties
 % XLimits XLimits for the scene
 XLimits = [-70 70];
 % YLimits YLimits for the scene
 YLimits = [-6 6];
 % ZLimits ZLimits fot the scene
 ZLimits = [-2 10];
 end

 % Ground Segmentation Properties
 properties
 % GroundMaxDistance Maximum distance of point to the ground plane
 GroundMaxDistance = 0.3;
 % GroundReferenceVector Reference vector of ground plane
 GroundReferenceVector = [0 0 1];
 % GroundMaxAngularDistance Maximum angular distance of point to reference vector
 GroundMaxAngularDistance = 5;
 end

 % Bounding box Segmentation properties
 properties
 % SegmentationMinDistance Distance threshold for segmentation
 SegmentationMinDistance = 1.6;
 % MinDetectionsPerCluster Minimum number of detections per cluster
 MinDetectionsPerCluster = 2;
 % MaxZDistanceCluster Maximum Z-coordinate of cluster
 MaxZDistanceCluster = 3;
 % MinZDistanceCluster Minimum Z-coordinate of cluster
 MinZDistanceCluster = -3;
 end

 % Ego vehicle radius to remove ego vehicle point cloud.
 properties
 % EgoVehicleRadius Radius of ego vehicle
 EgoVehicleRadius = 3;
 end

 properties
 % MeasurementNoise Measurement noise for the bounding box detection
 MeasurementNoise = blkdiag(eye(3),eye(3));
 end

 properties (Nontunable)
 MeasurementParameters = struct.empty(0,1);
 end

 methods
 function obj = HelperBoundingBoxDetector(varargin)
 setProperties(obj,nargin,varargin{:})
 end
 end

 Detect and Track Vehicles Using Lidar Data

10-43

 methods (Access = protected)
 function [bboxDets,obstacleIndices,groundIndices,croppedIndices] = stepImpl(obj,currentPointCloud,time)
 % Crop point cloud
 [pcSurvived,survivedIndices,croppedIndices] = cropPointCloud(currentPointCloud,obj.XLimits,obj.YLimits,obj.ZLimits,obj.EgoVehicleRadius);
 % Remove ground plane
 [pcObstacles,obstacleIndices,groundIndices] = removeGroundPlane(pcSurvived,obj.GroundMaxDistance,obj.GroundReferenceVector,obj.GroundMaxAngularDistance,survivedIndices);
 % Form clusters and get bounding boxes
 detBBoxes = getBoundingBoxes(pcObstacles,obj.SegmentationMinDistance,obj.MinDetectionsPerCluster,obj.MaxZDistanceCluster,obj.MinZDistanceCluster);
 % Assemble detections
 if isempty(obj.MeasurementParameters)
 measParams = {};
 else
 measParams = obj.MeasurementParameters;
 end
 bboxDets = assembleDetections(detBBoxes,obj.MeasurementNoise,measParams,time);
 end
 end
end

function detections = assembleDetections(bboxes,measNoise,measParams,time)
% This method assembles the detections in objectDetection format.
numBoxes = size(bboxes,2);
detections = cell(numBoxes,1);
for i = 1:numBoxes
 detections{i} = objectDetection(time,cast(bboxes(:,i),'double'),...
 'MeasurementNoise',double(measNoise),'ObjectAttributes',struct,...
 'MeasurementParameters',measParams);
end
end

function bboxes = getBoundingBoxes(ptCloud,minDistance,minDetsPerCluster,maxZDistance,minZDistance)
 % This method fits bounding boxes on each cluster with some basic
 % rules.
 % Cluster must have atleast minDetsPerCluster points.
 % Its mean z must be between maxZDistance and minZDistance.
 % length, width and height are calculated using min and max from each
 % dimension.
 [labels,numClusters] = pcsegdist(ptCloud,minDistance);
 pointData = ptCloud.Location;
 bboxes = nan(6,numClusters,'like',pointData);
 isValidCluster = false(1,numClusters);
 for i = 1:numClusters
 thisPointData = pointData(labels == i,:);
 meanPoint = mean(thisPointData,1);
 if size(thisPointData,1) > minDetsPerCluster && ...
 meanPoint(3) < maxZDistance && meanPoint(3) > minZDistance
 xMin = min(thisPointData(:,1));
 xMax = max(thisPointData(:,1));
 yMin = min(thisPointData(:,2));
 yMax = max(thisPointData(:,2));
 zMin = min(thisPointData(:,3));
 zMax = max(thisPointData(:,3));
 l = (xMax - xMin);
 w = (yMax - yMin);
 h = (zMax - zMin);
 x = (xMin + xMax)/2;
 y = (yMin + yMax)/2;

10 Featured Examples

10-44

 z = (zMin + zMax)/2;
 bboxes(:,i) = [x y z l w h]';
 isValidCluster(i) = l < 20; % max length of 20 meters
 end
 end
 bboxes = bboxes(:,isValidCluster);
end

function [ptCloudOut,obstacleIndices,groundIndices] = removeGroundPlane(ptCloudIn,maxGroundDist,referenceVector,maxAngularDist,currentIndices)
 % This method removes the ground plane from point cloud using
 % pcfitplane.
 [~,groundIndices,outliers] = pcfitplane(ptCloudIn,maxGroundDist,referenceVector,maxAngularDist);
 ptCloudOut = select(ptCloudIn,outliers);
 obstacleIndices = currentIndices(outliers);
 groundIndices = currentIndices(groundIndices);
end

function [ptCloudOut,indices,croppedIndices] = cropPointCloud(ptCloudIn,xLim,yLim,zLim,egoVehicleRadius)
 % This method selects the point cloud within limits and removes the
 % ego vehicle point cloud using findNeighborsInRadius
 locations = ptCloudIn.Location;
 locations = reshape(locations,[],3);
 insideX = locations(:,1) < xLim(2) & locations(:,1) > xLim(1);
 insideY = locations(:,2) < yLim(2) & locations(:,2) > yLim(1);
 insideZ = locations(:,3) < zLim(2) & locations(:,3) > zLim(1);
 inside = insideX & insideY & insideZ;

 % Remove ego vehicle
 nearIndices = findNeighborsInRadius(ptCloudIn,[0 0 0],egoVehicleRadius);
 nonEgoIndices = true(ptCloudIn.Count,1);
 nonEgoIndices(nearIndices) = false;
 validIndices = inside & nonEgoIndices;
 indices = find(validIndices);
 croppedIndices = find(~validIndices);
 ptCloudOut = select(ptCloudIn,indices);
end

mexLidarTracker

This function implements the point cloud preprocessing display and the tracking algorithm using a
functional interface for code generation.

function [detections,obstacleIndices,groundIndices,croppedIndices,...
 confirmedTracks, modelProbs] = mexLidarTracker(ptCloudLocations,time)

persistent detectorModel tracker detectableTracksInput currentNumTracks

if isempty(detectorModel) || isempty(tracker) || isempty(detectableTracksInput) || isempty(currentNumTracks)

 % Use the same starting seed as MATLAB to reproduce results in SIL
 % simulation.
 rng(2018);

 Detect and Track Vehicles Using Lidar Data

10-45

 % A bounding box detector model.
 detectorModel = HelperBoundingBoxDetector(...
 'XLimits',[-50 75],... % min-max
 'YLimits',[-5 5],... % min-max
 'ZLimits',[-2 5],... % min-max
 'SegmentationMinDistance',1.6,... % minimum Euclidian distance
 'MinDetectionsPerCluster',1,... % minimum points per cluster
 'MeasurementNoise',eye(6),... % measurement noise in detection report.
 'GroundMaxDistance',0.3); % maximum distance of ground points from ground plane

 assignmentGate = [50 100]; % Assignment threshold;
 confThreshold = [7 10]; % Confirmation threshold for history logic
 delThreshold = [8 10]; % Deletion threshold for history logic
 Kc = 1e-5; % False-alarm rate per unit volume

 filterInitFcn = @helperInitIMMFilter;

 tracker = trackerJPDA('FilterInitializationFcn',filterInitFcn,...
 'TrackLogic','History',...
 'AssignmentThreshold',assignmentGate,...
 'ClutterDensity',Kc,...
 'ConfirmationThreshold',confThreshold,...
 'DeletionThreshold',delThreshold,...
 'HasDetectableTrackIDsInput',true,...
 'InitializationThreshold',0,...
 'MaxNumTracks',30);

 detectableTracksInput = zeros(tracker.MaxNumTracks,2);

 currentNumTracks = 0;
end

ptCloud = pointCloud(ptCloudLocations);

% Detector model
[detections,obstacleIndices,groundIndices,croppedIndices] = detectorModel(ptCloud,time);

% Call tracker
[confirmedTracks,~,allTracks] = tracker(detections,time,detectableTracksInput(1:currentNumTracks,:));
% Update the detectability input
currentNumTracks = numel(allTracks);
detectableTracksInput(1:currentNumTracks,:) = helperCalcDetectability(allTracks,[1 3 6]);

% Get model probabilities
modelProbs = zeros(2,numel(confirmedTracks));
if isLocked(tracker)
 for k = 1:numel(confirmedTracks)
 c1 = getTrackFilterProperties(tracker,confirmedTracks(k).TrackID,'ModelProbabilities');
 probs = c1{1};
 modelProbs(1,k) = probs(1);
 modelProbs(2,k) = probs(2);
 end
end

end

helperCalcDetectability

10 Featured Examples

10-46

The function calculates the probability of detection for each track. This function is used to generate
the "DetectableTracksIDs" input for the trackerJPDA.

function detectableTracksInput = helperCalcDetectability(tracks,posIndices)
% This is a helper function to calculate the detection probability of
% tracks for the lidar tracking example. It may be removed in a future
% release.

% Copyright 2019 The MathWorks, Inc.

% The bounding box detector has low probability of segmenting point clouds
% into bounding boxes are distances greater than 40 meters. This function
% models this effect using a state-dependent probability of detection for
% each tracker. After a maximum range, the Pd is set to a high value to
% enable deletion of track at a faster rate.
if isempty(tracks)
 detectableTracksInput = zeros(0,2);
 return;
end
rMax = 75;
rAmbig = 40;
stateSize = numel(tracks(1).State);
posSelector = zeros(3,stateSize);
posSelector(1,posIndices(1)) = 1;
posSelector(2,posIndices(2)) = 1;
posSelector(3,posIndices(3)) = 1;
pos = getTrackPositions(tracks,posSelector);
if coder.target('MATLAB')
 trackIDs = [tracks.TrackID];
else
 trackIDs = zeros(1,numel(tracks),'uint32');
 for i = 1:numel(tracks)
 trackIDs(i) = tracks(i).TrackID;
 end
end
[~,~,r] = cart2sph(pos(:,1),pos(:,2),pos(:,3));
probDetection = 0.9*ones(numel(tracks),1);
probDetection(r > rAmbig) = 0.4;
probDetection(r > rMax) = 0.99;
detectableTracksInput = [double(trackIDs(:)) probDetection(:)];
end

loadLidarAndImageData

Stitches Lidar and Camera data for processing using initial and final time specified.

function [lidarData,imageData] = loadLidarAndImageData(datasetFolder,initTime,finalTime)
initFrame = max(1,floor(initTime*10));
lastFrame = min(350,ceil(finalTime*10));
load (fullfile(datasetFolder,'imageData_35seconds.mat'),'allImageData');
imageData = allImageData(initFrame:lastFrame);

numFrames = lastFrame - initFrame + 1;
lidarData = cell(numFrames,1);

% Each file contains 70 frames.

 Detect and Track Vehicles Using Lidar Data

10-47

initFileIndex = floor(initFrame/70) + 1;
lastFileIndex = ceil(lastFrame/70);

frameIndices = [1:70:numFrames numFrames + 1];

counter = 1;
for i = initFileIndex:lastFileIndex
 startFrame = frameIndices(counter);
 endFrame = frameIndices(counter + 1) - 1;
 load(fullfile(datasetFolder,['lidarData_',num2str(i)]),'currentLidarData');
 lidarData(startFrame:endFrame) = currentLidarData(1:(endFrame + 1 - startFrame));
 counter = counter + 1;
end
end

References

[1] Arya Senna Abdul Rachman, Arya. "3D-LIDAR Multi Object Tracking for Autonomous Driving:
Multi-target Detection and Tracking under Urban Road Uncertainties." (2017).

See Also

Related Examples
• “Track Vehicles Using Lidar: From Point Cloud to Track List” (Lidar Toolbox)
• “Detect, Classify, and Track Vehicles Using Lidar” (Lidar Toolbox)

10 Featured Examples

10-48

Semantic Segmentation Using Dilated Convolutions

Train a semantic segmentation network using dilated convolutions.

A semantic segmentation network classifies every pixel in an image, resulting in an image that is
segmented by class. Applications for semantic segmentation include road segmentation for
autonomous driving and cancer cell segmentation for medical diagnosis. To learn more, see “Getting
Started with Semantic Segmentation Using Deep Learning” on page 17-75.

Semantic segmentation networks like DeepLab [1] make extensive use of dilated convolutions (also
known as atrous convolutions) because they can increase the receptive field of the layer (the area of
the input which the layers can see) without increasing the number of parameters or computations.

Load Training Data

The example uses a simple dataset of 32-by-32 triangle images for illustration purposes. The dataset
includes accompanying pixel label ground truth data. Load the training data using an
imageDatastore and a pixelLabelDatastore.

dataFolder = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageFolderTrain = fullfile(dataFolder,'trainingImages');
labelFolderTrain = fullfile(dataFolder,'trainingLabels');

Create an imageDatastore for the images.

imdsTrain = imageDatastore(imageFolderTrain);

Create a pixelLabelDatastore for the ground truth pixel labels.

classNames = ["triangle" "background"];
labels = [255 0];
pxdsTrain = pixelLabelDatastore(labelFolderTrain,classNames,labels)

pxdsTrain =
 PixelLabelDatastore with properties:

 Files: {200x1 cell}
 ClassNames: {2x1 cell}
 ReadSize: 1
 ReadFcn: @readDatastoreImage
 AlternateFileSystemRoots: {}

Create Semantic Segmentation Network

This example uses a simple semantic segmentation network based on dilated convolutions.

Create a data source for training data and get the pixel counts for each label.

ds = combine(imdsTrain,pxdsTrain);
tbl = countEachLabel(pxdsTrain)

tbl=2×3 table
 Name PixelCount ImagePixelCount
 ______________ __________ _______________

 Semantic Segmentation Using Dilated Convolutions

10-49

 {'triangle' } 10326 2.048e+05
 {'background'} 1.9447e+05 2.048e+05

The majority of pixel labels are for background. This class imbalance biases the learning process in
favor of the dominant class. To fix this, use class weighting to balance the classes. You can use several
methods to compute class weights. One common method is inverse frequency weighting where the
class weights are the inverse of the class frequencies. This method increases the weight given to
under represented classes. Calculate the class weights using inverse frequency weighting.

numberPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / numberPixels;
classWeights = 1 ./ frequency;

Create a network for pixel classification by using an image input layer with an input size
corresponding to the size of the input images. Next, specify three blocks of convolution, batch
normalization, and ReLU layers. For each convolutional layer, specify 32 3-by-3 filters with increasing
dilation factors and pad the inputs so they are the same size as the outputs by setting the 'Padding'
option to 'same'. To classify the pixels, include a convolutional layer with K 1-by-1 convolutions,
where K is the number of classes, followed by a softmax layer and a pixelClassificationLayer
with the inverse class weights.

inputSize = [32 32 1];
filterSize = 3;
numFilters = 32;
numClasses = numel(classNames);

layers = [
 imageInputLayer(inputSize)

 convolution2dLayer(filterSize,numFilters,'DilationFactor',1,'Padding','same')
 batchNormalizationLayer
 reluLayer

 convolution2dLayer(filterSize,numFilters,'DilationFactor',2,'Padding','same')
 batchNormalizationLayer
 reluLayer

 convolution2dLayer(filterSize,numFilters,'DilationFactor',4,'Padding','same')
 batchNormalizationLayer
 reluLayer

 convolution2dLayer(1,numClasses)
 softmaxLayer
 pixelClassificationLayer('Classes',classNames,'ClassWeights',classWeights)];

Train Network

Specify the training options.

options = trainingOptions('sgdm', ...
 'MaxEpochs', 100, ...
 'MiniBatchSize', 64, ...
 'InitialLearnRate', 1e-3);

Train the network using trainNetwork.

net = trainNetwork(ds,layers,options);

10 Featured Examples

10-50

Training on single CPU.
Initializing input data normalization.
|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Accuracy | Loss | Rate |
|==|
1	1	00:00:01	91.62%	1.6825	0.0010
17	50	00:00:22	88.56%	0.2393	0.0010
34	100	00:00:47	92.08%	0.1672	0.0010
50	150	00:01:09	93.17%	0.1472	0.0010
67	200	00:01:32	94.15%	0.1313	0.0010
84	250	00:02:03	94.47%	0.1167	0.0010
100	300	00:02:32	95.04%	0.1100	0.0010
==					
Training finished: Max epochs completed.

Test Network

Load the test data. Create an imageDatastore for the images. Create a pixelLabelDatastore for
the ground truth pixel labels.

imageFolderTest = fullfile(dataFolder,'testImages');
imdsTest = imageDatastore(imageFolderTest);
labelFolderTest = fullfile(dataFolder,'testLabels');
pxdsTest = pixelLabelDatastore(labelFolderTest,classNames,labels);

Make predictions using the test data and trained network.

pxdsPred = semanticseg(imdsTest,net,'MiniBatchSize',32,'WriteLocation',tempdir);

Running semantic segmentation network

* Processed 100 images.

Evaluate the prediction accuracy using evaluateSemanticSegmentation.

metrics = evaluateSemanticSegmentation(pxdsPred,pxdsTest);

Evaluating semantic segmentation results
--
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 100 images.
* Finalizing... Done.
* Data set metrics:

 GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore
 ______________ ____________ _______ ___________ ___________

 0.95237 0.97352 0.72081 0.92889 0.46416

For more information on evaluating semantic segmentation networks, see
evaluateSemanticSegmentation.

Segment New Image

Read and display the test image triangleTest.jpg.

 Semantic Segmentation Using Dilated Convolutions

10-51

imgTest = imread('triangleTest.jpg');
figure
imshow(imgTest)

Segment the test image using semanticseg and display the results using labeloverlay.

C = semanticseg(imgTest,net);
B = labeloverlay(imgTest,C);
figure
imshow(B)

10 Featured Examples

10-52

 Semantic Segmentation Using Dilated Convolutions

10-53

Define Custom Pixel Classification Layer with Tversky Loss

This example shows how to define and create a custom pixel classification layer that uses Tversky
loss.

This layer can be used to train semantic segmentation networks. To learn more about creating custom
deep learning layers, see “Define Custom Deep Learning Layers” (Deep Learning Toolbox).

Tversky Loss

The Tversky loss is based on the Tversky index for measuring overlap between two segmented images
[1 on page 10-60]. The Tversky index TIc between one image Y and the corresponding ground truth
T is given by

TIc =
∑m = 1

M YcmTcm
∑m = 1

M YcmTcm + α∑m = 1
M YcmTc‾m + β∑m = 1

M Yc‾mTcm

• c corresponds to the class and c‾ corresponds to not being in class c.
• M is the number of elements along the first two dimensions of Y.
• α and β are weighting factors that control the contribution that false positives and false negatives

for each class make to the loss.

The loss L over the number of classes C is given by

L = ∑
c = 1

C
1− TIc

Classification Layer Template

Copy the classification layer template into a new file in MATLAB®. This template outlines the
structure of a classification layer and includes the functions that define the layer behavior. The rest of
the example shows how to complete the tverskyPixelClassificationLayer.

classdef tverskyPixelClassificationLayer < nnet.layer.ClassificationLayer

 properties
 % Optional properties
 end

 methods

 function loss = forwardLoss(layer, Y, T)
 % Layer forward loss function goes here
 end

 end
end

Declare Layer Properties

By default, custom output layers have the following properties:

10 Featured Examples

10-54

• Name – Layer name, specified as a character vector or a string scalar. To include this layer in a
layer graph, you must specify a nonempty unique layer name. If you train a series network with
this layer and Name is set to '', then the software automatically assigns a name at training time.

• Description – One-line description of the layer, specified as a character vector or a string scalar.
This description appears when the layer is displayed in a Layer array. If you do not specify a layer
description, then the software displays the layer class name.

• Type – Type of the layer, specified as a character vector or a string scalar. The value of Type
appears when the layer is displayed in a Layer array. If you do not specify a layer type, then the
software displays 'Classification layer' or 'Regression layer'.

Custom classification layers also have the following property:

• Classes – Classes of the output layer, specified as a categorical vector, string array, cell array of
character vectors, or 'auto'. If Classes is 'auto', then the software automatically sets the
classes at training time. If you specify a string array or cell array of character vectors str, then
the software sets the classes of the output layer to categorical(str,str). The default value is
'auto'.

If the layer has no other properties, then you can omit the properties section.

The Tversky loss requires a small constant value to prevent division by zero. Specify the property,
Epsilon, to hold this value. It also requires two variable properties Alpha and Beta that control the
weighting of false positives and false negatives, respectively.

classdef tverskyPixelClassificationLayer < nnet.layer.ClassificationLayer

 properties(Constant)
 % Small constant to prevent division by zero.
 Epsilon = 1e-8;
 end

 properties
 % Default weighting coefficients for false positives and false negatives
 Alpha = 0.5;
 Beta = 0.5;
 end

 ...
end

Create Constructor Function

Create the function that constructs the layer and initializes the layer properties. Specify any variables
required to create the layer as inputs to the constructor function.

Specify an optional input argument name to assign to the Name property at creation.

function layer = tverskyPixelClassificationLayer(name, alpha, beta)
 % layer = tverskyPixelClassificationLayer(name) creates a Tversky
 % pixel classification layer with the specified name.

 % Set layer name
 layer.Name = name;

 % Set layer properties
 layer.Alpha = alpha;

 Define Custom Pixel Classification Layer with Tversky Loss

10-55

 layer.Beta = beta;

 % Set layer description
 layer.Description = 'Tversky loss';
end

Create Forward Loss Function

Create a function named forwardLoss that returns the weighted cross entropy loss between the
predictions made by the network and the training targets. The syntax for forwardLoss is loss =
forwardLoss(layer,Y,T), where Y is the output of the previous layer and T represents the
training targets.

For semantic segmentation problems, the dimensions of T match the dimension of Y, where Y is a 4-D
array of size H-by-W-by-K-by-N, where K is the number of classes, and N is the mini-batch size.

The size of Y depends on the output of the previous layer. To ensure that Y is the same size as T, you
must include a layer that outputs the correct size before the output layer. For example, to ensure that
Y is a 4-D array of prediction scores for K classes, you can include a fully connected layer of size K or
a convolutional layer with K filters followed by a softmax layer before the output layer.

function loss = forwardLoss(layer, Y, T)
 % loss = forwardLoss(layer, Y, T) returns the Tversky loss between
 % the predictions Y and the training targets T.

 Pcnot = 1-Y;
 Gcnot = 1-T;
 TP = sum(sum(Y.*T,1),2);
 FP = sum(sum(Y.*Gcnot,1),2);
 FN = sum(sum(Pcnot.*T,1),2);

 numer = TP + layer.Epsilon;
 denom = TP + layer.Alpha*FP + layer.Beta*FN + layer.Epsilon;

 % Compute Tversky index
 lossTIc = 1 - numer./denom;
 lossTI = sum(lossTIc,3);

 % Return average Tversky index loss
 N = size(Y,4);
 loss = sum(lossTI)/N;

end

Backward Loss Function

As the forwardLoss function fully supports automatic differentiation, there is no need to create a
function for the backward loss.

For a list of functions that support automatic differentiation, see “List of Functions with dlarray
Support” (Deep Learning Toolbox).

Completed Layer

The completed layer is provided in tverskyPixelClassificationLayer.m, which is attached to
the example as a supporting file.

10 Featured Examples

10-56

classdef tverskyPixelClassificationLayer < nnet.layer.ClassificationLayer
 % This layer implements the Tversky loss function for training
 % semantic segmentation networks.

 % References
 % Salehi, Seyed Sadegh Mohseni, Deniz Erdogmus, and Ali Gholipour.
 % "Tversky loss function for image segmentation using 3D fully
 % convolutional deep networks." International Workshop on Machine
 % Learning in Medical Imaging. Springer, Cham, 2017.
 % ----------

 properties(Constant)
 % Small constant to prevent division by zero.
 Epsilon = 1e-8;
 end

 properties
 % Default weighting coefficients for False Positives and False
 % Negatives
 Alpha = 0.5;
 Beta = 0.5;
 end

 methods

 function layer = tverskyPixelClassificationLayer(name, alpha, beta)
 % layer = tverskyPixelClassificationLayer(name, alpha, beta) creates a Tversky
 % pixel classification layer with the specified name and properties alpha and beta.

 % Set layer name.
 layer.Name = name;

 layer.Alpha = alpha;
 layer.Beta = beta;

 % Set layer description.
 layer.Description = 'Tversky loss';
 end

 function loss = forwardLoss(layer, Y, T)
 % loss = forwardLoss(layer, Y, T) returns the Tversky loss between
 % the predictions Y and the training targets T.

 Pcnot = 1-Y;
 Gcnot = 1-T;
 TP = sum(sum(Y.*T,1),2);
 FP = sum(sum(Y.*Gcnot,1),2);
 FN = sum(sum(Pcnot.*T,1),2);

 numer = TP + layer.Epsilon;
 denom = TP + layer.Alpha*FP + layer.Beta*FN + layer.Epsilon;

 % Compute tversky index
 lossTIc = 1 - numer./denom;
 lossTI = sum(lossTIc,3);

 Define Custom Pixel Classification Layer with Tversky Loss

10-57

 % Return average tversky index loss.
 N = size(Y,4);
 loss = sum(lossTI)/N;

 end
 end
end

GPU Compatibility

The MATLAB functions used in forwardLoss in tverskyPixelClassificationLayer all support
gpuArray inputs, so the layer is GPU compatible.

Check Output Layer Validity

Create an instance of the layer.

layer = tverskyPixelClassificationLayer('tversky',0.7,0.3);

Check the validity of the layer by using checkLayer (Deep Learning Toolbox). Specify the valid input
size to be the size of a single observation of typical input to the layer. The layer expects a H-by-W-by-K-
by-N array inputs, where K is the number of classes, and N is the number of observations in the mini-
batch.

numClasses = 2;
validInputSize = [4 4 numClasses];
checkLayer(layer,validInputSize, 'ObservationDimension',4)

Skipping GPU tests. No compatible GPU device found.

Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.

Running nnet.checklayer.TestOutputLayerWithoutBackward
........
Done nnet.checklayer.TestOutputLayerWithoutBackward

Test Summary:
 8 Passed, 0 Failed, 0 Incomplete, 2 Skipped.
 Time elapsed: 0.55747 seconds.

The test summary reports the number of passed, failed, incomplete, and skipped tests.

Use Custom Layer in Semantic Segmentation Network

Create a semantic segmentation network that uses the tverskyPixelClassificationLayer.

layers = [
 imageInputLayer([32 32 1])
 convolution2dLayer(3,64,'Padding',1)
 batchNormalizationLayer
 reluLayer
 maxPooling2dLayer(2,'Stride',2)
 convolution2dLayer(3,64,'Padding',1)
 reluLayer
 transposedConv2dLayer(4,64,'Stride',2,'Cropping',1)

10 Featured Examples

10-58

 convolution2dLayer(1,2)
 softmaxLayer
 tverskyPixelClassificationLayer('tversky',0.3,0.7)];

Load training data for semantic segmentation using imageDatastore and pixelLabelDatastore.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');

imds = imageDatastore(imageDir);

classNames = ["triangle" "background"];
labelIDs = [255 0];
pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);

Associate the image and pixel label data by using datastore combine.

ds = combine(imds,pxds);

Set the training options and train the network.

options = trainingOptions('adam', ...
 'InitialLearnRate',1e-3, ...
 'MaxEpochs',100, ...
 'LearnRateDropFactor',5e-1, ...
 'LearnRateDropPeriod',20, ...
 'LearnRateSchedule','piecewise', ...
 'MiniBatchSize',50);

net = trainNetwork(ds,layers,options);

Training on single CPU.
Initializing input data normalization.
|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Accuracy | Loss | Rate |
|==|
1	1	00:00:01	50.32%	1.2933	0.0010
13	50	00:00:18	98.82%	0.0986	0.0010
25	100	00:00:35	99.33%	0.0548	0.0005
38	150	00:00:53	99.37%	0.0473	0.0005
50	200	00:01:11	99.48%	0.0399	0.0003
63	250	00:01:28	99.48%	0.0381	0.0001
75	300	00:01:45	99.54%	0.0348	0.0001
88	350	00:02:02	99.51%	0.0350	6.2500e-05
100	400	00:02:20	99.56%	0.0331	6.2500e-05
==					
Training finished: Max epochs completed.

Evaluate the trained network by segmenting a test image and displaying the segmentation result.

I = imread('triangleTest.jpg');
[C,scores] = semanticseg(I,net);

B = labeloverlay(I,C);
montage({I,B})

 Define Custom Pixel Classification Layer with Tversky Loss

10-59

References

[1] Salehi, Seyed Sadegh Mohseni, Deniz Erdogmus, and Ali Gholipour. "Tversky loss function for
image segmentation using 3D fully convolutional deep networks." International Workshop on Machine
Learning in Medical Imaging. Springer, Cham, 2017.

10 Featured Examples

10-60

Track a Face in Scene

Create System objects for reading and displaying video and for drawing a bounding box of the object.

videoReader = VideoReader('visionface.avi');
videoPlayer = vision.VideoPlayer('Position',[100,100,680,520]);

Read the first video frame, which contains the object, define the region.

objectFrame = readFrame(videoReader);
objectRegion = [264,122,93,93];

As an alternative, you can use the following commands to select the object region using a mouse. The
object must occupy the majority of the region:

figure; imshow(objectFrame);

objectRegion=round(getPosition(imrect))

Show initial frame with a red bounding box.

objectImage = insertShape(objectFrame,'rectangle',objectRegion,'Color','red');
figure;
imshow(objectImage);
title('Red box shows object region');

 Track a Face in Scene

10-61

Detect interest points in the object region.

points = detectMinEigenFeatures(im2gray(objectFrame),'ROI',objectRegion);

Display the detected points.

pointImage = insertMarker(objectFrame,points.Location,'+','Color','white');
figure;
imshow(pointImage);
title('Detected interest points');

10 Featured Examples

10-62

Create a tracker object.

tracker = vision.PointTracker('MaxBidirectionalError',1);

Initialize the tracker.

initialize(tracker,points.Location,objectFrame);

Read, track, display points, and results in each video frame.

while hasFrame(videoReader)
 frame = readFrame(videoReader);
 [points,validity] = tracker(frame);
 out = insertMarker(frame,points(validity, :),'+');
 videoPlayer(out);
end

 Track a Face in Scene

10-63

Release the video player.

release(videoPlayer);

10 Featured Examples

10-64

 Track a Face in Scene

10-65

Create 3-D Stereo Display

Load parameters for a calibrated stereo pair of cameras.

load('webcamsSceneReconstruction.mat')

Load a stereo pair of images.

I1 = imread('sceneReconstructionLeft.jpg');
I2 = imread('sceneReconstructionRight.jpg');

Rectify the stereo images.

[J1, J2] = rectifyStereoImages(I1, I2, stereoParams);

Create the anaglyph.

A = stereoAnaglyph(J1, J2);

Display the anaglyph. Use red-blue stereo glasses to see the stereo effect.

figure; imshow(A);

10 Featured Examples

10-66

Measure Distance from Stereo Camera to a Face

Load stereo parameters.

load('webcamsSceneReconstruction.mat');

Read in the stereo pair of images.

I1 = imread('sceneReconstructionLeft.jpg');
I2 = imread('sceneReconstructionRight.jpg');

Undistort the images.

I1 = undistortImage(I1,stereoParams.CameraParameters1);
I2 = undistortImage(I2,stereoParams.CameraParameters2);

Detect a face in both images.

faceDetector = vision.CascadeObjectDetector;
face1 = faceDetector(I1);
face2 = faceDetector(I2);

Find the center of the face.

center1 = face1(1:2) + face1(3:4)/2;
center2 = face2(1:2) + face2(3:4)/2;

Compute the distance from camera 1 to the face.

point3d = triangulate(center1, center2, stereoParams);
distanceInMeters = norm(point3d)/1000;

Display the detected face and distance.

distanceAsString = sprintf('%0.2f meters', distanceInMeters);
I1 = insertObjectAnnotation(I1,'rectangle',face1,distanceAsString,'FontSize',18);
I2 = insertObjectAnnotation(I2,'rectangle',face2, distanceAsString,'FontSize',18);
I1 = insertShape(I1,'filled-rectangle',face1);
I2 = insertShape(I2,'filled-rectangle',face2);

imshowpair(I1, I2, 'montage');

 Measure Distance from Stereo Camera to a Face

10-67

Reconstruct 3-D Scene from Disparity Map

Load the stereo parameters.

load('webcamsSceneReconstruction.mat');

Read in the stereo pair of images.

I1 = imread('sceneReconstructionLeft.jpg');
I2 = imread('sceneReconstructionRight.jpg');

Rectify the images.

[J1, J2, reprojectionMatrix] = rectifyStereoImages(I1,I2,stereoParams);

Display the images after rectification.

figure
imshow(cat(3,J1(:,:,1),J2(:,:,2:3)),'InitialMagnification',50);

Compute the disparity.

disparityMap = disparitySGM(im2gray(J1),im2gray(J2));
figure
imshow(disparityMap,[0,64],'InitialMagnification',50);

10 Featured Examples

10-68

Reconstruct the 3-D world coordinates of points corresponding to each pixel from the disparity map.

xyzPoints = reconstructScene(disparityMap,reprojectionMatrix);

Segment out a person located between 3.2 and 3.7 meters away from the camera.

Z = xyzPoints(:,:,3);
mask = repmat(Z > 3200 & Z < 3700,[1,1,3]);
J1(~mask) = 0;
imshow(J1,'InitialMagnification',50);

 Reconstruct 3-D Scene from Disparity Map

10-69

10 Featured Examples

10-70

Visualize Stereo Pair of Camera Extrinsic Parameters

Specify calibration images.

imageDir = fullfile(toolboxdir('vision'),'visiondata',...
 'calibration','circleGrid','stereo');
leftImages = imageDatastore(fullfile(imageDir,'left'));
rightImages = imageDatastore(fullfile(imageDir,'right'));
leftImageFileNames = leftImages.Files(2:2:10);
rightImageFileNames = rightImages.Files(2:2:10);

Define the circle grid pattern dimensions, and detect the pattern in the images.

patternDims = [4 11];
imagePoints = detectCircleGridPoints(leftImageFileNames,...
 rightImageFileNames,patternDims);

Specify the world coordinates for the circle grid keypoints. Center distance is in millimeters.

centerDistance = 36.5;
worldPoints = generateCircleGridPoints(patternDims,centerDistance);

Calibrate the stereo camera system. Both cameras have the same resolution.

I = readimage(leftImages,1);
imageSize = [size(I,1),size(I,2)];
cameraParams = estimateCameraParameters(imagePoints,worldPoints,...
 'ImageSize',imageSize);

Visualize pattern locations.

figure
showExtrinsics(cameraParams)

 Visualize Stereo Pair of Camera Extrinsic Parameters

10-71

Visualize camera locations.

figure
showExtrinsics(cameraParams,'patternCentric')

10 Featured Examples

10-72

 Visualize Stereo Pair of Camera Extrinsic Parameters

10-73

Remove Distortion from an Image Using Camera Parameters
Object

Use the camera calibration functions to remove distortion from an image. This example creates a
cameraParameters object manually, but in practice, you would use the
estimateCameraParameters or the Camera Calibrator app to derive the object.

Create a cameraParameters object manually.

k = [715.2699 0 565.6995; 0 711.5281 355.3466; 0 0 1];
radialDistortion = [-0.3361 0.0921];
cameraParams = cameraParameters("K",k,"RadialDistortion",radialDistortion)

cameraParams =
 cameraParameters with properties:

 Camera Intrinsics
 Intrinsics: [0×0 cameraIntrinsics]

 Camera Extrinsics
 PatternExtrinsics: [0×1 rigidtform3d]

 Accuracy of Estimation
 MeanReprojectionError: NaN
 ReprojectionErrors: [0×2 double]
 ReprojectedPoints: [0×2×0 double]

 Calibration Settings
 NumPatterns: 0
 DetectedKeypoints: [0×2 double]
 WorldPoints: [0×2 double]
 WorldUnits: 'mm'
 EstimateSkew: 0
 NumRadialDistortionCoefficients: 2
 EstimateTangentialDistortion: 0

Remove distortion from the images.

I = imread(fullfile(matlabroot,"toolbox","vision","visiondata","calibration","mono","image01.jpg"));
J = undistortImage(I,cameraParams);

Display the original and the undistorted images.

montage({I,J})
title("Original Image (left) vs. Corrected Image (right)")

10 Featured Examples

10-74

 Remove Distortion from an Image Using Camera Parameters Object

10-75

Structure from Motion and Visual SLAM

• “Choose SLAM Workflow Based on Sensor Data” on page 11-2
• “Implement Visual SLAM in MATLAB” on page 11-8

11

Choose SLAM Workflow Based on Sensor Data
You can use Computer Vision Toolbox, Navigation Toolbox™, and Lidar Toolbox for Simultaneous
Localization and Mapping (SLAM). SLAM is widely used in applications including automated driving,
robotics, and unmanned aerial vehicles (UAV). To learn more about SLAM, see What is SLAM?.

Choose SLAM Workflow
To choose the right SLAM workflow for your application, consider what type of sensor data you are
collecting. MATLAB support SLAM workflows that use images from a monocular or stereo camera
system, or point cloud data including 2-D and 3-D lidar data.

This table summarizes the key features available for SLAM.

Sensor Data Features Topics Examples Toolbox Code
Generation

Monocular
images

• Feature
detection,
extraction,
and
matching

• Triangulatio
n and bundle
adjustment

• Data
management
for key
frames and
map points

• Loop closure
detection
using bag of
features

• Similarity
pose graph
optimization

• “Implement
Visual SLAM
in MATLAB”
on page 11-
8

• “Visual
Simultaneou
s
Localization
and
Mapping
(vSLAM)”

• “Monocular
Visual
Simultaneou
s
Localization
and
Mapping” on
page 1-95

• “Develop
Visual SLAM
Algorithm
Using
Unreal
Engine
Simulation”
on page 1-48

• Computer
Vision
Toolbox

• Computer
Vision
Toolbox C/C
++ Code
Generation

• Computer
Vision
Toolbox GPU
Code
Generation

11 Structure from Motion and Visual SLAM

11-2

https://www.mathworks.com/discovery/slam.html

Sensor Data Features Topics Examples Toolbox Code
Generation

Stereo images • Stereo
image
rectification

• Feature
detection,
extraction,
and
matching

• Reconstructi
on from
disparity,
triangulation
, and bundle
adjustment

• Data
management
for key
frames and
map points

• Loop closure
detection
using bag of
features

• Pose graph
optimization

• “Visual
Simultaneou
s
Localization
and
Mapping
(vSLAM)”

• “Stereo
Visual
Simultaneou
s
Localization
and
Mapping” on
page 1-122

• “Develop
Visual SLAM
Algorithm
Using
Unreal
Engine
Simulation”
on page 1-48

• Computer
Vision
Toolbox

• Computer
Vision
Toolbox C/C
++ Code
Generation

• Computer
Vision
Toolbox GPU
Code
Generation

 Choose SLAM Workflow Based on Sensor Data

11-3

Sensor Data Features Topics Examples Toolbox Code
Generation

RGB-D images • Feature
detection,
extraction,
and
matching

• Reconstructi
on from
depth
images,
triangulation
, and bundle
adjustment

• Data
management
for key
frames and
map points

• Loop closure
detection
using bag of
features

• Pose graph
optimization

• “Visual
Simultaneou
s
Localization
and
Mapping
(vSLAM)”

• “Visual
SLAM with
an RGB-D
Camera” on
page 1-26

• Computer
Vision
Toolbox

• Computer
Vision
Toolbox C/C
++ Code
Generation

• Computer
Vision
Toolbox GPU
Code
Generation

11 Structure from Motion and Visual SLAM

11-4

Sensor Data Features Topics Examples Toolbox Code
Generation

2-D lidar scans • Occupancy
map building

• Vehicle pose
estimation

• Pose graph
optimization

• SLAM
algorithm
tuning

• SLAM Map
Builder app

• “Mapping”
(Navigation
Toolbox)

• “SLAM”
(Navigation
Toolbox)

• “Navigation
and
Mapping”
(Lidar
Toolbox)

• “Build Map
from 2-D
Lidar Scans
Using
SLAM”
(Lidar
Toolbox)

• “Implement
Simultaneou
s
Localization
And
Mapping
(SLAM) with
Lidar Scans”
(Navigation
Toolbox)

• “Implement
Online
Simultaneou
s
Localization
And
Mapping
(SLAM) with
Lidar Scans”
(Navigation
Toolbox)

• Navigation
Toolbox

• Lidar
Toolbox

• Navigation
Toolbox C/C
++ Code
Generation

• Navigation
Toolbox GPU
Code
Generation

• Lidar
Toolbox C/C
++ Code
Generation

 Choose SLAM Workflow Based on Sensor Data

11-5

Sensor Data Features Topics Examples Toolbox Code
Generation

Point cloud data • Point cloud
processing

• Registration
• Data

management
for map
building

• Loop closure
detection
with global
features

• Pose graph
optimization

• Localization
in a known
map

• “Register
Point Clouds
and Create
Maps”

• “Implement
Point Cloud
SLAM in
MATLAB” on
page 12-5

• “Build a Map
from Lidar
Data Using
SLAM” on
page 5-55

• “Design
Lidar SLAM
Algorithm
Using
Unreal
Engine
Simulation
Environment
” on page 5-
2

• “Build
Occupancy
Map from 3-
D Lidar Data
using
SLAM”
(Automated
Driving
Toolbox)

• Computer
Vision
Toolbox

• Computer
Vision
Toolbox C/C
++ Code
Generation

• Computer
Vision
Toolbox GPU
Code
Generation

11 Structure from Motion and Visual SLAM

11-6

Sensor Data Features Topics Examples Toolbox Code
Generation

3-D lidar scans Feature-based:

• Registration
• Loop closure

detection
• Localization

in a known
map

• “Navigation
and
Mapping”
(Lidar
Toolbox)

• “Aerial Lidar
SLAM Using
FPFH
Descriptors”
(Lidar
Toolbox)

• “Build Map
and Localize
Using
Segment
Matching”
(Lidar
Toolbox)

• “Feature-
Based Map
Building
from Lidar
Data” (Lidar
Toolbox)

• “Build a Map
with Lidar
Odometry
and
Mapping
(LOAM)
Using
Unreal
Engine
Simulation”
(Lidar
Toolbox)

• Lidar
Toolbox

• Lidar
Toolbox C/C
++ Code
Generation

 Choose SLAM Workflow Based on Sensor Data

11-7

Implement Visual SLAM in MATLAB
Visual simultaneous localization and mapping (vSLAM) refers to the process of calculating the
position and orientation of a camera, with respect to its surroundings, while simultaneously mapping
the environment. The process uses only visual inputs from the camera. Applications for visual SLAM
include augmented reality, robotics, and autonomous driving. For a general description on why SLAM
matters and how it works for different applications, see What is SLAM?

Visual SLAM algorithms are broadly classified into two categories, depending on how they estimate
the camera motion. The indirect, feature-based method uses feature points of images to minimize the
reprojection error. The direct method uses the overall brightness of images to minimize the
photometric error. The Computer Vision Toolbox algorithms provide functions for performing feature-
based visual SLAM. The workflow consists of map initialization, tracking, local mapping, loop
detection, and drift correction.

Note The workflow described in this overview applies to images taken by a pinhole camera. To use
the visual SLAM workflow with images taken by a fisheye camera, convert the fisheye camera into a
virtual pinhole camera using the undistortFisheyeImage function.

Terms Used in Visual SLAM
Visual SLAM literature uses these common terms:

• Key Frames — A subset of video frames that contain cues for localization and tracking. Two
consecutive key frames usually indicate a large visual change caused by a camera movement.

• Map Points — A list of 3-D world points that represent the map of the environment reconstructed
from the key frames.

• Covisibility Graph — A graph with key frames as nodes. Two key frames are connected by an edge
if they share common map points. The weight of an edge is the number of shared map points.

• Recognition Database — A database that stores the visual word-to-image mapping based on the
input bag of features. Determine whether a place has been visited in the past by searching the
database for an image that is visually similar to the query image.

Typical Feature-based Visual SLAM Workflow
To construct a feature-based visual SLAM pipeline on a sequence of images, follow these steps:

1 Initialize Map — Initialize the map of 3-D points from two image frames. Compute the 3-D points
and relative camera pose by using triangulation based on 2-D feature correspondences.

2 Track Features — For each new frame, estimate the camera pose by matching features in the
current frame to features in the last key frame.

3 Create Local Map — If you identify the current frame as a key frame, create a new 3-D map of
points. Use bundle adjustment to refine the camera pose and 3-D points.

4 Detect Loops — Detect loops for each key frame by comparing the current frame to all previous
key frames using the bag-of-features approach.

5 Correct Drift — Optimize the pose graph to correct the drift in the camera poses of all the key
frames.

11 Structure from Motion and Visual SLAM

11-8

https://www.mathworks.com/discovery/slam.html

The figure illustrates a typical feature-based visual SLAM workflow. It also shows the points at which
data is stored or retrieved from objects that manage the data.

Key Frame and Map Data Management
Use the view set, point set, and transformation objects to manage key frames and map data.

• Use the imageviewset object to manage data associated with the odometry and mapping
process. The object contains data as a set of views and pairwise connections between views. The
object can also be used to build and update a pose graph.

 Implement Visual SLAM in MATLAB

11-9

• Each view consists of the absolute camera pose and the feature points extracted from the
image. Each view, with its unique identifier (view ID), within the view set forms a node of the
pose graph.

• Each connection stores information that links one view to another view. The connection
includes the indices of matched features between the views, the relative transformation
between the connected views, and the uncertainty in computing the measurement. Each
connection forms an edge in the pose graph.

• Use a rigidtform3d object input with imageviewset to store the absolute camera poses
and relative camera poses of odometry edges. Use a simtform3d object input with
imageviewset to store the relative camera poses of loop-closure edges.

• Use the worldpointset object to store correspondences between 3-D map points and 2-D image
points across camera views.

• The WorldPoints property of worldpointset stores the 3-D locations of map points.
• The Correspondence property of worldpointset stores the view IDs of the key frames that

observe the map points.

Map Initialization
To initialize mapping, you must match features between two images, estimate the relative camera
pose, and triangulate initial 3-D world points. This workflow commonly uses the Speeded-Up Robust
Features (SURF) and Oriented FAST and Rotated BRIEF (ORB) features point features. The map
initialization workflow consists of a detecting, extracting, and matching features, and then finding a
relative camera pose estimate, finding the 3-D locations of matched features, and refining the initial
map. Finally, store the resulting key frames and mapped points in an image view set and a world
point set, respectively.

Workflow Function Description
1. Detect detectSURFFeatures Detect SURF features and

return a SURFPoints object.
detectORBFeatures Detect ORB features and return

an ORBPoints object.
detectSIFTFeatures Detect SIFT features and return

a SIFTPoints object.
2. Extract extractFeatures Extract feature vectors and

their corresponding locations in
a binary or intensity image.

3. Match matchFeatures Obtain the indices of the
matching features between two
feature sets.

4. Estimate relative camera
pose from matched feature
points

estgeotform2d Compute a homography from
matching point pairs.

estimateFundamentalMatri
x

Estimate the fundamental
matrix from matching point
pairs.

11 Structure from Motion and Visual SLAM

11-10

Workflow Function Description
estrelpose Compute the relative camera

poses, represented as a
rigidtform3d object, based on
a homography or a fundamental
matrix. The location can only be
computed up to scale, so the
distance between two cameras
is set to 1.

5. Find 3-D locations of the
matched feature points

triangulate Find the 3-D locations of
matching pairs of undistorted
image points.

6. Refine initial map bundleAdjustment Refine 3-D map points and
camera poses that minimize
reprojection errors.

7. Manage data for initial map
and key frames

addView Add the two views formed by
the feature points and their
absolute poses to the
imageviewset object.

addConnection Add the odometry edge defined
by the connection between
successive key views, formed by
the relative pose transformation
between the cameras, to the
imageviewset object.

addWorldPoints Add the initial map points to the
worldpointset object.

addCorrespondences Add the 3-D to 2-D projection
correspondences between the
key frames and the map points
to the worldpointset object.

Tracking
The tracking workflow uses every frame to determine when to insert a new key frame. Use these
steps and functions for the tracking workflow.

Workflow Function Description
Match extracted features matchFeatures Match extracted features from

the current frame with features
in the last key frame that have
known 3-D locations.

Estimate camera pose estworldpose Estimate the current camera
pose.

Project map points world2img Project the map points observed
by the last key frame into the
current frame.

 Implement Visual SLAM in MATLAB

11-11

Workflow Function Description
Search for feature
correspondences

matchFeaturesInRadius Search for feature
correspondences within spatial
constraints.

Refine camera pose bundleAdjustmentMotion Refine the camera pose with 3-D
to 2-D correspondence by
performing a motion-only
bundle adjustment.

Identify local map points findWorldPointsInView

findWorldPointsInTracks

Identify points in the view and
points that correspond to point
tracks.

Search for more feature
correspondences

matchFeaturesInRadius Search for more feature
correspondences in the current
frame, which contains projected
local map points.

Refine camera pose bundleAdjustmentMotion Refine the camera pose with 3-D
to 2-D correspondence by
performing a motion-only
bundle adjustment.

Store new key frame addView

addConnection

If you determine that the
current frame is a new key
frame, add it and its
connections to covisible key
frames to the imageviewset.

Feature matching is critical in the tracking workflow. Use the matchFeaturesInRadius function to
return more putative matches when an estimation of the positions of matched feature points is
available. The two match feature functions used in the workflow are:

• matchFeatures — Returns the indices of the matching features in the two input feature sets.
• matchFeaturesInRadius — Returns the indices of the matching features, which satisfy spatial

constraints, in the two input feature sets.

To get a greater number of matched feature pairs, increase the values for the MatchThreshhold
and MaxRatio name-value arguments of the matchFeatures and matchFeaturesInRadius
functions. The outliers pairs can be discarded after performing bundle adjustment in the local
mapping step.

Local Mapping
Perform local mapping for every key frame. Follow these steps to create new map points.

Workflow Function Description
Connect key frames connectedViews Find the covisible key frames of

the current key frame.

11 Structure from Motion and Visual SLAM

11-12

Workflow Function Description
Search for matches in
connected key frames

matchFeatures For each unmatched feature
point in the current key frame,
use the matchFeatures
function to search for a match
with other unmatched points in
the covisible key frames.

Compute location for new
matches

triangulate Compute the 3-D locations of
the matched feature points.

Store new map points addWorldPoints Add the new map points to the
worldpointset object.

Store 3-D to 2-D
correspondences

addCorrespondences Add new 3-D to 2-D
correspondences to the
worldpointset object.

Update odometry connection updateConnection Update the connection between
the current key frame and its
covisible frames with more
feature matches.

Store representative view of 3-D
points

updateRepresentativeView Update representative view ID
and corresponding feature
index.

Store distance limits and
viewing direction of 3-D points

updateLimitsAndDirection Update distance limits and
mean viewing direction.

Refine pose bundleAdjustment Refine the pose of the current
key frame, the poses of covisible
key frames, and all the map
points observed in these key
frames. For improved
performance, only include
strongly connected, covisible
key frames in the refinement
process.

Use the minNumMatches
argument of the
connectedViews function to
select strongly-connected
covisible key frames.

Remove outliers removeWorldPoints Remove outlier map points with
large reprojection errors from
the worldpointset object. The
associated 3-D to 2-D
correspondences are removed
automatically.

This table compares the camera poses, map points, and number of cameras for each of the bundle
adjustment functions used in 3-D reconstruction.

 Implement Visual SLAM in MATLAB

11-13

Function Camera Poses Map Points Number of Cameras
bundleAdjustment Optimized Optimized Multiple
bundleAdjustmentMo
tion

Optimized Fixed One

bundleAdjustmentSt
ructure

Fixed Optimized Multiple

Loop Detection
Due to an accumulation of errors, using visual odometry alone can lead to drift. These errors can
result in severe inaccuracies over long distances. Using graph-based SLAM helps to correct the drift.
To do this, detect loop closures by finding a previously visited location. A common approach is to use
this bag-of-features workflow:

Workflow Function Description
Construct bag of visual words bagOfFeatures Construct a bag of visual words

for place recognition.
Create recognition database indexImages Create a recognition database,

invertedImageIndex, to map
visual words to images.

Identify loop closure candidates retrieveImages Search for images that are
similar to the current key frame.
Identify consecutive images as
loop closure candidates if they
are similar to the current frame.
Otherwise, add the current key
frame to the recognition
database.

Compute relative camera pose
for loop closure candidates

estgeotform3d Compute the relative camera
pose between the candidate key
frame and the current key
frame, for each loop closure
candidate

Close loop addConnection Close the loop by adding a loop
closure edge with the relative
camera pose to the
imageviewset object.

Drift Correction
The imageviewset object internally updates the pose graph as views and connections are added. To
minimize drift, perform pose graph optimization by using the optimizePoses function, once
sufficient loop closures are added. The optimizePoses function returns an imageviewset object
with the optimized absolute pose transformations for each view.

You can use the createPoseGraph function to return the pose graph as a MATLAB digraph object.
You can use graph algorithms in MATLAB to inspect, view, or modify the pose graph. Use the

11 Structure from Motion and Visual SLAM

11-14

optimizePoseGraph function from Navigation Toolbox to optimize the modified pose graph, and
then use the updateView function to update the camera poses in the view set.

Visualization
To develop the visual SLAM system, you can use the following visualization functions.

Function Description
imshow Display an image
showMatchedFeatures Display matched feature points in two images
plot Plot image view set views and connections
plotCamera Plot a camera in 3-D coordinates
pcshow Plot 3-D point cloud
pcplayer Visualize streaming 3-D point cloud data

References
[1] Hartley, Richard, and Andrew Zisserman. Multiple View Geometry in Computer Vision. 2nd ed.

Cambridge: Cambridge University Press, 2003.

[2] Fraundorfer, Friedrich, and Davide Scaramuzza. “Visual Odometry: Part II: Matching, Robustness,
Optimization, and Applications.” IEEE Robotics & Automation Magazine 19, no. 2 (June
2012): 78–90. https://doi.org/10.1109/MRA.2012.2182810.

[3] Mur-Artal, Raul, J. M. M. Montiel, and Juan D. Tardos. “ORB-SLAM: A Versatile and Accurate
Monocular SLAM System.” IEEE Transactions on Robotics 31, no. 5 (October 2015): 1147–63.
https://doi.org/10.1109/TRO.2015.2463671.

[4] Kümmerle, Rainer, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram Burgard. "G2o: A
General Framework for Graph Optimization." In 2011 IEEE International Conference on
Robotics and Automation (ICRA 2011), Shanghai, 9–13 May 2011, 3607–13. New York:
Institute of Electrical and Electronics Engineers. https://doi.org//10.1109/
ICRA.2011.5979949.

See Also
Functions
detectSURFFeatures | detectSIFTFeatures | detectORBFeatures | extractFeatures |
matchFeatures | matchFeaturesInRadius | estgeotform2d | estgeotform3d |
estimateFundamentalMatrix | estrelpose | estworldpose | world2img | triangulate |
bundleAdjustment | bundleAdjustmentMotion | bundleAdjustmentStructure |
createPoseGraph | optimizePoses

Objects
imageviewset | worldpointset | bagOfFeatures | invertedImageIndex | affinetform3d |
rigidtform3d

 Implement Visual SLAM in MATLAB

11-15

Related Examples
• What is SLAM?
• “Structure from Motion Overview” on page 16-67
• “Visual Localization in a Parking Lot” on page 1-61
• “Stereo Visual SLAM for UAV Navigation in 3D Simulation” on page 1-67
• “Monocular Visual Simultaneous Localization and Mapping” on page 1-95
• “Stereo Visual Simultaneous Localization and Mapping” on page 1-122
• “Develop Visual SLAM Algorithm Using Unreal Engine Simulation” (Automated Driving Toolbox)

11 Structure from Motion and Visual SLAM

11-16

https://www.mathworks.com/discovery/slam.html

Point Cloud Processing

• “Choose a Point Cloud Viewer” on page 12-2
• “Getting Started with Point Clouds Using Deep Learning” on page 12-3
• “Implement Point Cloud SLAM in MATLAB” on page 12-5
• “The PLY Format” on page 12-13

12

Choose a Point Cloud Viewer
Computer Vision Toolbox offers various point cloud viewers. This table compares the visualization
viewers

This table provides a summary of point cloud viewers and the features unique to each.

Viewer Features Application
pcviewer Visualize and inspect a point

cloud
• View and inspect large point

clouds with the ability to
interact with the point cloud,
and set camera and viewer
properties.

pcshow Build custom point cloud
visualizations

• Draw on the point cloud plot
using MATLAB graphics
plots. For more details,
see“Types of MATLAB Plots”.

• Build a custom application
with point cloud
visualization.

pcshowpair Compare two point clouds Visualize the difference between
two point clouds

pcplayer Visualize 3-D point cloud
streams from devices such as
Microsoft® Kinect®

Stream point clouds from a
device.

See Also
Objects
pointCloud | pcplayer | planeModel | pcviewer

Functions
pcshow | showShape | pcshowpair | plot3 | pcwrite | pcread | pcmerge

More About
• “Coordinate Systems”

12 Point Cloud Processing

12-2

Getting Started with Point Clouds Using Deep Learning
Deep learning can automatically process point clouds for a wide range of 3-D imaging applications.
Point clouds typically come from 3-D scanners, such as a lidar or Kinect devices. They have
applications in robot navigation and perception, depth estimation, stereo vision, surveillance, scene
classification, and in advanced driver assistance systems (ADAS).

In general, the first steps for using point cloud data in a deep learning workflow are:

1 Import point cloud data. Use a datastore to hold the large amount of data.
2 Optionally augment the data.
3 Encode the point cloud to an image-like format consistent with MATLAB-based deep learning

workflows.

You can apply the same deep learning approaches to classification, object detection, and semantic
segmentation tasks using point cloud data as you would using regular gridded image data. However,
you must first encode the unordered, irregularly gridded structure of point cloud and lidar data into a
regular gridded form. For certain tasks, such as semantic segmentation, some postprocessing on the
output of image-based networks is required in order to restore a point cloud structure.

Import Point Cloud Data
In order to work with point cloud data in deep learning workflows, first, read the raw data. Consider
using a datastore for working with and representing collections of data that are too large to fit in
memory at one time. Because deep learning often requires large amounts of data, datastores are an
important part of the deep learning workflow in MATLAB. For more details about datastores, see
“Datastores for Deep Learning” (Deep Learning Toolbox).

The “Import Point Cloud Data For Deep Learning” on page 5-26 example imports a large point cloud
data set, and then configures and loads a datastore.

Augment Data
The accuracy and success of a deep learning model depends on large annotated datasets. Using
augmentation to produce larger datasets helps reduce overfitting. Overfitting occurs when a

 Getting Started with Point Clouds Using Deep Learning

12-3

classification system mistakes noise in the data for a signal. By adding additional noise, augmentation
helps the model balance the data points and minimize the errors. Augmentation can also add
robustness to data transformations which may not be well represented in the original training data,
(for example rotation, reflection, translations). And by reducing overfitting, augmentation can often
lead to better results in the inference stage, which makes predictions based on what the deep
learning neural network has been trained to detect.

The “Augment Point Cloud Data For Deep Learning” on page 5-21 example setups a basic randomized
data augmentation pipeline that works with point cloud data.

Encode Point Cloud Data to Image-like Format
To use point clouds for training with MATLAB-based deep learning workflows, the data must be
encoded into a dense, image-like format. Densification or voxelization is the process of transforming
an irregular, ungridded form of point cloud data to a dense, image-like form.

The “Encode Point Cloud Data For Deep Learning” on page 5-30 example transforms point cloud data
into a dense, gridded structure.

Train a Deep Learning Classification Network with Encoded Point
Cloud Data
Once you have encoded point cloud data into a dense form, you can use the data for an image-based
classification, object detection, or semantic segmentation task using standard deep learning
approaches.

The “Train Classification Network to Classify Object in 3-D Point Cloud” on page 3-434 example
preprocesses point cloud data into a voxelized encoding and then uses the image-like data with a
simple 3-D convolutional neural network to perform object classification.

See Also
pcbin | pcread | bboxwarp | bboxcrop | bboxresize

Related Examples
• “Lidar 3-D Object Detection Using PointPillars Deep Learning” (Lidar Toolbox)
• “Point Cloud Classification Using PointNet Deep Learning” (Deep Learning Toolbox)
• “Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network” (Deep

Learning Toolbox)

More About
• Segmentation, Detection, and Labeling (Lidar Toolbox)

12 Point Cloud Processing

12-4

Implement Point Cloud SLAM in MATLAB
A point cloud is a set of points in 3-D space. Point clouds are typically obtained from 3-D scanners,
such as a lidar or Kinect device. They have applications in robot navigation and perception, depth
estimation, stereo vision, visual registration, and advanced driver assistance systems (ADAS).

Point cloud registration is the process of aligning two or more 3-D point clouds of the same scene into
a common coordinate system. Mapping is the process of building a map of the environment around a
robot or a sensor. You can use registration and mapping to reconstruct a 3-D scene or build a map of
a roadway for localization. While registration commonly precedes mapping, there are other
applications for registration, that may not require mapping, such as deformable motion tracking.
Computer Vision Toolbox algorithms provide functions for performing point cloud registration and
mapping. The workflow consists of preprocessing, registration, drift correction, and alignment of
point clouds.

Simultaneous localization and mapping (SLAM) refers to the process of calculating the position and
orientation of a vehicle, with respect to its surroundings, while simultaneously mapping the
environment. The process uses only point cloud inputs from a sensor. Applications for point cloud
SLAM include robotics and autonomous driving. For a general description on why SLAM matters and
how it works for different applications, see What is SLAM?

Mapping and Localization Workflow
Follow these steps to perform point cloud registration and mapping on a sequence of point clouds.
Then you can localize the vehicle in the prebuilt map.

1 Preprocess Point Clouds — To prepare the point clouds for registration, downsample them and
remove unwanted features and noise.

2 Register Point Clouds — Register each point cloud against the one preceding it. These
registrations are used in odometry, which is the process of accumulating a registration estimate
over successive frames. Using odometry alone can lead to drift between the measured and
ground truth poses.

3 Detect Loops — Perform loop closure detection to minimize drift. Loop closure detection is the
process of identifying the return of the sensor to a previously visited location, which forms a loop
in the trajectory of the sensor.

4 Correct Drift — Use the detected loops to minimize drift through pose graph optimization, which
consists of incrementally building a pose graph by adding nodes and edges, and then optimizing
the pose graph once you have found sufficient loops. Pose graph optimization results in a set of
optimized absolute poses.

5 Assemble Map — Assemble a point cloud map by aligning the registered point clouds using their
optimized absolute poses. You can use such a prebuilt point cloud map for Localization, which is
the process of locating the vehicle within the map.

6 Localize — Find the pose of the vehicle based on the assembled map.

 Implement Point Cloud SLAM in MATLAB

12-5

https://www.mathworks.com/discovery/slam.html

12 Point Cloud Processing

12-6

Manage Data for Mapping and Localization
Use these objects to manage data associated with the point cloud registration and mapping workflow:

• pointCloud object — The point cloud object stores a set of points located in 3-D space. It uses
efficient indexing strategies to accomplish nearest neighbor searches, which are leveraged by
point cloud preprocessing and registration functions.

• rigidtform3d object — The rigid 3-D object stores a 3-D rigid geometric transformation. In this
workflow, it represents the relative and absolute poses.

• pcviewset object — The point cloud view set object manages the data associated with the
odometry and mapping process. It organizes data as a set of views and pairwise connections
between views. It also builds and updates a pose graph.

• Each view consists of a point cloud and the associated absolute pose transformation. Each view
has a unique identifier within the view set and forms a node of the pose graph.

• Each connection stores information that links one view to another view. This includes the
relative transformation between the connected views and the uncertainty involved in
computing the measurement. Each connection forms an edge in the pose graph.

• scanContextLoopDetector object — The loop closure detection object stores scan context
descriptors with a corresponding view ID. The ID associates a detected loop closure to a view in
pcviewset.

• pcmapndt object — The NDT map object stores a compressed, memory-efficient map
representation for localization. The object converts the point cloud map into a set of voxels (3-D
boxes), each voxel represented by a 3-D normal distribution.

Preprocess Point Clouds
Preprocessing includes removing unwanted features and noise from the point clouds, and segmenting
or downsampling them. Preprocessing can include these functions:

1 pcdownsample — Downsample the point cloud.
2 pcsegdist or segmentLidarData — Segment the point cloud data into clusters, then use the

select function to select the desired points.
3 pcfitplane, segmentGroundFromLidarData, or segmentGroundSMRF — Segment the

ground plane, then use the select function to select the desired points.
4 pcdenoise — Remove unwanted noise from the point cloud.

Register Point Clouds
You can use the pcregisterndt, pcregistericp, pcregistercorr, pcregisterloam, or
pcregistercpd function to register a moving point cloud to a fixed point cloud. The registration
algorithms used by these functions are based on the normal-distributions transform (NDT) algorithm,
the iterative closest point (ICP) algorithm, a phase correlation algorithm, the lidar odometry and
mapping (LOAM) algorithm, and the coherent point drift (CPD) algorithm, respectively. For more
information on these algorithms, see References on page 12-11.

When registering a point cloud, choose the type of transformation that represents how objects in the
scene change between the fixed and moving point clouds.

 Implement Point Cloud SLAM in MATLAB

12-7

Transformation Description
Rigid The rigid transformation preserves the shape and size of objects in

the scene. Objects in the scene can undergo translations, rotations, or
both. The same transformation applies to all points.

Affine The affine transformation allows the objects to shear and change
scale in addition to undergoing translations and rotations.

Nonrigid The nonrigid transformation allows the shape of objects in the scene
to change. Points undergo distinct transformations. A displacement
field represents the transformation.

This table compares the point cloud registration function options, their transformation types, and
their performance characteristics. Use this table to help you select the appropriate registration
function for your use case.

Registration Method
(function)

Transformation Type Description Performance
Characteristics

pcregisterndt Rigid • Local registration
method that relies
on an initial
transform estimate

• Robust to outliers
• Better with point

clouds of differing
resolutions and
densities

Provide an initial
estimate to enable the
algorithm to converge
faster.

pcregistericp Rigid • Local registration
method that relies
on an initial
transform estimate

pcregistercorr Rigid • Registration method
that relies on an
occupancy grid,
assigning probability
values to the grid
based on the Z-
coordinate values of
points within each
grid cell

• Best suited for
ground vehicle
navigation

Decrease the size of the
occupancy grids to
decrease the
computational
requirements of the
function.

12 Point Cloud Processing

12-8

Registration Method
(function)

Transformation Type Description Performance
Characteristics

pcregisterloam Rigid • Feature-based
registration

• Supports organized
point clouds
collected with
spinning lidar
sensors

Provides increased
control between the
processing speed versus
registration accuracy

Use the
detectLOAMFeatures
function to detect
feature points prior to
using
pcregisterloam.

pcregisterfgr Rigid • FPFH feature-based
global registration
method

• Does not rely on
initial transform
estimate

• Faster registration
• Provides accurate

results with noisy
and partially
overlapping
surfaces.

pcregistercpd Rigid, affine, and
nonrigid

• Global method that
does not rely on an
initial transformation
estimate

Slowest registration
method. Not
recommended for map
building.

Registering the current (moving) point cloud against the previous (fixed) point cloud returns a
rigidtform3d transformation that represents the estimated relative pose of the moving point cloud
in the frame of the fixed point cloud. Composing this relative pose transformation with all previously
accumulated relative pose transformations gives an estimate of the absolute pose transformation.

Add the view formed by the moving point cloud and its absolute pose transformation to the view set.
You can add the view to the pcviewset object using the addView function.

Add the odometry edge, an edge defined by the connection between successive views, formed by the
relative pose transformation between the fixed and moving point clouds to the pcviewset object
using the addConnection function.

Tips for Registration

• Local registration methods, such as those that use NDT or ICP (pcregisterndt or
pcregistericp, respectively), require initial estimates for better performance. To obtain an
initial estimate, use another sensor such as an inertial measurement unit (IMU) or other forms of
odometry.

• For increased accuracy in registration results, increase the value for the 'MaxIterations'
argument or decrease the value for the 'Tolerance' argument. Changing these values in this
way consequently slows registration speed.

• Consider downsampling point clouds using pcdownsample, before using pcregisterndt,
pcregistericp, or pcregistercpd, to improve the efficiency and accuracy of registration.

• Denoising using pcdenoise before registration can improve registration accuracy, but it can slow
down the execution time of the map building workflow.

 Implement Point Cloud SLAM in MATLAB

12-9

Detect Loops
Using odometry alone leads to drift due to accumulation of errors. These errors can result in severe
inaccuracies over long distances. Using graph-based simultaneous localization and mapping (SLAM)
corrects the drift. To do this, detect loop closures by finding a location visited in a previous point
cloud using descriptor matching. Use loop closures to correct for accumulated drift. Follow these
steps to detect loop closures:

1 Use the scanContextDescriptor function to extract scan context descriptors, which capture
the distinctiveness of a point cloud.

2 Add the scan context descriptors to the scanContextLoopDetector using addDescriptor.
3 Use the detectLoop function to find potential loop closures.
4 Register the point clouds to determine the relative pose transformation between the views and

the root mean square error (RMSE) of the Euclidean distance between the aligned point clouds.
Use the RMSE to filter invalid loop closures. The relative pose transformation represents a
connection between the two views. An edge formed by a connection between nonsuccessive
views is called a loop closure edge. You can add the connection to the pcviewset object using
the addConnection function.

For an alternative approach to loop closure detection based on segment matching, refer to the
findPose function.

Correct Drift
The pcviewset object internally updates the pose graph as views and connections are added. To
minimize drift, perform pose graph optimization by using the optimizePoses function, once
sufficient loop closures are detected. The optimizePoses function returns a pcviewset object with
the optimized absolute pose transformations for each view.

You can use the createPoseGraph function to return the pose graph as a MATLAB digraph object.
You can use graph algorithms in MATLAB to inspect, view, or modify the pose graph. Use the
optimizePoseGraph function to optimize the modified pose graph, and then use the updateView
function to update the poses in the view set.

Assemble Map
Use the pcalign function to build a point cloud map using the point clouds from the view set and
their optimized absolute pose transformations. This point cloud map can now be used for online
localization using the NDT localization algorithm.

Localize Vehicle in Map
Convert the prebuilt point cloud map to the NDT map format using the pcmapndt object. The
pcmapndt object stores the map in a compressed voxel representation that can be saved to disk and
used for online localization. Use the findPose function to localize in the map.

Alternate Workflows
Alternative workflows for map building and localization are available in Computer Vision Toolbox,
Navigation Toolbox, and Lidar Toolbox.

12 Point Cloud Processing

12-10

• Visual SLAM using Computer Vision Toolbox features — Calculate the position and orientation of a
camera with respect to its surroundings, while simultaneously mapping the environment. For
more details, see “Implement Visual SLAM in MATLAB” on page 11-8.

• Build an occupancy map using Navigation Toolbox features — Build an occupancy map from point
clouds. For details, see “Perform SLAM Using 3-D Lidar Point Clouds” (Navigation Toolbox).

• Segment matching using Lidar Toolbox features — Build a map representation of segments and
features using the pcmapsegmatch object. Use the findPose function for loop closure detection
and localization. This approach is robust to dynamic obstacles and is recommended for large scale
environments. For an example of this approach, see the “Build Map and Localize Using Segment
Matching” (Lidar Toolbox) example. The table highlights the similarities and differences between
the pcmapndt and pcmapsegmatch map representations.

Workflow pcmapndt pcmapsegmatch
Algorithm Normal distributions

transform (NDT)
SegMatch — segment
matching approach

Mapping Build the map first —
Incrementally build the map
using pcviewset. Then, use
pcalign to assemble the map
and convert the prebuilt map
to an NDT map
representation.

Build the map incrementally
using pcmapsegmatch — Add
views to pcviewset (using
addView) and to
pcmapsegmatch (using
addView) for each point cloud
scan. Detect loop closures
using findPose and correct
for accumulated drift with
optimizePoses.

Localization Similarity Select a submap for localization, and then find the pose for
localization using one set of the following options:

• The selectSubmap and findPose functions of the
pcmapndt object.

• The selectSubmap and findPose functions of the
pcmapsegmatch object.

Localization Difference Relies on a pose estimate. Does not rely on a pose
estimate.

Visualization Visualize the map or selected submap using the show
function of the pcmapndt object or the show function of the
pcmapsegmatch object.

References
[1] Myronenko, Andriy, and Xubo Song. “Point Set Registration: Coherent Point Drift.” IEEE

Transactions on Pattern Analysis and Machine Intelligence 32, no. 12 (December 2010):
2262–75. https://doi.org/10.1109/TPAMI.2010.46

[2] Chen, Yang, and Gérard Medioni. “Object Modelling by Registration of Multiple Range Images.”
Image and Vision Computing 10, no. 3 (April 1992): 145–55. https://doi.org/
10.1016/0262-8856(92)90066-C.

 Implement Point Cloud SLAM in MATLAB

12-11

https://doi.org/10.1109/TPAMI.2010.46

[3] Besl, P.J., and Neil D. McKay. “A Method for Registration of 3-D Shapes.” IEEE Transactions on
Pattern Analysis and Machine Intelligence 14, no. 2 (February 1992): 239–56. https://doi.org/
10.1109/34.121791.

[4] Biber, P., and W. Strasser. “The Normal Distributions Transform: A New Approach to Laser Scan
Matching.” In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003) (Cat. No.03CH37453), 3:2743–48. Las Vegas, Nevada, USA: IEEE, 2003.
https://doi.org/10.1109/IROS.2003.1249285.

[5] Magnusson, Martin. “The Three-Dimensional Normal-Distributions Transform: An Efficient
Representation for Registration, Surface Analysis, and Loop Detection.” PhD thesis, Örebro
universitet, 2009.

[6] Dimitrievski, Martin, David Van Hamme, Peter Veelaert, and Wilfried Philips. “Robust Matching of
Occupancy Maps for Odometry in Autonomous Vehicles.” In Proceedings of the 11th Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications,
626–33. Rome, Italy: SCITEPRESS - Science and and Technology Publications, 2016. https://
doi.org/10.5220/0005719006260633.

[7] Zhang, Ji, and Sanjiv Singh. “LOAM: Lidar Odometry and Mapping in Real-Time.” In Robotics:
Science and Systems X. Robotics: Science and Systems Foundation, 2014. https://doi.org/
10.15607/RSS.2014.X.007.

See Also
Functions
pcregistercorr | pcregisterndt | pcregistericp | pcregistercpd | pcalign |
scanContextDistance | scanContextDescriptor | findPose | show | segmentGroundSMRF

Objects
pointCloud | pcviewset | rigidtform3d | pcmapndt | scanContextLoopDetector

Related Examples
• What is SLAM?
• “What are Organized and Unorganized Point Clouds?” (Lidar Toolbox)
• “Build a Map from Lidar Data Using SLAM” on page 5-55
• “Implement Visual SLAM in MATLAB” on page 11-8
• “Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment” (Automated

Driving Toolbox)
• “3-D Point Cloud Registration and Stitching” on page 5-71
• “Build a Map from Lidar Data” on page 5-36
• “Build Map and Localize Using Segment Matching” (Lidar Toolbox)

12 Point Cloud Processing

12-12

https://doi.org/10.1109/34.121791
https://doi.org/10.1109/34.121791
https://doi.org/10.1109/IROS.2003.1249285
https://doi.org/10.5220/0005719006260633
https://doi.org/10.5220/0005719006260633
https://www.mathworks.com/discovery/slam.html

The PLY Format

In this section...
“File Header” on page 12-13
“Data” on page 12-14
“Common Elements and Properties” on page 12-15

The version 1.0 PLY format, also known as the Stanford Triangle Format, defines a flexible and
systematic scheme for storing 3D data. The ASCII header specifies what data is in the file by defining
"elements" each with a set of "properties." Many PLY files only have vertex and face data, however, it
is possible to also include other data such as color information, vertex normals, or application-specific
properties.

Note The Computer Vision Toolbox point cloud data functions only support the (x,y,z) coordinates,
normals, and color properties.

File Header
An example header (italicized text is comment):

ply file ID
format binary_big_endian 1.0 specify data format and version
element vertex 9200 define "vertex" element
property float x
property float y
property float z
element face 18000 define "face" element
property list uchar int vertex_indices
end_header data starts after this line

The file begins with "ply," identifying that it is a PLY file. The header must also include a format line
with the syntax

format <data format> <PLY version>

Supported data formats are "ascii" for data stored as text and "binary_little_endian" and
"binary_big_endian" for binary data (where little/big endian refers to the byte ordering of multi-byte
data). Element definitions begin with an "element" line followed by element property definitions

element <element name><number in file>
property <data type><property name 1>
property <data type><property name 2>
property <data type><property name 3>
...

 The PLY Format

12-13

For example, "element vertex 9200" defines an element "vertex" and specifies that 9200 vertices are
stored in the file. Each element definition is followed by a list of properties of that element. There are
two kinds of properties, scalar and list. A scalar property definition has the syntax

property <data type><property name>

where <data type> is

Name Type
char (8-bit) character
uchar (8-bit) unsigned character
short (16-bit) short integer
ushort (16-bit) unsigned short integer
int (32-bit) integer
uint (32-bit) unsigned integer
float (32-bit) single-precision float
double (64-bit) double-precision float

For compatibility between systems, note that the number of bits in each data type must be consistent.
A list type is stored with a count followed by a list of scalars. The definition syntax for a list property
is

property list <count data type><data type><property name>

For example,

property list uchar int vertex_index

defines vertex_index properties are stored starting with a byte count followed by integer values. This
is useful for storing polygon connectivity as it has the flexibility to specify a variable number of vertex
indices in each face.

The header can also include comments. The syntax for a comment is simply a line beginning with
"comment" followed by a one-line comment:

comment<comment text>

Comments can provide information about the data like the file's author, data description, data source,
and other textual data.

Data
Following the header, the element data is stored as either ASCII or binary data (as specified by the
format line in the header). After the header, the data is stored in the order the elements and
properties were defined. First, all the data for the first element type is stored. In the example header,
the first element type is "vertex" with 9200 vertices in the file, and with float properties "x," "y," and
"z."

float vertex[1].x

12 Point Cloud Processing

12-14

float vertex[1].y
float vertex[1].z
float vertex[2].x
float vertex[2].y
float vertex[2].z
...
float vertex[9200].x
float vertex[9200].y
float vertex[9200].z

In general, the properties data for each element is stored one element at a time.

<property 1><property 2> ... <property N> element[1]
<property 1><property 2> ... <property N> element[2]
...

The list type properties are stored beginning with a count and followed by a list of scalars. For
example, the "face" element type has the list property "vertex_indices" with uchar count and int
scalar type.

uchar count
int face[1].vertex_indices[1]
int face[1].vertex_indices[2]
int face[1].vertex_indices[3]
...
int face[1].vertex_indices[count]

uchar count
int face[2].vertex_indices[1]
int face[2].vertex_indices[2]
int face[2].vertex_indices[3]
...
int face[2].vertex_indices[count]

...

Common Elements and Properties
While the PLY format has the flexibility to define many types of elements and properties, a common
set of elements are understood between programs to communicate common 3-D data types. Turk
suggests elements and property names that programs should try to make standard.

 The PLY Format

12-15

Requir
ed
Core
Proper
ty

Elemen
t

Property Data Type Property Description

✓ vertex x float x,y,z coordinates
✓ y float
✓ z float
 nx float x,y,z of normal
 ny float
 nz float
 red uchar vertex color
 green uchar
 blue uchar
 alpha uchar amount of transparency
 material_index int index to list of materials

face vertex_indices list of int indices to vertices
 back_red uchar backside color
 back_green uchar
 back_blue uchar
 edge vertex1 int index to vertex
 vertex2 int index to other vertex
 crease_tag uchar crease in subdivision surface
 materia

l
red uchar material color

 green uchar
 blue uchar
 alpha uchar amount of transparency
 reflect_coeff float amount of light reflected
 refract_coeff float amount of light refracted
 refract_index float index of refraction
 extinct_coeff float extinction coefficent

See Also
pcread | pcwrite

12 Point Cloud Processing

12-16

Using the Installer for Computer Vision
System Toolbox Product

• “Install Computer Vision Toolbox Add-on Support Files” on page 13-2
• “Install OCR Language Data Files” on page 13-3
• “Install and Use Computer Vision Toolbox Interface for OpenCV in MATLAB” on page 13-6
• “Build MEX-Files for OpenCV Interface” on page 13-8
• “Use Prebuilt MATLAB Interface to OpenCV” on page 13-10
• “Perform Edge-Preserving Image Smoothing Using OpenCV in MATLAB” on page 13-15
• “Subtract Image Background by Using OpenCV in MATLAB” on page 13-19
• “Perform Face Detection by Using OpenCV in MATLAB” on page 13-22
• “Install and Use Computer Vision Toolbox Interface for OpenCV in Simulink” on page 13-24
• “Draw Different Shapes by Using OpenCV Code in Simulink” on page 13-31
• “Convert RGB Image to Grayscale Image by Using OpenCV Importer” on page 13-38
• “Smile Detection by Using OpenCV Code in Simulink” on page 13-45
• “Shadow Detection by Using OpenCV Code in Simulink” on page 13-55
• “Vehicle and Pedestrian Detector by Using OpenCV Importer” on page 13-60
• “Video Cartoonizer by Using OpenCV Code in Simulink” on page 13-64
• “Convert Between Simulink Image Type and Matrices” on page 13-69

13

Install Computer Vision Toolbox Add-on Support Files
After you install third-party support files, you can use the data with the Computer Vision Toolbox
product. To install the Add-on support files, use one of the following methods:

• If you are viewing the current page using installed documentation, click

• Select Get Add-ons from the Add-ons drop-down menu from the MATLAB desktop. The Add-on
files are in the “MathWorks Features” section.

• Type visionSupportPackages in a MATLAB Command Window and follow the prompts.

Note You must have write privileges for the installation folder.

When a new version of MATLAB software is released, repeat this process to check for updates. You
can also check for updates between releases.

13 Using the Installer for Computer Vision System Toolbox Product

13-2

Install OCR Language Data Files
In this section...
“Installation” on page 13-3
“Pretrained Language Data and the ocr function” on page 13-3

OCR Language Data files contain pretrained language data from the OCR Engine, tesseract-ocr, to
use with the ocr function.

Installation
After you install third-party support files, you can use the data with the Computer Vision Toolbox
product. To install the Add-on support files, use one of the following methods:

• If you are viewing the current page using installed documentation, click

• Select Get Add-ons from the Add-ons drop-down menu from the MATLAB desktop. The Add-on
files are in the “MathWorks Features” section.

• Type visionSupportPackages in a MATLAB Command Window and follow the prompts.

Note You must have write privileges for the installation folder.

When a new version of MATLAB software is released, repeat this process to check for updates. You
can also check for updates between releases.

Pretrained Language Data and the ocr function
After you install the pretrained language data files, you can specify one or more additional languages
using the Language property of the ocr function. Use the appropriate language character vector
with the property. For faster performance using the builtin models (including any additional installed
language models), you can append -fast to the language model string. For example, "english-
fast".

txt = ocr(img,"Language","finnish");

List of OCR language data in support package

• "afrikaans"
• "albanian"
• "ancientgreek"
• "arabic"
• "azerbaijani"
• "basque"
• "belarusian"

 Install OCR Language Data Files

13-3

https://github.com/tesseract-ocr/tessdata

• "bengali"
• "bulgarian"
• "catalan"
• "cherokee"
• "chinesesimplified"
• "chinesetraditional"
• "croatian"
• "czech"
• "danish"
• "dutch"
• "english"
• "esperanto"
• "esperantoalternative"
• "estonian"
• "finnish"
• "frankish"
• "french"
• "galician"
• "german"
• "greek"
• "hebrew"
• "hindi"
• "hungarian"
• "icelandic"
• "indonesian"
• "italian"
• "italianold"
• "japanese"
• "kannada"
• "korean"
• "latvian"
• "lithuanian"
• "macedonian"
• "malay"
• "malayalam"
• "maltese"
• "mathequation"
• "middleenglish"
• "middlefrench"

13 Using the Installer for Computer Vision System Toolbox Product

13-4

• "norwegian"
• "polish"
• "portuguese"
• "romanian"
• "russian"
• "serbianlatin"
• "slovakian"
• "slovenian"
• "spanish"
• "spanishold"
• "swahili"
• "swedish"
• "tagalog"
• "tamil"
• "telugu"
• "thai"
• "turkish"
• "ukrainian"

See Also
Apps
Image Labeler

Functions
quantizeOCR | evaluateOCR | trainOCR | ocrTrainingData | insertShape | graythresh |
imbinarize | imtophat | detectTextCRAFT | Insert Text

Objects
ocrText | visionSupportPackages | ocrTrainingOptions

Related Examples
• “Getting Started with OCR” on page 17-6
• “Recognize Text Using Optical Character Recognition (OCR)” on page 4-46

 Install OCR Language Data Files

13-5

Install and Use Computer Vision Toolbox Interface for OpenCV
in MATLAB

In this section...
“Installation” on page 13-6
“Support Package Contents” on page 13-6

Installation
After you install third-party support files, you can use the data with the Computer Vision Toolbox
product. To install the Add-on support files, use one of the following methods:

• If you are viewing the current page using installed documentation, click

• Select Get Add-ons from the Add-ons drop-down menu from the MATLAB desktop. The Add-on
files are in the “MathWorks Features” section.

• Type visionSupportPackages in a MATLAB Command Window and follow the prompts.

Note You must have write privileges for the installation folder.

When a new version of MATLAB software is released, repeat this process to check for updates. You
can also check for updates between releases.

Support Package Contents
The Computer Vision Toolbox Interface for OpenCV in MATLAB support files are installed in the
visionopencv folder. To find the path to this folder, type the following command:

fileparts(which('mexOpenCV'))

The visionopencv folder contain these files and folder.

Files Contents
clibopencv
folder

Prebuilt utility functions based on the MATLAB clib package for OpenCV
interface.

mexOpenCV.m file Function to build MEX-files.
example folder Template Matching, Foreground Detector, and Oriented FAST and Rotated BRIEF

(ORB) examples using MEX-files. Each subfolder in the example folder contains a
README.txt file with step-by-step instructions.

registry folder Registration files.
README.txt file Help file.

The mex function uses prebuilt OpenCV libraries, which ship with the Computer Vision Toolbox
product. Your compiler must be compatible with the one used to build the libraries. The following
compilers are used to build the OpenCV libraries for MATLAB host:

13 Using the Installer for Computer Vision System Toolbox Product

13-6

Operating System Compatible Compiler
Windows® 64 bit Microsoft Visual Studio® 2015 or later (Professional or Community

editions)
Linux® 64 bit gcc-4.9.3 (g++)
Mac 64 bit Xcode 6.2.0 (Clang++)

 Install and Use Computer Vision Toolbox Interface for OpenCV in MATLAB

13-7

Build MEX-Files for OpenCV Interface
In this section...
“Create MEX-File from OpenCV C++ file” on page 13-8
“Create Your Own OpenCV MEX-files” on page 13-8
“Run OpenCV Examples” on page 13-8

Use the OpenCV Interface files to integrate your OpenCV C++ code into MATLAB and build MEX-files
that call OpenCV functions.

The mexOpenCV interface utility functions convert data between OpenCV and MATLAB. These
functions support CPP-linkage only.

The Computer Vision Toolbox Interface for OpenCV in MATLAB API supports OpenCV version 4.2.0
and 4.5.0.

Create MEX-File from OpenCV C++ file
This example creates a MEX-file from a wrapper C++ file and then tests the newly created file. The
example uses the OpenCV template matching algorithm wrapped in a C++ file, which is located in
the example/TemplateMatching folder.

1 Change your current working folder to the example/TemplateMatching folder:

cd(fullfile(fileparts(which('mexOpenCV')),'example',filesep,'TemplateMatching'))
2 Create the MEX-file from the source file:

mexOpenCV matchTemplateOCV.cpp
3 Run the test script, which uses the generated MEX-file:

testMatchTemplate

Create Your Own OpenCV MEX-files
Call the mxArray function with your source file.

mexOpenCV yourfile.cpp

For help creating MEX files, at the MATLAB command prompt, type:

help mexOpenCV

Run OpenCV Examples
Each example subfolder in the Computer Vision Toolbox Interface for OpenCV in MATLAB support
package contains all the files you need to run the example. To run an example, you must call the
mexOpenCV function with one of the supplied source files.

Run Template Matching Example

1 Change your current working folder to the example/TemplateMatching folder:

13 Using the Installer for Computer Vision System Toolbox Product

13-8

cd(fullfile(fileparts(which('mexOpenCV')),'example',filesep,'TemplateMatching'))
2 Create the MEX-file from the source file:

mexOpenCV matchTemplateOCV.cpp
3 Run the test script, which uses the generated MEX-file:

testMatchTemplate

Run Foreground Detector Example

1 Change your current working folder to the example/ForegroundDetector folder:

cd(fullfile(fileparts(which('mexOpenCV')),'example',filesep,'ForegroundDetector'))
2 Create the MEX-file from the source file:

mexOpenCV backgroundSubtractorOCV.cpp
3 Run the test script that uses the generated MEX-file:

testBackgroundSubtractor.m

Run Oriented FAST and Rotated BRIEF (ORB) Detector Example

1 Change your current working folder to the example/ORB folder:

cd(fullfile(fileparts(which('mexOpenCV')),'example',filesep,'ORB'))
2 Create the MEX-file for the detector from the source file:

mexOpenCV detectORBFeaturesOCV.cpp
3 Create the MEX-file for the extractor from the source file:

mexOpenCV extractORBFeaturesOCV.cpp
4 Run the test script, which uses the generated MEX-files:

testORBFeaturesOCV.m

See Also
mxArray | “C Matrix API”

More About
• “Install Computer Vision Toolbox Add-on Support Files” on page 13-2
• Using OpenCV with MATLAB

 Build MEX-Files for OpenCV Interface

13-9

https://www.mathworks.com/videos/using-opencv-with-matlab-97710.html

Use Prebuilt MATLAB Interface to OpenCV
In this section...
“Call MATLAB Functions” on page 13-11
“Call Functions in OpenCV Library” on page 13-11
“Display Help for MATLAB Functions” on page 13-12
“Display Help for MATLAB Interface to OpenCV Library” on page 13-12
“Limitations” on page 13-13

The Computer Vision Toolbox Interface for OpenCV provides a prebuilt MATLAB interface to the
OpenCV library that you can use to directly call OpenCV functions from MATLAB without writing a
C /C++ code.

Note The Computer Vision Toolbox Interface for OpenCV in MATLAB supports OpenCV version 4.2.0
and 4.5.0. The interface does not provide GPU support.

The Computer Vision Toolbox Interface for OpenCV also provides MATLAB functions to:

• Create MATLAB objects that represent Mat, UMat, OpenCV base classes pointed by a smart
pointer, and OpenCV arrays.

MATLAB Function Description
createMat Returns Mat objects that represent the

OpenCV cv::Mat data structure, and the
associated input, output, or input-output array
class.

createUMat Returns UMat objects that represent the
OpenCV cv::UMat data structure, and the
associated input, output, or input-output array
class.

clibArray Returns an object that represents OpenCV
native arrays or std::vector types.

getBasePtr Returns an object that represents an OpenCV
base class pointed by a smart pointer.

• Export OpenCV outputs to MATLAB supported formats.

MATLAB Function Description
getImage Reads and exports images stored in OpenCV

Mat and UMat objects to a matrix or 3-D array
in the MATLAB workspace.

keyPointsToStruct Exports the keypoints returned by an OpenCV
keypoint detector as a MATLAB structure.

13 Using the Installer for Computer Vision System Toolbox Product

13-10

rectToBbox Exports the parameters returned by an
OpenCV rectangle class to a vector in the
MATLAB workspace. The parameters are
exported as bounding box coordinates in one-
based indexing.

underlyingValue Returns the underlying numeric values for
OpenCV enumeration objects.

The OpenCV functions in the prebuilt library do not return errors except during the run-time.

Call MATLAB Functions
To call a MATLAB function in the Computer Vision Toolbox Interface for OpenCV support package,
add the package name vision.opencv.util to the import list and then call the MATLAB function.
For example:

import vision.opencv.util.*
[ocvMat,ocvArray] = createMat;

You can also add the partial package name vision.opencv to the import list and call the MATLAB
function by prepending util to the function name. For example:

import vision.opencv.*
[ocvMat,ocvArray] = util.createMat;

Alternatively, you can also call the MATLAB function by prefixing it with the full package name. Use
this syntax to import a specific function without importing every function in the package.

[ocvMat,ocvArray] = vision.opencv.util.createMat;

Call Functions in OpenCV Library
To call a function or class in the prebuilt MATLAB interface to the OpenCV library, add the library
name clib.opencv to the import list. Then call an OpenCV function by prefixing the function name
with a namespace.

import clib.opencv.*
retVal = namespace.funcname(arg1,arg2,…,argN)

namespace is the namespace of the function, funcname is the OpenCV function name, and
arg1,arg2,...,argN represents the input arguments for the OpenCV function. retVal is the output
argument.

Alternatively, you can also call an OpenCV function by adding the package name as a prefix as shown
here.

retVal = clib.opencv.namespace.funcname(arg1,arg2,…,argN)

Note The interface supports only the cv and cvflann namespaces. For example, you can call a
function in the cv namespace by using this syntax:

retVal = clib.opencv.cv.funcname(arg1,arg2,…,argN)

 Use Prebuilt MATLAB Interface to OpenCV

13-11

Display Help for MATLAB Functions
To view information about the MATLAB functions in the support package, use doc or help.

Type one of these commands in MATLAB command window.

doc vision.opencv.util.

or

help vision.opencv.util.

Then press Tab. This command loads the package, and MATLAB displays the list of functions in the
package.

To view information about the package in the Help browser, type this command in the MATLAB
command window, and then press Enter.

doc vision.opencv.util

Display Help for MATLAB Interface to OpenCV Library
Use these MATLAB functions to view information about the classes and the functions in the Prebuilt
MATLAB interface to OpenCV library.

• doc and help — View classes and functions in the OpenCV library.
• methods — View constructor, method, and package function names for a class.
• methods with '-full' option — View constructor, method, and package function signatures.
• methodsview — View a table representation of method signatures. The methodsview window

enables you to find information without scrolling through the Command Window.

Display the classes and package functions by entering this command and then pressing Tab.

doc clib.opencv.

This command loads the package, and MATLAB displays a list of the package members. To view the
package, press Backspace to remove the period, then press Enter. MATLAB displays all the classes
and functions in the OpenCV library.

To display class methods, call the methods function for that class. For example, to see the methods of
the Affine3d class, enter this command.

methods clib.opencv.cv.Affine3d

Methods for class clib.opencv.cv.Affine3d:

Affine3d eq gt le ne rotation translate
concatenate ge inv lt rotate rvec translation

Static methods:

Identity

Methods of clib.opencv.cv.Affine3d inherited from handle.

To display method signatures for a class, call the methodsview function for that class. For example:

methodsview clib.opencv.cv.Affine3d

13 Using the Installer for Computer Vision System Toolbox Product

13-12

This command opens a window that displays the methods and information about their arguments and
returned values.

Limitations
The prebuilt MATLAB interface to the OpenCV library does not support functionalities that contain
these following data types or language features.

• Any type with a size greater than 64 bits, such as long double
• Arrays of character types (wchar_t, char16_t, char32_t)
• References to a pointer, such as int*&
• Pointers or arrays of type std::string
• Pointers or references to enumerations
• Reference data members
• void* data members
• std smart pointers other than std::shared_ptr
• Static data members
• ** pointers, except:

• MATLAB supports char**
• MATLAB supports ** pointers to custom classes used as function or method parameter types.

• Multilevel pointers, such as type***
• C function pointers and std::function as function return types or data members. You also

cannot pass a MATLAB function as input to C function pointers or an std::function parameter.
• Class templates with incomplete or no instantiations
• User-defined data type union
• Arrays of type std::vector
• Types defined in the std namespace, except these supported types:

• std::string
• std::wstring
• std::u16string
• std::u32string
• std::vector
• std::shared_ptr
• std::function

See Also

More About
• “MATLAB Object For C++ Arrays”
• “Install Computer Vision Toolbox Add-on Support Files” on page 13-2

 Use Prebuilt MATLAB Interface to OpenCV

13-13

• “Use Prebuilt MATLAB Interface to C++ Library”
• Using OpenCV with MATLAB

13 Using the Installer for Computer Vision System Toolbox Product

13-14

https://www.mathworks.com/videos/using-opencv-with-matlab-97710.html

Perform Edge-Preserving Image Smoothing Using OpenCV in
MATLAB

This example shows how to perform edge-preserving image smoothing by using prebuilt MATLAB®
interface to the OpenCV function cv::edgePreservingFilter. In this example, you also use the
createMat utility function to define the input and output arrays, and the getImage utility function
to read the output image returned by the OpenCV function.

Add the MATLAB interface to OpenCV package names to the import list.

import clib.opencv.*;
import vision.opencv.util.*;

Read an image into the MATLAB workspace.

img = imread("peppers.png");

Create MATLAB interface objects for the OpenCV MatND and InputArray classes to store the input
image.

[inputMat,inputArray] = createMat(img);

Create MATLAB interface objects for the OpenCV MatND and OutputArray classes to write the
output image returned by the OpenCV function.

[outputMat,outputArray] = createMat;

Smooth the input image by using the OpenCV function cv::edgePreservingFilter. To call this
function from MATLAB, you must use the notation cv.edgePreservingFilter.

cv.edgePreservingFilter(inputArray,outputArray);

Read the filtered output image returned by the OpenCV function.

filteredImg = getImage(outputArray);

Display the original input and the filtered output images.

figure
imshow(img)
title("Input Image")

 Perform Edge-Preserving Image Smoothing Using OpenCV in MATLAB

13-15

figure
imshow(filteredImg)
title("Filtered Output Image")

13 Using the Installer for Computer Vision System Toolbox Product

13-16

Modify Filter Parameters

Specify the parameter values for the edge-preserving filter. Set these values:

• flags to 2, to perform normalized convolution filtering.
• Standard deviations sigma_s to 20 and sigma_r to 0.3.

flags = 2;
sigma_s = 20;
sigma_r = 0.2;

Perform filtering by using the defined filter parameters.

cv.edgePreservingFilter(inputArray,outputArray,flags,sigma_s,sigma_r);

Read the filtered output image returned by the OpenCV function.

filteredImg = getImage(outputArray);

Display the filtered output image.

figure
imshow(filteredImg)
title("Filtered Output Image")

 Perform Edge-Preserving Image Smoothing Using OpenCV in MATLAB

13-17

See Also
Functions
createMat | getImage

More About
• “Use Prebuilt MATLAB Interface to OpenCV” on page 13-10

13 Using the Installer for Computer Vision System Toolbox Product

13-18

Subtract Image Background by Using OpenCV in MATLAB

This example shows how to subtract the background in an image sequence or a video by using the
prebuilt MATLAB interface to the OpenCV function cv::BackgroundSubtractorKNN. In this
example, you also use the createMat utility function to define the input and output arrays, and the
getImage utility function to read the output image returned by the OpenCV function. The input video
must be have a static background and dynamic foreground objects.

Read a video into the MATLAB workspace by using the VideoReader MATLAB function.

videoSample = VideoReader("atrium.mp4");
videoSample.CurrentTime = 2.5;

Add the MATLAB interface to OpenCV package names to the import list.

import clib.opencv.*;
import vision.opencv.*;

Specify the parameter values to compute the background by using the OpenCV function for k-Nearest
Neighbor (KNN) background subtractor cv::BackgroundSubtractorKNN. Set these values:

• Number of last frames to consider for computing the KNN background model history to 300.
• Threshold for differentiating the foreground and background pixels threshold to 400.
• shadow to true, to detect the shadow regions.

history = 300;
threshold = 400;
shadow = true;

Create a MATLAB interface object by using the getBasePtr utility function to represent the
BackgroundSubtractorKNN class.

cvPtr = cv.createBackgroundSubtractorKNN(history,threshold,shadow);
kNNBase = util.getBasePtr(cvPtr);

You can also set the parameter values for the background subtractor by accessing the public methods
of the BackgroundSubtractorKNN class. Set the number of k nearest neighbors required for
classifying a pixel as belonging to the background model to 2.

kNNBase.setkNNSamples(2);

Follow these steps to extract the foreground region by using the apply method of the OpenCV class
BackgroundSubtractorKNN.

• Create an InputArray and OutputArray class by using the createMat MATLAB utility function
to store the input video frame and the output foreground mask respectively.

• The apply method takes the video frames as inputs and then, computes the foreground pixels by
using the k-NN algorithm. The apply method stores the mask containing the foreground pixel
regions to the OutputArray class.

• Export the output foreground mask returned by the apply method to MATLAB workspace by
using the getImage MATLAB utility function.

• Extract the desired foreground region by using the foreground mask and the input video frames.

 Subtract Image Background by Using OpenCV in MATLAB

13-19

foregroundmask = zeros(videoSample.Height,videoSample.Width,videoSample.NumFrames);
while hasFrame(videoSample)
 frame = readFrame(videoSample);
 [inMat,imgInput] = util.createMat(frame);
 [outMat,outImg] = util.createMat();
 kNNBase.apply(imgInput,outImg);
 foregroundmask = util.getImage(outImg);

 foregroundmask = rescale(foregroundmask);
 foregroundmask = cast(foregroundmask,"like",frame);

 foreground(:,:,1) = frame(:,:,1).*foregroundmask;
 foreground(:,:,2) = frame(:,:,2).*foregroundmask;
 foreground(:,:,3) = frame(:,:,3).*foregroundmask;

 image(foreground,Parent=gca);
 pause(0.01);
end

See Also
Objects
VideoReader

Functions
createMat | rescale | getImage | createUMat | readFrame | getBasePtr | cast

13 Using the Installer for Computer Vision System Toolbox Product

13-20

More About
• “Use Prebuilt MATLAB Interface to OpenCV” on page 13-10

 Subtract Image Background by Using OpenCV in MATLAB

13-21

Perform Face Detection by Using OpenCV in MATLAB

This example shows how to detect faces in an image or video by using prebuilt MATLAB® interface to
the OpenCV function cv::CascadeClassifier. This example uses a Harr face detection model that
is trained for scale-invariant, frontal face detection. In this example, you also use the createMat
utility function to define the input and output arrays, the getImage utility function to read the output
image returned by the OpenCV function, and the rectToBbox utility function to convert the face
detection output returned by the OpenCV function to bounding box coordinates in MATLAB®.

Read a video into the MATLAB workspace by using the VideoReader MATLAB function.

videoSample = VideoReader("tilted_face.avi");

Add the MATLAB interface to OpenCV package names to the import list.

import clib.opencv.*;
import vision.opencv.util.*;

Specify the file name of a pre-trained trained Haar face detection model.

trainedModel = "haarcascade_frontalface_alt.xml";

Load the pre-trained model by using the load method of the OpenCV function
cv.CascadeClassifier.

cascadeClassify = cv.CascadeClassifier();
cascadeClassify.load(trainedModel);

Specify the scale factor to use for multi-scale detection.

scaleFactor = 1.2;

Follow these steps to detect faces in each frame by using the detectMultiScale method of the
OpenCV class cv.CascadeClassifier.

• Create a Mat object and store the input frame to the Mat object by using the createMat function.
Specify the Mat object as an input to the detectMultiScale method.

• Create a MATLAB array to represent the OpenCV class for 2D rectangles cv::Rect2i. Specify
the array as an input to the detectMultiScale method. The method uses the array to return the
detection results.

• Export the detection results returned by the detectMultiScale method to a row vector by using
the rectToBbox function. The row vector specifies bounding box coordinates in one-based
indexing.

• Draw the bounding boxes on the input frame to represent the detected faces.

count = 1;
detections = cell(1,videoSample.NumFrames);
while(hasFrame(videoSample))
 testFrame = readFrame(videoSample);

 [inputMat,inputArray] = createMat(testFrame);
 results = clibArray("clib.opencv.cv.Rect2i", 0);

 cascadeClassify.detectMultiScale(inputArray,results,scaleFactor);

13 Using the Installer for Computer Vision System Toolbox Product

13-22

 if results.Dimensions ~= 0
 detections{count} = rectToBbox(results);
 else
 detections{count} = [];
 end
 testFrame = insertShape(testFrame,rectangle=detections{count},LineWidth=5);
 image(testFrame,Parent=gca);
 pause(0.01)
 count = count+1;
end

See Also
Objects
VideoReader

Functions
createMat | getImage | createUMat | readFrame | clibArray | rectToBbox | insertShape

More About
• “Use Prebuilt MATLAB Interface to OpenCV” on page 13-10

 Perform Face Detection by Using OpenCV in MATLAB

13-23

Install and Use Computer Vision Toolbox Interface for OpenCV
in Simulink

In this section...
“Installation” on page 13-24
“Import OpenCV Code into Simulink” on page 13-24
“Limitations” on page 13-29

You can import OpenCV code to a Simulink model by using the OpenCV Importer application. The
OpenCV Importer application is available only after you install the Computer Vision Toolbox
Interface for OpenCV in Simulink support package.

Installation
To install the support package, use one of the following methods:

• If you are viewing the current page using installed documentation, click

.
• Select Get Add-ons from the Add-ons drop-down menu from the MATLAB toolstrip. In the Add-

Ons Explorer window, find and click the Computer Vision Toolbox Interface for OpenCV in
Simulink support package, and then click Install.

• Type visionSupportPackages in a MATLAB Command Window and follow the prompts.

Import OpenCV Code into Simulink
To start the OpenCV Importer, click Apps on the MATLAB Toolstrip. Click the down arrow to show
more options. Under My Apps, click the OpenCV Importer app icon. Alternatively, you can start the
OpenCV Importer from the command-line interface. At the MATLAB command line, enter:

Simulink.OpenCVImporter

The OpenCV Importer app opens to a Welcome page.

1 In the Project name field, specify a name for your import. You can either start a new import or
load files saved from a previous import. The projects are saved in .m file format. To browse a
saved file from previous import, select Load a file saved from a previous import. Click Next.

13 Using the Installer for Computer Vision System Toolbox Product

13-24

2 In the Specify OpenCV Library page, specify your C++ library information. If you import a
previously saved project file, all the fields are autopopulated.

• Project root folder: A writable folder path where you want to save your output files
(wrapper files and Simulink library).

• Source files: OpenCV source file path. Specify the .cpp file format. If you provide an
absolute path, then the app uses the file from the specified location. If you do not provide the
absolute path, then the app uses the path relative to the project root.

• Include files: Header files path. Specify the .hpp file format. If you provide an absolute path,
then the app uses the file from the specified location. If you do not provide the absolute path,
then the app uses the path relative to the project root.

• Include paths: Define any additional include folders (Folder information). MATLAB OpenCV
include files are included.

• Library files: Specify the external library files.

If you have multiple files or folders to specify, use a semicolon-separated list of files or folders.
Click Next.

 Install and Use Computer Vision Toolbox Interface for OpenCV in Simulink

13-25

3 To find functions and types that are supported for import, analyze your library by clicking Next.
Once the analysis is complete, click Next.

4 In the What to Import page, the functions that Computer Vision Toolbox Interface for OpenCV in
Simulink supports are listed. Select the functions that you want to import into Simulink library
and click Next.

13 Using the Installer for Computer Vision System Toolbox Product

13-26

5 Each I/O Type corresponds to the OpenCV function argument to map into the Simulink model.
These different I/O Type are supported:

• Input- for input arguments
• Output- for output arguments
• InputOutput- for input output arguments

To select the input/output types, double-click the Output option in the I/O Type column drop-
down list, and then click Next.

6 In the Create Simulink Library page, you can generate either just a subsystem block or a
subsystem block and a C Caller block of the selected function. A C Caller block integrates your
OpenCV data into Simulink. The generated subsystem block contains C Caller blocks configured
by using data conversion blocks.

 Install and Use Computer Vision Toolbox Interface for OpenCV in Simulink

13-27

To generate a subsystem block and a C Caller block, select Create a single C-caller block for
the OpenCV function, and then click Next.

If the OpenCV code contains a Mat data type, the default output size is (720,1280,3) and the
default underlying type is uint8. For vectors, the default size is 100. You can change the default
size based on your model requirements.

To use a Simulink.ImageType data type for your images, select Configure library to use
Simulink.ImageType signals and configure parameters Default Color Format of
Simulink.ImageType signal and Default Array layout of Simulink.ImageType signal based
on your model requirements.

7 A Simulink library Projectname_Lib.slx is created from your OpenCV code into a project root
folder. The library contains a subsystem block and a C Caller block.

You can drag any of these blocks to your model, connect them to the existing blocks in the model,
and run the model simulation.

13 Using the Installer for Computer Vision System Toolbox Product

13-28

The app also creates wrapper files for source and header files.

Limitations
The Computer Vision Toolbox Interface for OpenCV in Simulink support package:

• Uses OpenCV as part of MATLAB third-party support. You can get the OpenCV additional
capabilities in Add-Ons (Computer Vision Toolbox).

• Does not support external OpenCV libraries (for instance, opencv_contrib).
• Does not support InputArray, OutputArray, and InputOutputArray data types.
• Requires Microsoft Visual Studio 2015 or later Professional and Community editions for Windows

64 operating system. For more information on compilers, see “Portable C Code Generation for
Functions That Use OpenCV Library” on page 22-4.

 Install and Use Computer Vision Toolbox Interface for OpenCV in Simulink

13-29

• Supports C++ code generation that uses row-major array layout.
• CV_type signals are not supported across referenced SIL model boundaries.

See Also
ToOpenCV | FromOpenCV

More About
• “Smile Detection by Using OpenCV Code in Simulink” on page 13-45
• “Convert RGB Image to Grayscale Image by Using OpenCV Importer” on page 13-38
• “Draw Different Shapes by Using OpenCV Code in Simulink” on page 13-31

13 Using the Installer for Computer Vision System Toolbox Product

13-30

Draw Different Shapes by Using OpenCV Code in Simulink

This example shows how to draw different shapes on images by using OpenCV Importer.

First import an OpenCV function into Simulink® by using the “Install and Use Computer Vision
Toolbox Interface for OpenCV in Simulink” on page 13-24. The wizard creates a Simulink library that
contains a subsystem and a C Caller block for the specified OpenCV function. The subsystem is then
used in a preconfigured Simulink model. This subsystem accepts coordinates of a specified shape. A
defined shape is then displayed on a Video Viewer.

You learn how to:

• Import an OpenCV function into a Simulink library.
• Use blocks from a generated library in a Simulink model.

Set Up Your C++ Compiler

To build the OpenCV libraries, identify a compatible C++ compiler for your operating system, as
described in “Portable C Code Generation for Functions That Use OpenCV Library” on page 22-4.
Configure the identified compiler by using the mex -setup c++ command. For more information, see
“Choose a C++ Compiler”.

Model Description

These Simulink models are available in the DrawShapes folder:

• DrawAtom.slx
• DrawEllipse.slx
• DrawFilledCircle.slx
• DrawLine.slx
• DrawPolygon.slx
• DrawRook.slx

This example uses the DrawFilledCircle.slx model. In this model, the
subsystem_slwrap_drawFilledCircle subsystem resides in the DrawCircle_Lib library. You
create the subsystem_slwrap_drawFilledCircle subsystem by using the OpenCV Importer.
The subsystem accepts the x and y coordinates for the center of the circle and radius as input to the
subsystem. The subsystem creates a circle on an input image from the Image From File block. The
output is then displayed on a Video Viewer block.

 Draw Different Shapes by Using OpenCV Code in Simulink

13-31

Copy Example Folder to a Writable Location

To access the path to the example folder, at the MATLAB® command line, enter:

 OpenCVSimulinkExamples;

Each subfolder contains all the supporting files required to run the example.

Before proceeding with these steps, ensure that you copy the example folder to a writable folder
location and change your current working folder to ...example\DrawShapes. All your output files
are saved to this folder.

Step 1: Import OpenCV Function to Create a Simulink Library

1. To start the OpenCV Importer app, click Apps on the MATLAB Toolstrip. The OpenCV import
wizard opens to a Welcome page. Specify the Project name as DrawCircle. Make sure that the
project name does not contain any spaces. Click Next.

2. In Specify OpenCV Library, specify these file locations, and then click Next.

• Project root folder : Specify the path of your example folder. This path is the path to the writable
project folder where you have saved your example files. All your output files are saved to this
folder.

• Source files : Specify the path of the .cpp file located inside your project folder as
opencvcode.cpp.

• Include files : Specify the path of the .hpp header file located inside your project folder as
opencvcode.hpp.

3. Analyze your library to find the functions and types for import. Once the analysis is complete, click
Next. Select the drawFilledCircle function and click Next.

13 Using the Installer for Computer Vision System Toolbox Product

13-32

4. From What to import, select the I/O Type for img as InputOutput, and other arguements as
Input.Click Next.

5. In Create Simulink Library, verify the default values of OpenCV types. By default, Create a single
C-caller block for the OpenCV function is selected to create a C Caller block with the subsystem.

6. Specify Default CV::Mat Output Size as 384,512,3.

7. To create a Simulink library, click Next.

A Simulink library DrawCircle_Lib is created from your OpenCV code. You can use any of these
blocks for model simulation. In this example, the subsystem
subsystem_slwrap_drawFilledCircle is used.

Step 2: Use Generated Subsystem in Simulink Model

To use the generated subsystem subsystem_slwrap_drawFilledCircle with the Simulink model
DrawFilledCircle.slx:

1. In your MATLAB Current Folder, right-click the model DrawFilledCircle.slx and click Open
from the context menu. Drag the generated subsystem to the model and connect the subsystem to the
MATLAB Function blocks.

2. Double-click the subsystem and verify the parameter values.

On the Simulink Toolstrip, in the Simulation tab, click on simulate the model button. After the
simulation is complete, the Video Viewer block displays the filled circle on the input image
peppers.png.

 Draw Different Shapes by Using OpenCV Code in Simulink

13-33

Draw Atom on Image by Using C Caller Block

This example shows how to use a C Caller block in a Simulink model to draw an atom on an image.

1. Import drawEllipse and drawFilledCircle OpenCV functions into Simulink by using the
OpenCV Importer app. During import, select the I/O Type for drawEllipse and
drawFilledCircle, as shown in this graphic.

13 Using the Installer for Computer Vision System Toolbox Product

13-34

2. Once you import the functions, the DrawCircle_Lib library is created. This Simulink library
contains subsystems and the C Caller blocks required to draw an atom on an image.

Open the model DrawAtomCcaller.slx. Drag the slwrap_drawEllipse C Caller block from the
Simulink library DrawCircle_Lib to drawEllipses subsystem in the model. Create three copies of
the C Caller block, and then place these blocks at the four blank positions inside the drawEllipses
subsystem.

In the model, drag the slwrap_drawFilledCircle C Caller block from the Simulink library
DrawCircle_Lib and place the block at the blank position.

 Draw Different Shapes by Using OpenCV Code in Simulink

13-35

3. On the Simulink Toolstrip, in the Simulation tab, click on simulate the model button. After the
simulation is complete, the Video Viewer block displays the atom on a white input image.

13 Using the Installer for Computer Vision System Toolbox Product

13-36

See Also
ToOpenCV | FromOpenCV

More About
• Smile Detection by Using OpenCV Code in Simulink on page 13-45
• Convert RGB Image to Grayscale Image by Using OpenCV Importer on page 13-38

 Draw Different Shapes by Using OpenCV Code in Simulink

13-37

Convert RGB Image to Grayscale Image by Using OpenCV
Importer

This example shows how to convert an RGB image to a grayscale image by using the OpenCV
Importer app. The converter converts an RGB image to a grayscale image by eliminating the hue and
saturation information while retaining the luminance.

First import an OpenCV function into Simulink by using the “Install and Use Computer Vision Toolbox
Interface for OpenCV in Simulink” on page 13-24. The app creates a Simulink library that contains a
subsystem and a C Caller block for the specified OpenCV function. The subsystem is then used in a
preconfigured Simulink model to accept the RGB image for conversion.

You learn how to:

• Import an OpenCV function into a Simulink library.
• Use blocks from a generated library in a Simulink model.

Set Up Your C++ Compiler

To build the OpenCV libraries, identify a compatible C++ compiler for your operating system, as
described in “Portable C Code Generation for Functions That Use OpenCV Library” on page 22-4.
Configure the identified compiler by using the mex -setup c++ command. For more information,
see “Choose a C++ Compiler”.

Model Description

This example uses the Simulink model ToGrayScale.slx.

In this model, the subsystem_slwrap_toGrayScale subsystem resides in the RGBtoGRAY_Lib
library. You create the subsystem_slwrap_toGrayScale subsystem by using the OpenCV
Importer. The subsystem accepts an RGB image from the Image From File block and converts it to a
grayscale output image. The output is then displayed on a Video Viewer block.

Copy Example Folder to a Writable Location

To access the path to the example folder, at the MATLAB® command line, enter:

 OpenCVSimulinkExamples;

Each subfolder contains all the supporting files required to run the example.

13 Using the Installer for Computer Vision System Toolbox Product

13-38

Before proceeding with these steps, ensure that you copy the example folder to a writable folder
location and change your current working folder to ...example\ImageRGBtoGray. All your output
files are saved to this folder.

Step 1: Import OpenCV Function to Create a Simulink Library

1. To start the OpenCV Importer app, click Apps on the MATLAB Toolstrip. In the Welcome page,
specify the Project name as RGBtoGRAY. Make sure that the project name does not contain any
spaces. Click Next.

2. In Specify OpenCV Library, specify these file locations, and then click Next.

• Project root folder: Specify the path of your example folder. This path is the path to the writable
project folder where you have saved your example files. All your output files are saved to this
folder.

• Source files: Specify the path of the .cpp file located inside your project folder as
toGrayScale.cpp.

• Include files: Specify the path of the .hpp header file located inside your project folder as
toGrayScale.hpp.

3. Analyze your library to find the functions and types for import. Once the analysis is complete, click
Next. Select the toGrayScale function and click Next.

 Convert RGB Image to Grayscale Image by Using OpenCV Importer

13-39

4. From What to import, select the I/O Type for img as InputOutput, and then click Next.

13 Using the Installer for Computer Vision System Toolbox Product

13-40

5. In Create Simulink Library, configure the default values of OpenCV types. By default, Create a
single C-caller block for the OpenCV function is selected to create a C Caller block along with
the subsystem in the generated Simulink library.

6. Select Configure library to use Simulink.ImageType signals to configure the generated library
subsystem to use Simulink.ImageType signals.

7. Set Default Color Format of Simlink.ImageType signal to RGB, which is the default color
format of the image.

8. Set Default Array layout of Simulink.ImageType signal to Column-major, which is the default
array layout of the image.

 Convert RGB Image to Grayscale Image by Using OpenCV Importer

13-41

9. To create a Simulink library, click Next.

A Simulink library RGBtoGRAY_Lib is created from your OpenCV code into the project root folder.
The library contains a subsystem and a C Caller block. You can use any of these blocks for model
simulation. In this example, the subsystem subsystem_slwrap_toGrayScale is used.

Step 2: Use Generated Subsystem in Simulink Model

To use the generated subsystem subsystem_slwrap_toGrayScale with the Simulink model
ToGrayScale.slx:

1. In your MATLAB current folder, right-click the model ToGrayScale.slx and click Open from the
context menu. Drag the generated subsystem from the library to the model. Insert the subsystem
between From Multimedia File block and Video Viewer block.

2. Double-click the subsystem and configure these parameter values:

• Rows: 480
• Columns: 640
• Channels: 1
• Underlying Type: uint8

3. Click Apply, and then click OK.

Step 3: Simulate the RGB to Gray Convertor

On the Simulink Toolstrip, in the Simulation tab, click on Run to simulate the model. After the
simulation is complete, the Video Viewer block displays the grayscale image of the input image
peppers.png.

13 Using the Installer for Computer Vision System Toolbox Product

13-42

 Convert RGB Image to Grayscale Image by Using OpenCV Importer

13-43

See Also
ToOpenCV | FromOpenCV | Simulink.ImageType

More About
• Smile Detection by Using OpenCV Code in Simulink on page 13-45
• Draw Different Shapes by Using OpenCV Code in Simulink on page 13-31

13 Using the Installer for Computer Vision System Toolbox Product

13-44

Smile Detection by Using OpenCV Code in Simulink

This example shows how to build a smile detector by using the OpenCV Importer app. The detector
estimates the intensity of the smile on a face image or a video. Based on the estimated intensity, the
detector identifies an appropriate emoji from its database, and then places the emoji on the smiling
face.

First import an OpenCV function into Simulink® by following the “Install and Use Computer Vision
Toolbox Interface for OpenCV in Simulink” on page 13-24. The app creates a Simulink library that
contains a subsystem and a C Caller block for the specified OpenCV function. The subsystem is then
used in a preconfigured Simulink model to accept the facial image or a video for smile detection. You
can generate C++ code from the model, and then deploy the code on your target hardware.

You learn how to:

• Import an OpenCV function into a Simulink library.
• Use blocks from a generated library in a Simulink model.
• Generate C++ code from a Simulink model.
• Deploy the model on the Raspberry Pi hardware.

Set Up Your C++ Compiler

To build the OpenCV libraries, identify a compatible C++ compiler for your operating system, as
described in “Portable C Code Generation for Functions That Use OpenCV Library” on page 22-4.
Configure the identified compiler by using the mex -setup c++ command. For more information,
see “Choose a C++ Compiler”.

Model Description

In this example, a smile detector is implemented by using the Simulink model smileDetect.slx.

In this model, the subsystem_slwrap_detectAndDraw subsystem resides in the
Smile_Detect_Lib library. You create the subsystem_slwrap_detectAndDraw subsystem by
using the OpenCV Importer app. The subsystem accepts a face image or a video and provides these
output values.

• outImage: Face image with a circle
• intensity: Intensity of the smile
• x: x coordinate of center of the circle
• y: y coordinate of center of the circle
• rd: Radius of the circle

The model is configured to use Simulink.ImageType datatype. The outImage from the subsystem
is of Simulink.ImageType datatype. The Image To Matrix block converts outImage from
Simulink.ImageType to a numerical matrix because a MATLAB Function block operates on
numerical matrixes only.

The MATLAB Function block accepts input from the subsystem_slwrap_detectAndDraw
subsystem block. The MATLAB Function block has a set of emoji images. The smile intensity of the
emoji in these images ranges from low to high. From the emoji images, the block identifies the most

 Smile Detection by Using OpenCV Code in Simulink

13-45

appropriate emoji for the estimated intensity and places it on the face image. The output is then
provided to the Detected Face and Smiley Replacement Video Viewer blocks.

Copy Example Folder to a Writable Location

To access the path to the example folder, at the MATLAB command line, enter:

 OpenCVSimulinkExamples;

Each subfolder contains all the supporting files required to run the example.

Before proceeding with these steps, ensure that you copy the example folder to a writable folder
location and change your current working folder to ...example\SmileDetector. All your output
files are saved to this folder.

Step 1: Import OpenCV Function to Create a Simulink Library

1. To start the OpenCV Importer app, click Apps on the MATLAB Toolstrip. In the Welcome page,
specify the Project name as Smile_Detector. Make sure that the project name does not contain
any spaces. Click Next.

13 Using the Installer for Computer Vision System Toolbox Product

13-46

2. In Specify OpenCV Library, specify these file locations, and then click Next.

• Project root folder: Specify the path of your example folder. This path is the path to the writable
project folder where you have saved your example files. All your output files are saved to this
folder.

• Source files: Specify the path of the .cpp file located inside your project folder as
smiledetect.cpp.

• Include files: Specify the path of the .hpp header file located inside your project folder as
smiledetect.hpp.

 Smile Detection by Using OpenCV Code in Simulink

13-47

3. Analyze your library to find the functions and types for import. Once the analysis is complete, click
Next. Select the detectAndDraw function and click Next.

4. From What to import, select the I/O Type for inImage as Input, and then click Next.

5. In Create Simulink Library, configure the default values of OpenCV types. By default, Create a
single C-caller block for the OpenCV function is selected to create a C Caller block along with
the subsystem in the generated Simulink library.

13 Using the Installer for Computer Vision System Toolbox Product

13-48

6. Select Configure library to use Simulink.ImageType signals to configure the generated library
subsystem to use Simulink.ImageType signals.

7. Set Default Color Format of Simlink.ImageType signal to RGB, which is the default color
format of the image.

8. Set Default Array layout of Simulink.ImageType signal to Column-major which, is the default
array layout of the image.

9. To create a Simulink library, click Next.

A Simulink library Smile_Detector_Lib is created from your OpenCV code into the project root
folder. The library contains a subsystem and a C Caller block. You can use any of these blocks for
model simulation. In this example, the subsystem subsystem_slwrap_detectAndDraw is used.

 Smile Detection by Using OpenCV Code in Simulink

13-49

Step 2: Use Generated Subsystem in Simulink Model

To use the generated subsystem subsystem_slwrap_detectAndDraw with the Simulink model
smileDetect.slx:

1. In your MATLAB current folder, right-click the model smileDetect.slx and click Open from the
context menu. Drag the generated subsystem from the library to the model. Connect the subsystem to
the MATLAB Function block.

2. Double-click the subsystem and configure these parameter values:

• Rows: 480
• Columns: 640
• Channels: 3
• Underlying Type: uint8

3. Click Apply, and then click OK.

Step 3: Simulate the Smile Detector

On the Simulink Toolstrip, in the Simulation tab, click on Run to simulate the model. After the
simulation is complete, the Video Viewer blocks display the face detected. The model overlays an
emoji on the face. The emoji represents the intensity of the smile.

13 Using the Installer for Computer Vision System Toolbox Product

13-50

 Smile Detection by Using OpenCV Code in Simulink

13-51

Step 4: Generate C++ Code from the Smile Detector Model

Before you generate the code from the model, you must first ensure that you have write permission in
your current folder.

To generate C++ code:

1. Open the smileDetect_codegen.slx model from your current MATLAB folder.

13 Using the Installer for Computer Vision System Toolbox Product

13-52

2. On the Apps tab on the Simulink toolstrip, select Embedded Coder. On the C++ Code tab, select
the Settings list, then click C/C++ Code generation settings to open the Configuration Parameters
dialog box. Verify these settings:

• Under the Code Generation pane > in the Target selection section > Language is set to C++.
• Under the Code Generation pane > in the Target selection section > Language standard is

set to C++11 (ISO).
• Under the Code Generation pane > Interface > in the Data exchange interface section >

Array layout is set to Row-major.

3. If you want to generate production C++ code, where images are represented using the OpenCV
class cv::Mat instead of the C++ class images::datatypes::Image implemented by The
MathWorks®, under Data Type Replacement pane > select Implement images using OpenCV
Mat class.

4. Connect the generated subsystem subsystem_slwrap_detectAndDraw to the MATLAB Function
block.

5. To generate C++ code, under the C++ Code tab, click the Build button. After the model finishes
building, the generated code opens in the Code view.

6. You can inspect the generated code. When a model contains signals of Simulink.ImageType data
type, the code generator produces additional shared utility files. These files declare and define
utilities to construct, destruct, and return information about meta attributes of the images:

• image_type.h
• image_type.cpp

The build process creates a ZIP file called smileDetect_with_ToOpenCV.zip in your current
MATLAB working folder.

Deploy the Smile Detector on the Raspberry Pi Hardware

Before you deploy the model, connect the Raspberry Pi to your computer. Wait until the PWR LED on
the hardware starts blinking.

 Smile Detection by Using OpenCV Code in Simulink

13-53

In the Settings drop-down list, click Hardware Implementation to open the Configuration
Parameters dialog box and verify these settings:

• Set the Hardware board to Raspberry Pi. The Device Vendor is set to ARM Compatible.
• In the Code Generation pane, under Target selection, Language is set to C++. Under Build

process, Zip file name is set to smileDetect_with_ToOpenCV.zip. Under Toolchain
settings, the Toolchain is specified as GNU GCC Raspberry Pi.

To deploy the code to your Raspberry Pi hardware:

1. From the generated zip file, copy these files to your Raspberry Pi hardware.

• smiledetect.zip
• smileDetect.mk
• main.cpp

2. In Raspberry Pi, go to the location where you saved the files. To generate an elf file, enter this
command:

 make -f smileDetect.mk

3. Run the executable on Raspberry Pi. After successful execution, you see the output on Raspberry
Pi with an emoji placed on the face image.

 smileDetect.elf

See Also
ToOpenCV | FromOpenCV | Simulink.ImageType

More About
• Convert RGB Image to Grayscale Image by Using OpenCV Importer on page 13-38
• Draw Different Shapes by Using OpenCV Code in Simulink on page 13-31

13 Using the Installer for Computer Vision System Toolbox Product

13-54

Shadow Detection by Using OpenCV Code in Simulink

This example shows how to detect shadows in a recorded video by using the OpenCV Importer app.

First import an OpenCV function into Simulink® by following the “Install and Use Computer Vision
Toolbox Interface for OpenCV in Simulink” on page 13-24. The wizard creates a Simulink library that
contains a subsystem and a C Caller block for the specified OpenCV function. The subsystem is then
used in a preconfigured Simulink model to accept the recorded video and a threshold value for
shadow detection. The shadow detection works per the threshold value. The threshold value can be
changed using the slider component available in the model.

You learn how to:

• Import an OpenCV function into a Simulink library.
• Use blocks from a generated library in a Simulink model.

Set Up Your C++ Compiler

To build the OpenCV libraries, identify a compatible C++ compiler for your operating system, as
described in “Portable C Code Generation for Functions That Use OpenCV Library” on page 22-4.
Configure the identified compiler by using the mex -setup c++ command. For more information,
see “Choose a C++ Compiler”.

Model Description

In this example, a shadow detector is implemented by using the Simulink model
ShadowDetection.slx.

In this model, the subsystem_slwrap_run_shadow_detection subsystem resides in the
Shadow_Detection_Lib library. You create the subsystem_slwrap_run_shadow_detection
subsystem by using the OpenCV Importer app. The subsystem accepts a video from the From
Multimedia File block and a threshold value to detect the shadow in the video. The output is
displayed using the Video Viewer block. In the subsystem_slwrap_run_shadow_detection
subsystem, inImage is the input image, thresh is the threshold of the algorithm and outImage is
the output image. The threshold slider is used to change the threshold value during the simulation.

 Shadow Detection by Using OpenCV Code in Simulink

13-55

Copy Example Folder to a Writable Location

To access the path to the example folder, at the MATLAB® command line, enter:

 OpenCVSimulinkExamples;

Each subfolder contains all the supporting files required to run the example.

Before proceeding with these steps, ensure that you copy the example folder to a writable folder
location and change your current working folder to ...example\ShadowDetection. All your
output files are saved to this folder.

Step 1: Import OpenCV Function to Create a Simulink Library

1. To start the OpenCV Importer app, click Apps on the MATLAB Toolstrip. In the Welcome page,
specify the Project name as Shadow_Detection. Make sure that the project name does not contain
any spaces. Click Next.

2. In Specify OpenCV Library, specify these file locations, and then click Next.

• Project root folder : Specify the path of your example folder. This path is the path to the writable
project folder where you have saved your example files. All your output files are saved to this
folder.

• Source files : Specify the path of the .cpp file located inside your project folder as
shadow_detection.cpp.

• Include files : Specify the path of the .hpp header file located inside your project folder as
shadow_detection.hpp.

3. Analyze your library to find the functions and types for import. Once the analysis is complete, click
Next. Select the run_shadow_detection function and click Next.

4. From What to import, select the I/O Type for inImage and thresh as Input, outImage as
Output and then click Next.

13 Using the Installer for Computer Vision System Toolbox Product

13-56

5. In Create Simulink Library, configure the default values of OpenCV types. By default, Create a
single C-caller block for the OpenCV function is selected to create a C Caller block along with
the subsystem in the generated Simulink library.

6. Select Configure library to use Simulink.ImageType signals to configure the generated library
subsystem to use Simulink.ImageType signals.

7. Set Default Color Format of Simlink.ImageType signal to RGB, which is the default color
format of the image.

8. Set Default Array layout of Simulink.ImageType signal to Column-major, which is the default
array layout of the image.

9. To create a Simulink library, click Next.

 Shadow Detection by Using OpenCV Code in Simulink

13-57

A Simulink library Shadow_Detection_Lib is created from your OpenCV code into the project root
folder. The library contains a subsystem and a C Caller block. You can use any of these blocks for
model simulation. In this example, the subsystem subsystem_slwrap_run_shadow_detection is
used.

Step 2: Use Generated Subsystem in Simulink Model

To use the generated subsystem subsystem_slwrap_run_shadow_detection with the Simulink
model ShadowDetection.slx:

1. In your MATLAB current folder, right-click the model ShadowDetection.slx and click Open
from the context menu. Drag the generated subsystem from the library to the model. Insert the
subsystem between From Multimedia File block and Constant block and Video Viewer block.

2. Double-click the subsystem and configure these parameter values:

• Rows: 360
• Columns: 640
• Channels: 3
• Underlying Type: uint8

3. Click Apply, and then click OK.

Step 3: Simulate the Shadow Detector

On the Simulink Toolstrip, in the Simulation tab, click on Run to simulate the model. After the
simulation is complete, the Video Viewer block displays a video with shadows marked with a red
outline depending on the threshold value. For the displayed example video, threshold value is set to
0.0651.

13 Using the Installer for Computer Vision System Toolbox Product

13-58

See Also
ToOpenCV | FromOpenCV | Simulink.ImageType

More About
• Vehicle and Pedestrian Detector by Using OpenCV Code in Simulink on page 13-60
• Video Cartoonizer by Using OpenCV Code in Simulink on page 13-64

 Shadow Detection by Using OpenCV Code in Simulink

13-59

Vehicle and Pedestrian Detector by Using OpenCV Importer

This example shows how to build a Vehicle and Pedestrian Detector by using the OpenCV Importer
app. The model places green and red outline on the vehicle and pedestrians when detected in a
recorded video.

First import an OpenCV function into Simulink® by following the “Install and Use Computer Vision
Toolbox Interface for OpenCV in Simulink” on page 13-24. The app creates a Simulink library that
contains a subsystem and a C Caller block for the specified OpenCV function. The subsystem is then
used in a preconfigured Simulink model to accept the recorded video for vehicle and pedestrian
detection.

You learn how to:

• Import an OpenCV function into a Simulink library.
• Use blocks from a generated library in a Simulink model.

Set Up Your C++ Compiler

To build the OpenCV libraries, identify a compatible C++ compiler for your operating system, as
described in “Portable C Code Generation for Functions That Use OpenCV Library” on page 22-4.
Configure the identified compiler by using the mex -setup c++ command. For more information,
see “Choose a C++ Compiler”.

Model Description

In this example, a vehicle and pedestrian detector is implemented by using the Simulink model
VehiclePedestrianDetector.slx.

In this model, the subsystem_slwrap_drawDetect subsystem resides in the
Vehicle_Pedestrian_Detector_Lib library. You create the subsystem_slwrap_drawDetect
subsystem by using the OpenCV Importer app. The subsystem accepts a video from the From
Multimedia File block.

Copy Example Folder to a Writable Location

To access the path to the example folder, at the MATLAB® command line, enter:

 OpenCVSimulinkExamples;

13 Using the Installer for Computer Vision System Toolbox Product

13-60

Each subfolder contains all the supporting files required to run the example.

Before proceeding with these steps, ensure that you copy the example folder to a writable folder
location and change your current working folder to ...example
\Vehicle_Pedestrian_Detector. All your output files are saved to this folder.

Step 1: Import OpenCV Function to Create a Simulink Library

1. To start the OpenCV Importer app, click Apps on the MATLAB Toolstrip. In the Welcome page,
specify the Project name as Vehicle_Pedestrian_Detector. Make sure that the project name
does not contain any spaces. Click Next.

2. In Specify OpenCV Library, specify these file locations, and then click Next.

• Project root folder: Specify the path of your example folder. This path is the path to the writable
project folder where you have saved your example files. All your output files are saved to this
folder.

• Source files: Specify the path of the .cpp file located inside your project folder as
vehiclePedestrianDetector.cpp.

• Include files: Specify the path of the .hpp header file located inside your project folder as
vehiclePedestrianDetector.hpp.

3. Analyze your library to find the functions and types for import. Once the analysis is complete, click
Next. Select the drawDetect function and click Next.

4. From What to import, select the I/O Type for img as Input, out as Output and then click Next.

5. In Create Simulink Library, configure the default values of OpenCV types. By default, Create a
single C-caller block for the OpenCV function is selected to create a C Caller block along with
the subsystem in the generated Simulink library.

6. Select Configure library to use Simulink.ImageType signals to configure the generated library
subsystem to use Simulink.ImageType signals.

7. Set Default Color Format of Simlink.ImageType signal to RGB, which is the default color
format of the image.

8. Set Default Array layout of Simulink.ImageType signal to Column-major, which is the default
array layout of the image.

 Vehicle and Pedestrian Detector by Using OpenCV Importer

13-61

9. To create a Simulink library, click Next.

A Simulink library Vehicle_Pedestrian_Detector_Lib is created from your OpenCV code into
the project root folder. You can use any of these blocks for model simulation. In this example, the
subsystem subsystem_slwrap_drawDetect is used.

Step 2: Use Generated Subsystem in Simulink Model

To use the generated subsystem subsystem_slwrap_drawDetect with the Simulink model:

1. In your MATLAB current folder, right-click the VehiclePedestrianDetector.slx model and
click Open from the context menu. Drag the generated subsystem from the library to the model.
Insert the subsystem between From Multimedia File and Video Viewer block.

2. Double-click the subsystem and configure these parameter values:

• Rows: 180
• Columns: 320
• Channels: 3
• Underlying Type: uint8

3. Click Apply, and then click OK.

Step 3: Simulate the Vehicle and Pedestrian Detector

On the Simulink Toolstrip, in the Simulation tab, click on Run to simulate the model. After the
simulation is complete, the Video Viewer block displays the video of vehicle and pedestrians detected
in the video input.

13 Using the Installer for Computer Vision System Toolbox Product

13-62

See Also
ToOpenCV | FromOpenCV | Simulink.ImageType

More About
• Video Cartoonizer by Using OpenCV Code in Simulink on page 13-64
• Shadow Detection by Using OpenCV Code in Simulink on page 13-55

 Vehicle and Pedestrian Detector by Using OpenCV Importer

13-63

Video Cartoonizer by Using OpenCV Code in Simulink

This example shows how to use video cartoonizer to enhance colors of the recorded video by using
the OpenCV Importer app. The cartoonizer varies the colors in the video using parameters such as
maskRadius, threshold, and ramp.

First import an OpenCV function into Simulink® by following the “Install and Use Computer Vision
Toolbox Interface for OpenCV in Simulink” on page 13-24. The app creates a Simulink library that
contains a subsystem and a C Caller block for the specified OpenCV function. The subsystem is then
used in a preconfigured Simulink model to accept the recorded video. The cartoonizer works per the
maskRadius, threshold, and ramp value. You can change the maskRadius, threshold, and ramp
values using the slider component available in the model.

You learn how to:

• Import an OpenCV function into a Simulink library.
• Use blocks from a generated library in a Simulink model.

Set Up Your C++ Compiler

To build the OpenCV libraries, identify a compatible C++ compiler for your operating system, as
described in “Portable C Code Generation for Functions That Use OpenCV Library” on page 22-4.
Configure the identified compiler by using the mex -setup c++ command. For more information,
see “Choose a C++ Compiler”.

Model Description

In this example, a video cartoonizer is implemented by using the Simulink model Cartoonizer.slx.

In this model, the subsystem_slwrap_cartoonize subsystem resides in the Cartoonizer_Lib
library. You create the subsystem_slwrap_cartoonize subsystem by using the OpenCV
Importer app. The subsystem accepts a video from the From Multimedia File block, maskRadius,
threshold, and a ramp value to cartoonize the video. The output is displayed using the Video Viewer
block. In the subsystem_slwrap_cartoonize subsystem, inImage is the input image,
maskRadius is the size of the image filter for intensity comparison, threshold is the threshold
intensity difference between pixels which results in darkening the video, ramp is intensity gradient in
the output image and outImage is the output image. The sliders of maskRadius, threshold, and
ramp is used to change the value during the simulation.

13 Using the Installer for Computer Vision System Toolbox Product

13-64

Copy Example Folder to a Writable Location

To access the path to the example folder, at the MATLAB® command line, enter:

 OpenCVSimulinkExamples;

Each subfolder contains all the supporting files required to run the example.

Before proceeding with these steps, ensure that you copy the example folder to a writable folder
location and change your current working folder to ...example\Cartoonizer. All your output files
are saved to this folder.

Step 1: Import OpenCV Function to Create a Simulink Library

1. To start the OpenCV Importer app, click Apps on the MATLAB Toolstrip. In the Welcome page,
specify the Project name as Cartoonizer. Make sure that the project name does not contain any
spaces. Click Next.

2. In Specify OpenCV Library, specify these file locations, and then click Next.

• Project root folder: Specify the path of your example folder. This path is the path to the writable
project folder where you have saved your example files. All your output files are saved to this
folder.

• Source files: Specify the path of the .cpp file located inside your project folder as
cartoonizer.cpp.

• Include files: Specify the path of the .hpp header file located inside your project folder as
cartoonizer.hpp.

3. Analyze your library to find the functions and types for import. Once the analysis is complete, click
Next. Select the cartoonize function and click Next.

4. From What to import, select the I/O Type for inImage, maskRadius, threshold, and ramp as
Input, outImg as Output and then click Next.

 Video Cartoonizer by Using OpenCV Code in Simulink

13-65

5. In Create Simulink Library, configure the default values of OpenCV types. By default, Create a
single C-caller block for the OpenCV function is selected to create a C Caller block along with
the subsystem in the generated Simulink library.

6. Select Configure library to use Simulink.ImageType signals to configure the generated library
subsystem to use Simulink.ImageType signals.

7. Set Default Color Format of Simlink.ImageType signal to RGB, which is the default color
format of the image.

8. Set Default Array layout of Simulink.ImageType signal to Column-major, which is the default
array layout of the image.

13 Using the Installer for Computer Vision System Toolbox Product

13-66

9. To create a Simulink library, click Next.

A Simulink library cartoonize_Lib is created from your OpenCV code into the project root folder.
The library contains a subsystem and a C Caller block. You can use any of these blocks for model
simulation. In this example, the subsystem subsystem_slwrap_cartoonize is used.

Step 2: Use Generated Subsystem in Simulink Model

To use the generated subsystem subsystem_slwrap_cartoonize with the Simulink model
Cartoonizer.slx:

1. In your MATLAB current folder, right-click the model Cartoonizer.slx and click Open from the
context menu. Drag the generated subsystem from the library to the model. Insert the subsystem
between the input blocks and the Video Viewer block.

2. Double-click the subsystem and configure these parameter values:

• Rows: 240
• Columns: 360
• Channels: 3
• Underlying Type: uint8

3. Click Apply, and then click OK.

Step 3: Simulate the Cartoonizer

On the Simulink Toolstrip, in the Simulation tab, click on Run to simulate the model. After the
simulation is complete, the Video Viewer block displays the video with color enhancement based on
the value of maskRadius, threshold, and ramp.

 Video Cartoonizer by Using OpenCV Code in Simulink

13-67

See Also
ToOpenCV | FromOpenCV | Simulink.ImageType

More About
• Vehicle and Pedestrian Detector by Using OpenCV Code in Simulink on page 13-60
• Shadow Detection by Using OpenCV Code in Simulink on page 13-55

13 Using the Installer for Computer Vision System Toolbox Product

13-68

Convert Between Simulink Image Type and Matrices
You can import image data into a Simulink model as matrix data or as an image with the
Simulink.ImageType data type. Image To Matrix and Matrix To Image blocks convert between
Simulink image data and matrix data. Use these blocks to integrate Simulink image data into an
image processing algorithm that contains blocks that do not support Simulink image data.

Copy Example Model to a Writable Location
To access the path to the example folder, at the MATLAB command line, enter:

OpenCVSimulinkExamples;

Copy the example model ex_imagetypes to a writable folder location.

Example Model
The model ex_imagetypes contains two input images, coins and peppers_bw, specified as
matrices. The MATLAB Function block contrast_histeq converts the original images into high-
contrast images. The MATLAB Function block operates on matrix data only. The Image To Matrix
block converts the image data from the Switch block into a matrix to enable the MATLAB Function
block to process it.

Simulate Model
On the Simulink toolstrip, in the Simulation tab, select Run to simulate the model. The Video Viewer
block Video Viewer Original displays the original images imported into the model, and Video
Viewer High Contrast displays the high-contrasted images after image processing.

 Convert Between Simulink Image Type and Matrices

13-69

Generate C++ Code
To generate C++ code:

1 On the Apps tab on the Simulink toolstrip, select Simulink Coder. On the C++ Code tab, in the
Settings list, select C/C++ Code generation settings to open the Configuration Parameters
dialog box and verify these settings:

• In the Simulation Target pane, Language is set to C++.
• In the Code Generation pane, under Target selection, Language is set to C++.
• In the same section, Language standard is set to C++11 (ISO).

2 Click the Build button and generate code.
3 To view the generated code, on the Simulink toolstrip, click the Open Report button.

13 Using the Installer for Computer Vision System Toolbox Product

13-70

In the ex_imagetype.h file, the code generator declares root-level Outports Out_normmal as a
member of the C++ class images::datatypes::Image implemented by The MathWorks® and
Out_highContrast as a matrix image:
/* External outputs (root outports fed by signals with default storage) */
struct ExtY_ex_imagetypes_T {
 images::datatypes::Image Out_normal; /* '<Root>/Out_normal' */
 uint8_T Out_highContrast[73800]; /* '<Root>/Out_highContrast' */
};

The code generator initializes signals of the Simulink.ImageType data type in the
ex_imagetypes.c file:
/* Model initialize function */
void ex_imagetypes::initialize()
{
 /* Registration code */
 constructImage(&ex_imagetypes_B.toImage, 1U, 246U, 300U, images::datatypes::
 ColorFormat::Grayscale, images::datatypes::Layout::
 ColumnMajorPlanar, images::datatypes::ClassUnderlying::Uint8);
 constructImage(&ex_imagetypes_Y.Out_normal, 1U, 246U, 300U, images::datatypes::
 ColorFormat::Grayscale, images::datatypes::Layout::
 ColumnMajorPlanar, images::datatypes::ClassUnderlying::Uint8);
 ...
}

This is the code for a Matrix To Image block:

/* ToImage: '<S2>/toImage' incorporates:
 * Constant: '<Root>/coins'
 * Outport: '<Root>/Out_normal'
 */
 imgData = imageGetDataFcn(&ex_imagetypes_Y.Out_normal);
 inPtr = &ex_imagetypes_ConstP.coins_Value[0];
 std::memcpy(imgData, inPtr, sizeof(uint8_T) * 73800U);

This is the code for the Image To Matrix block:
/* FromImage: '<S1>/fromImage' incorporates:
 * Outport: '<Root>/Out_normal'
 */
 tmp_3 = ex_imagetypes_Y.Out_normal;
 imgData = imageGetDataFcn(&tmp_3);
 std::memcpy(&ex_imagetypes_B.fromImage[0], imgData, sizeof(uint8_T) * 73800U);

When a model contains signals of the Simulink.ImageType data type, the code generator produces
additional shared utility files. These files declare and define utilities to construct, destruct, and return
information about meta attributes of the images:

• image_type.h
• image_type.cpp

See Also
Matrix To Image | Image To Matrix | Simulink.ImageType

Related Examples
• “Install and Use Computer Vision Toolbox Interface for OpenCV in Simulink” on page 13-24
• “Smile Detection by Using OpenCV Code in Simulink” on page 13-45

 Convert Between Simulink Image Type and Matrices

13-71

Input, Output, and Conversions

Learn how to import and export videos, and perform color space and video image conversions.

• “Export to Video Files” on page 14-2
• “Import from Video Files” on page 14-4
• “Batch Process Image Files” on page 14-6
• “Convert R'G'B' to Intensity Images” on page 14-7
• “Process Multidimensional Color Video Signals” on page 14-10
• “Video Formats” on page 14-12
• “Image Formats” on page 14-13

14

Export to Video Files
The Computer Vision Toolbox blocks enable you to export video data from your Simulink model. In
this example, you use the To Multimedia File block to export a multimedia file from your model. This
example also uses Gain blocks from the Math Operations Simulink library.

You can open the example model by typing at the MATLAB command line.

ex_export_to_mmf

1 Run your model.
2 You can view your video in the To Video Display window.

By increasing the red, green, and blue color values, you increase the contrast of the video. The To
Multimedia File block exports the video data from the Simulink model to a multimedia file that it
creates in your current folder.

This example manipulated the video stream and exported it from a Simulink model to a multimedia
file. For more information, see the To Multimedia File block reference page.

Setting Block Parameters for this Example
The block parameters in this example were modified from default values as follows:

Block Parameter
Gain The Gain blocks are used to increase the red, green, and blue values

of the video stream. This increases the contrast of the video:

• Main pane, Gain = 1.2
• Signal Attributes pane, Output data type = Inherit: Same

as input
To Multimedia File The To Multimedia File block exports the video to a multimedia file:

• File name = my_output.avi
• Write = Video only
• Image signal = Separate color signals

14 Input, Output, and Conversions

14-2

matlab:ex_export_to_mmf

Configuration Parameters
Open the Configuration Parameters dialog box from the Modeling tab by selecting Model Settings
> Model Settings. Set the Solver parameters as follows:

• Stop time = 20
• Type = Fixed-step
• Solver = Discrete (no continuous states)

 Export to Video Files

14-3

Import from Video Files
In this example, you use the From Multimedia File source block to import a video stream into a
Simulink model and the To Video Display sink block to view it. This procedure assumes you are
working on a Windows platform.

You can open the example model by typing at the MATLABcommand line.

ex_import_mmf

1 Run your model.
2 View your video in the To Video Display window that automatically appears when you start your

simulation.

You have now imported and displayed a multimedia file in the Simulink model. In the “Export to Video
Files” on page 14-2 example you can manipulate your video stream and export it to a multimedia file.

For more information on the blocks used in this example, see the From Multimedia File and To Video
Display block reference pages.

Setting Block Parameters for this Example
The block parameters in this example were modified from default values as follows:

Block Parameter
From Multimedia File Use the From Multimedia File block to import the multimedia file into

the model:

• If you do not have your own multimedia file, use the default
vipmen.avi file, for the File name parameter.

• If the multimedia file is on your MATLAB path, enter the filename for
the File name parameter.

• If the file is not on your MATLAB path, use the Browse button to
locate the multimedia file.

• Set the Image signal parameter to Separate color signals.

By default, the Number of times to play file parameter is set to inf.
The model continues to play the file until the simulation stops.

14 Input, Output, and Conversions

14-4

matlab:ex_import_mmf

Block Parameter
To Video Display Use the To Video Display block to view the multimedia file.

• Image signal: Separate color signals

Set this parameter from the Settings menu of the display viewer.

Configuration Parameters
Open the Configuration Parameters dialog box from the Modeling tab by selecting Model Settings
> Model Settings. Set the Solver parameters as follows:

• Stop time = 20
• Type = Fixed-step
• Solver = Discrete (no continuous states)

 Import from Video Files

14-5

Batch Process Image Files
A common image processing task is to apply an image processing algorithm to a series of files. In this
example, you import a sequence of images from a folder into the MATLAB workspace.

Note In this example, the image files are a set of 10 microscope images of rat prostate cancer cells.
These files are only the first 10 of 100 images acquired.

1 Specify the folder containing the images, and use this information to create a list of the file
names, as follows:

fileFolder = fullfile(matlabroot,'toolbox','images','imdata');
dirOutput = dir(fullfile(fileFolder,'AT3_1m4_*.tif'));
fileNames = {dirOutput.name}'

2 View one of the images, using the following command sequence:

I = imread(fileNames{1});
imshow(I);
text(size(I,2),size(I,1)+15, ...
 'Image files courtesy of Alan Partin', ...
 'FontSize',7,'HorizontalAlignment','right');
text(size(I,2),size(I,1)+25,
 'Johns Hopkins University', ...
 'FontSize',7,'HorizontalAlignment','right');

3 Use a for loop to create a variable that stores the entire image sequence. You can use this
variable to import the sequence into Simulink.

for i = 1:length(fileNames)
 my_video(:,:,i) = imread(fileNames{i});
end

For additional information about batch processing, see the “Image Sequences and Batch Processing”
section for the Image Processing Toolbox™.

Configuration Parameters
Open the Configuration Parameters dialog box from the Modeling tab by selecting Model Settings
> Model Settings. Set the Solver parameters as follows:

• Stop time = 10
• Type = Fixed-step
• Solver = Discrete (no continuous states)

14 Input, Output, and Conversions

14-6

Convert R'G'B' to Intensity Images
The Color Space Conversion block enables you to convert color information from the R'G'B' color
space to the Y'CbCr color space and from the Y'CbCr color space to the R'G'B' color space as
specified by Recommendation ITU-R BT.601-5. This block can also be used to convert from the R'G'B'
color space to intensity. The prime notation indicates that the signals are gamma corrected.

Some image processing algorithms are customized for intensity images. If you want to use one of
these algorithms, you must first convert your image to intensity. In this topic, you learn how to use
the Color Space Conversion block to accomplish this task. You can use this procedure to convert any
R'G'B' image to an intensity image:

ex_vision_convert_rgb

1 Define an R'G'B' image in the MATLAB workspace. To read in an R'G'B' image from a JPG file, at
the MATLAB command prompt, type

I= imread('greens.jpg');

I is a 300-by-500-by-3 array of 8-bit unsigned integer values. Each plane of this array represents
the red, green, or blue color values of the image.

2 To view the image this matrix represents, at the MATLAB command prompt, type

imshow(I)

3 Create a new Simulink model, and add to it the blocks shown in the following table.

 Convert R'G'B' to Intensity Images

14-7

matlab:ex_vision_convert_rgb

Block Library Number of
Blocks

Image From Workspace Computer Vision Toolbox > Sources 1
Color Space Conversion Computer Vision Toolbox > Conversions 1
Video Viewer Computer Vision Toolbox > Sinks 2

4 Use the Image From Workspace block to import your image from the MATLAB workspace. Set
theValue parameter to I.

5 Use the Color Space Conversion block to convert the input values from the R'G'B' color space to
intensity. Set the Conversion parameter to R'G'B' to intensity.

6 View the modified image using the Video Viewer block. View the original image using the Video
Viewer1 block. Accept the default parameters.

7 Connect the blocks so that your model is similar to the following figure.

8 Set the configuration parameters. Open the Configuration dialog box by selecting Model
Settings from the Setup menu on the Modeling tab. Set the parameters as follows:

• Solver pane, Stop time = 0
• Solver pane, Type = Fixed-step
• Solver pane, Solver = Discrete (no continuous states)

9 Run your model.

The image displayed in the Video Viewer window is the intensity version of the greens.jpg
image.

14 Input, Output, and Conversions

14-8

 Convert R'G'B' to Intensity Images

14-9

Process Multidimensional Color Video Signals
The Computer Vision Toolbox software enables you to work with color images and video signals as
multidimensional arrays. For example, the following model passes a color image from a source block
to a sink block using a 384-by-512-by-3 array.

ex_vision_process_multidimensional

You can choose to process the image as a multidimensional array by setting the Image signal
parameter to One multidimensional signal in the Image From File block dialog box.

The blocks that support multidimensional arrays meet at least one of the following criteria:

• They have the Image signal parameter on their block mask.
• They have a note in their block reference pages that says, “This block supports intensity and color

images on its ports.”
• Their input and output ports are labeled “Image”.

14 Input, Output, and Conversions

14-10

matlab:ex_vision_process_multidimensional

You can also choose to work with the individual color planes of images or video signals. For example,
the following model passes a color image from a source block to a sink block using three separate
color planes.

ex_vision_process_individual

To process the individual color planes of an image or video signal, set the Image signal parameter to
Separate color signals in both the Image From File and Video Viewer block dialog boxes.

Note The ability to output separate color signals is a legacy option. It is recommend that you use
multidimensional signals to represent color data.

If you are working with a block that only outputs multidimensional arrays, you can use the Selector
block to separate the color planes. If you are working with a block that only accepts multidimensional
arrays, you can use the Matrix Concatenation block to create a multidimensional array.

 Process Multidimensional Color Video Signals

14-11

matlab:ex_vision_process_individual

Video Formats

Defining Intensity and Color
Video data is a series of images over time. Video in binary or intensity format is a series of single
images. Video in RGB format is a series of matrices grouped into sets of three, where each matrix
represents an R, G, or B plane.

The values in a binary, intensity, or RGB image can be different data types. The data type of the image
values determines which values correspond to black and white as well as the absence or saturation of
color. The following table summarizes the interpretation of the upper and lower bound of each data
type. In the Simulink Toolstrip, on the Debug tab, select Information Overlays > Base Data Types.

Data Type Black or Absence of Color White or Saturation of Color
Fixed point Minimum data type value Maximum data type value
Floating point 0 1

Note The Computer Vision Toolbox software considers any data type other than double-precision
floating point and single-precision floating point to be fixed point.

For example, for an intensity image whose image values are 8-bit unsigned integers, 0 is black and
255 is white. For an intensity image whose image values are double-precision floating point, 0 is
black and 1 is white. For an intensity image whose image values are 16-bit signed integers, -32768 is
black and 32767 is white.

For an RGB image whose image values are 8-bit unsigned integers, 0 0 0 is black, 255 255 255 is
white, 255 0 0 is red, 0 255 0 is green, and 0 0 255 is blue. For an RGB image whose image values are
double-precision floating point, 0 0 0 is black, 1 1 1 is white, 1 0 0 is red, 0 1 0 is green, and 0 0 1 is
blue. For an RGB image whose image values are 16-bit signed integers, -32768 -32768 -32768 is
black, 32767 32767 32767 is white, 32767 -32768 -32768 is red, -32768 32767 -32768 is green, and
-32768 -32768 32767 is blue.

Video Data Stored in Column-Major Format
The MATLAB technical computing software and Computer Vision Toolbox blocks use column-major
data organization. The blocks' data buffers store data elements from the first column first, then data
elements from the second column second, and so on through the last column.

If you have imported an image or a video stream into the MATLAB workspace using a function from
the MATLAB environment or the Image Processing Toolbox, the Computer Vision Toolbox blocks will
display this image or video stream correctly. If you have written your own function or code to import
images into the MATLAB environment, you must take the column-major convention into account.

14 Input, Output, and Conversions

14-12

Image Formats
In the Computer Vision Toolbox software, images are real-valued ordered sets of color or intensity
data. The blocks interpret input matrices as images, where each element of the matrix corresponds to
a single pixel in the displayed image. Images can be binary, intensity (grayscale), or RGB. This section
explains how to represent these types of images.

Binary Images
Binary images are represented by a Boolean matrix of 0s and 1s, which correspond to black and
white pixels, respectively.

For more information, see “Binary Images”.

Intensity Images
Intensity images are represented by a matrix of intensity values. While intensity images are not
stored with colormaps, you can use a gray colormap to display them.

For more information, see “Grayscale Images”.

RGB Images
RGB images are also known as a true-color images. With Computer Vision Toolbox blocks, these
images are represented by an array, where the first plane represents the red pixel intensities, the
second plane represents the green pixel intensities, and the third plane represents the blue pixel
intensities. In the Computer Vision Toolbox software, you can pass RGB images between blocks as
three separate color planes or as one multidimensional array.

For more information, see “Truecolor Images”.

 Image Formats

14-13

Display and Graphics

• “Choose Function to Visualize Detected Objects” on page 15-2
• “Display, Stream, and Preview Videos” on page 15-5
• “Draw Shapes and Lines” on page 15-7

15

Choose Function to Visualize Detected Objects
Computer Vision Toolbox offers several functions to visualize detected objects by inserting or
overlaying shapes on image, video, and point cloud data.

The insert-related functions draw shapes and text by fusing them with image and video data. The
showShape function uses MATLAB graphics to overlay shapes and text on top of image, video, and
point cloud data and is rendered in a MATLAB axes.

This table compares the visualization functions on the basis of their support for image, video, and
point cloud data.

Function Images Video Point Clouds Code
Generation

Example

insertShape Yes Yes No Yes

Insert Shapes
on Image

insertText Yes Yes No Yes

Insert Text on
Image

insertObject
Annotation

Yes Yes No Yes

Annotate an
Image

15 Display and Graphics

15-2

Function Images Video Point Clouds Code
Generation

Example

insertMarker Yes Yes No Yes

Insert Markers
on Image

insertObject
Mask

Yes Yes No Yes

Insert
Multicolor
Masks on Image

showShape Yes Yes Yes No

Show Cuboid on
Detected Object
in Point Cloud

plot object
function of the
cylinderMode
l

No No Yes No

Fit Cylinder
Shape on Point
Cloud

 Choose Function to Visualize Detected Objects

15-3

Function Images Video Point Clouds Code
Generation

Example

plot object
function of the
sphereModel

No No Yes No

“Detect Sphere
in Point Cloud”

plot object
function of the
planeModel

No No Yes No

Fit Plane Shape
on Point Cloud

plot object
function of the
cuboidModel
object.

No No Yes No

“Fit Cuboid
Over Point
Cloud Data”
(Lidar Toolbox)

See Also
Objects
cuboidModel | planeModel | sphereModel | cylinderModel | pcplayer |
vision.VideoPlayer | vision.DeployableVideoPlayer

Functions
pcshow | imshow | showShape | insertObjectMask | insertMarker |
insertObjectAnnotation | insertText | insertShape

15 Display and Graphics

15-4

Display, Stream, and Preview Videos
In this section...
“View Streaming Video in MATLAB” on page 15-5
“Preview Video in MATLAB” on page 15-5
“View Video in Simulink” on page 15-5

View Streaming Video in MATLAB
Basic Video Streaming

Use the video player vision.VideoPlayer System object when you require a simple video display
in MATLAB for streaming video.

Code Generation Supported Video Streaming Object

Use the deployable video player vision.DeployableVideoPlayer System object as a basic display
viewer designed for optimal performance. This object supports code generation on all platforms.

Preview Video in MATLAB
Use the Image Processing Toolbox Video Viewer app to view videos directly from file or from
variables in the MATLAB workspace. The app is a full featured video player with toolbar controls. The
app also offers access to tools that enable you to modify the appearance of the video and to inspect
the data in a region of the image in finer detail.

You can open several instances of the Video Viewer app simultaneously to view multiple video data
sources at once. You can also dock the apps in the MATLAB desktop. Use the figure arrangement
buttons in the upper-right corner of the Sinks window to control the placement of the docked players.

View Video in Simulink
Code Generation Supported Video Streaming Block

Use the To Video Display block in your Simulink model as a simple display viewer designed for
optimal performance. This block supports code generation for the Windows platform.

Simulation Control and Video Analysis Block

Use the Video Viewer block when you require a wired-in video display with simulation controls in
your Simulink model. The Video Viewer block provides simulation control buttons directly from the
player interface. The block integrates play, pause, and step features while running the model and also
provides video analysis tools such as pixel region viewer.

View Video Signals Without Adding Blocks

The Video Viewer app enables you to view video signals in Simulink models without adding blocks to
your model. You can open several instances of the app simultaneously to view multiple video data
sources at once. You can also dock these apps in the MATLAB desktop. Use the figure arrangement
buttons in the upper-right corner of the Sinks window to control the placement of the docked apps.

 Display, Stream, and Preview Videos

15-5

Set Simulink simulation mode to Normal to use Video Viewer. The app does not work when you use
“Accelerating Simulink Models” on page 22-3.

Example 15.1. Use implay to view a Simulink signal:

1 Open a Simulink model.
2 Open the Video Viewer app by typing implay on the MATLAB command line.
3 Run the Simulink model.
4 Select the signal line you want to view.
5 On the Video Viewer toolbar, select File > Connect to Simulink Signal .

The video appears in the player window.
6 You can use multiple Video Viewer apps to display different Simulink signals.

Note During code generation, the Simulink Coder™ does not generate code for the Video Viewer
app.

15 Display and Graphics

15-6

Draw Shapes and Lines
When you specify the type of shape to draw, you must also specify its location on the image. The table
shows the format for the points input for the different shapes.

Rectangle
Shape PTS input Drawn Shape
Single Rectangle Four-element row vector

[x y width height] where

• x and y are the one-based coordinates of the
upper-left corner of the rectangle.

• width and height are the width, in pixels,
and height, in pixels, of the rectangle. The
values of width and height must be greater
than 0.

M Rectangles M-by-4 matrix

x1 y1 width1 height1
x2 y2 width2 height2
⋮ ⋮ ⋮ ⋮
xM yM widthM heightM

where each row of the matrix corresponds to a
different rectangle and is of the same form as the
vector for a single rectangle.

Line and Polyline
You can draw one or more lines, and one or more polylines. A polyline contains a series of connected
line segments.

Shape PTS input Drawn Shape
Single Line Four-element row vector [x1 y1 x2 y2] where

• x1 and y1 are the coordinates of the beginning
of the line.

• x2 and y2 are the coordinates of the end of the
line.

 Draw Shapes and Lines

15-7

Shape PTS input Drawn Shape
M Lines M-by-4 matrix

x11 y11 x12 y12
x21 y21 x22 y22

⋮ ⋮ ⋮ ⋮
xM1 yM1 xM2 yM2

where each row of the matrix corresponds to a
different line and is of the same form as the
vector for a single line.

Single Polyline with
(L-1) Segments

Vector of size 2L, where L is the number of
vertices, with format, [x1, y1, x2, y2, ...,
xL, yL].

• x1 and y1 are the coordinates of the beginning
of the first line segment.

• x2 and y2 are the coordinates of the end of the
first line segment and the beginning of the
second line segment.

• xL and yL are the coordinates of the end of the
(L-1)th line segment.

The polyline always contains (L-1) number of
segments because the first and last vertex points
do not connect. The block produces an error
message when the number of rows is less than
two or not a multiple of two.

M Polylines with (L-1)
Segments

2L-by-N matrix

x11 y11 x12 y12 ⋯ x1L y1L

x21 y21 x22 y22 ⋯ x2L y2L

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
xM1 yM1 xM2 yM2 ⋯ xML yML

where each row of the matrix corresponds to a
different polyline and is of the same form as the
vector for a single polyline. When you require
one polyline to contain less than (L–1) number of
segments, fill the matrix by repeating the
coordinates of the last vertex.

The block produces an error message if the
number of rows is less than two or not a multiple
of two.

15 Display and Graphics

15-8

Polygon
You can draw one or more polygons.

Shape PTS input Drawn Shape
Single Polygon with L
line segments

Row vector of size 2L, where L is the number of
vertices, with format, [x1 y1 x2 y2 ... xL yL]
where

• x1 and y1 are the coordinates of the beginning
of the first line segment.

• x2 and y2 are the coordinates of the end of the
first line segment and the beginning of the
second line segment.

• xL and yL are the coordinates of the end of the
(L-1)th line segment and the beginning of the
Lth line segment.

The block connects [x1 y1] to [xL yL] to
complete the polygon. The block produces an
error if the number of rows is negative or not a
multiple of two.

M Polygons with the
largest number of line
segments in any line
being L

M-by-2L matrix

x11 y11 x12 y12 ⋯ x1L y1L

x21 y21 x22 y22 ⋯ x2L y2L

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
xM1 yM1 xM2 yM2 ⋯ xML yML

where each row of the matrix corresponds to a
different polygon and is of the same form as the
vector for a single polygon. If some polygons are
shorter than others, repeat the ending
coordinates to fill the polygon matrix.

The block produces an error message if the
number of rows is less than two or is not a
multiple of two.

Circle
You can draw one or more circles.

 Draw Shapes and Lines

15-9

Shape PTS input Drawn Shape
Single Circle Three-element row vector

[x y radius] where

• x and y are coordinates for the center of the
circle.

• radius is the radius of the circle, which must
be greater than 0.

M Circles M-by-3 matrix

x1 y1 radius1

x2 y2 radius2

⋮ ⋮ ⋮
xM yM radiusM

where each row of the matrix corresponds to a
different circle and is of the same form as the
vector for a single circle.

See Also
insertObjectAnnotation | insertShape | insertMarker | insertText

15 Display and Graphics

15-10

Registration and Stereo Vision

• “Select Calibration Pattern and Set Properties” on page 16-2
• “Prepare Camera and Capture Images” on page 16-4
• “Calibration Patterns” on page 16-6
• “Fisheye Calibration Basics” on page 16-11
• “Using the Single Camera Calibrator App” on page 16-24
• “Using the Stereo Camera Calibrator App” on page 16-38
• “What Is Camera Calibration?” on page 16-51
• “Structure from Motion Overview” on page 16-67

16

Select Calibration Pattern and Set Properties
After selecting the images you want to use, the Camera Calibrator app displays an Image and
Pattern Properties dialog box, or the Stereo Camera Calibrator app displays a Load Stereo Images
dialog box. In the Pattern Selection section, select the type of pattern to use for the calibration. The
drop-down lists the natively supported patterns and any previously created custom patterns.
Alternatively, you can create a custom pattern by using a template. For more details, see “Custom
Pattern Detector” on page 16-9.

You must provide calibration pattern properties related to the size and dimension of the pattern
structure. For checkerboard patterns, specify the square size. For the Camera Calibrator app, you
must also select low or high image distortion. Select High distortion when the images have been
taken using a wide-angle lens, such as a fisheye camera.

Pattern Calibrator App Support Example
Checkerboard • Camera Calibrator

• Stereo Camera Calibrator

Symmetric Circle Grid • Camera Calibrator

16 Registration and Stereo Vision

16-2

Pattern Calibrator App Support Example
Asymmetric Circle Grid • Camera Calibrator

• Stereo Camera Calibrator

 Select Calibration Pattern and Set Properties

16-3

Prepare Camera and Capture Images

Camera Setup
To calibrate your camera, follow these rules and tips:

• Capture the images with a fixed focus by disabling the autofocus of the camera. Set the focus of
the camera for your application.

• Place the calibration pattern at such a distance from the camera that at least 20% of the image is
covered by pattern.

• If capturing images using a stereo camera pair, place the pattern in different orientations such
that it is fully visible from both cameras of the stereo camera pair.

• Keep in mind that changing the zoom setting between images, changes the focal length.

Capture Images
For better results, use a minimum of 10 to 20 images of the calibration pattern. The calibrator
requires at least three images. Use uncompressed images or images in lossless compression formats
such as PNG. For greater calibration accuracy:

• Capture the images of the pattern at a distance roughly equal to the distance from your camera to
the objects of interest. For example, if you plan to measure objects from 2 meters, keep your
pattern approximately 2 meters from the camera.

• Place the pattern at an angle less than 45 degrees relative to the camera plane.

• Do not modify the images For example, do not crop them.
• Do not use autofocus or change the zoom settings between images.
• Capture the images of the calibration pattern at different orientations relative to the camera. For

more information on calibration patterns, see “Calibration Patterns” on page 16-6.
• Capture a variety of images of the pattern to account for as much of the image frame as possible.

Lens distortion increases radially from the center of the image, and is not always uniform across
the image frame. To capture this lens distortion, the pattern must include areas near the edges of
the captured images.

16 Registration and Stereo Vision

16-4

The calibrator works with a range of pattern sizes. As a general rule, your pattern should fill at least
20% of the captured image. For example, these images have been taken with a checkerboard square
size of 108 mm:

 Prepare Camera and Capture Images

16-5

Calibration Patterns
In this section...
“What Are Calibration Patterns?” on page 16-6
“Supported Patterns” on page 16-8
“Checkerboard Pattern” on page 16-8
“Circle Grid Patterns” on page 16-9
“Custom Pattern Detector” on page 16-9

The Camera Calibrator and Stereo Camera Calibrator app support checkerboard, circle grid, and
custom detector patterns to extract keypoints. The apps enable you to select a checkerboard,
symmetric circle grid, or asymmetric circle grid detector pattern. The apps also provide the ability for
you to add a custom pattern detector, and provide built-in templates to help you create it.

What Are Calibration Patterns?
Camera calibration estimates the parameters of a lens, the image sensor of an image, or a video
camera. You can use these parameters to estimate structures in a scene and to remove lens
distortion. The camera parameters include:

• Intrinsics — These relate to the internal characteristics of a camera, such as the focal length, the
optical center (also known as the principal point), and the skew coefficient.

• Extrinsics — These describe the location (position and orientation) of the camera in the 3-D scene.

For more detail on how intrinsics and extrinsics are calculated, and explanations of single camera
(pinhole) and fisheye camera calibration, see “What Is Camera Calibration?” on page 16-51 and
“Fisheye Calibration Basics” on page 16-11, respectively.

To estimate the intrinsics and extrinsics parameters, you need 3-D world points and their
corresponding 2-D image points. You can get these correspondences by using multiple images of a
calibration pattern. The calibration pattern, sometimes known as a calibration grid or a calibration
target, is a repeating pattern of known size and spacing.

For example, a checkerboard pattern consists of alternating white and black squares of equal size.
The corners of the squares that lie inside the pattern are used as the control points. These corners
can be detected on the 2-D calibration image automatically by using a corner detector algorithm. By
assuming the lower-right corner point of the top-left square of the checkerboard is the origin, we can
also determine their 3-D world coordinates of the points by using the square size of the
checkerboard.

16 Registration and Stereo Vision

16-6

Similar assumptions are used to identify the origin in different types of calibration patterns, so that
algorithms can automatically identify them based on their structure. When calibrating stereo
cameras, the origin of the pattern must be uniquely identifiable, and thus should not have 180-degree
ambiguity. This means, the pattern should not look the same when rotated by 180 degrees. These are
examples of calibration patterns that contain 180-degree ambiguity, and should be avoided when
calibrating stereo cameras:

 Calibration Patterns

16-7

Supported Patterns
Computer Vision Toolbox contains an example pattern for each of the natively supported pattern
types. To open a PDF file for any of these supported patterns, select the link or type the
corresponding command at the MATLAB prompt:

• Checkerboard pattern:

open checkerboardPattern.pdf

• Symmetric Circles Grid Pattern:

open symmetricCirclesGridPattern.pdf

• Asymmetric Circles Grid Pattern:

open asymmetricCirclesGridPattern.pdf

Checkerboard Pattern
The checkerboard pattern is the most commonly used calibration pattern for camera calibration. The
control points for this pattern are the corners that lie inside the checkerboard. Because corners are
extremely small, they are often invariant to perspective and lens distortion. The calibrator apps can
also detect partial checkerboards, which can be useful when calibrating cameras with wide-angle
lenses. Use a checkerboard that contains an even number of squares along one edge and an odd
number of squares along the other edge, with two black corner squares along one side and two white
corner squares on the opposite side. This enables the app to determine the orientation of the pattern
and the origin. The calibrator assigns the longer side as the x-direction. A square checkerboard
pattern can produce unexpected results for camera extrinsics.

To prepare the checkerboard pattern:

1 Attach the checkerboard printout to a flat surface. Imperfections on the surface can affect the
accuracy of the calibration.

2 Measure one side of a checkerboard square. You need this measurement for calibration. The size
of the squares can vary depending on printer settings.

3 To improve detection speed, set up the pattern with as little background clutter as possible.

16 Registration and Stereo Vision

16-8

matlab: open checkerboardPattern.pdf
matlab: open symmetricCirclesGridPattern.pdf
matlab: open asymmetricCirclesGridPattern.pdf

Circle Grid Patterns
Circle grid patterns, sometimes referred to as a grid of circles, are a class of calibration patterns that
use evenly spaced circles to form a grid structure. They are broadly classified into two types:
symmetric and asymmetric patterns.

Pattern Example Description
Symmetric • Circles are arranged evenly

in rows and columns
• Dimensions are measured in

number of circles as [height
width], where height is the
number of circles in one row
and width is the number of
circles in one column.

• Cannot be used to calibrate
stereo cameras due to 180-
degree ambiguity.

Asymmetric • Every second row of circles
is offset by half the column
distance between
neighboring row elements.

• Dimensions are measured in
number of circles as [dim1
dim2], where

dim1 is the number of circles
along the dimension that
contains the same number of
circles in each row or
column and dim2 is the
number of circles across two
adjacent columns (or rows)
in the dimension where the
two columns (or rows)
contain an unequal number
of circles.

• Greater density of points for
the same circle radius.

• Can be used to calibrate
stereo cameras. No 180-
degree ambiguity.

Custom Pattern Detector
You can create a custom pattern by using a template. When loading your images into the calibrator, in
the properties dialog box, expand the Custom Pattern section and select Import Pattern Detector
to open the template. For an example of creating and using a custom template, see “Camera
Calibration Using AprilTag Markers” on page 1-73.

 Calibration Patterns

16-9

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Related Examples
• Checkerboard pattern
• Symmetric Circles Grid Pattern
• Asymmetric Circles Grid Pattern

More About
• “Using the Stereo Camera Calibrator App” on page 16-38

16 Registration and Stereo Vision

16-10

matlab: open checkerboardPattern.pdf
matlab: open symmetriccirclesgridpattern.pdf
matlab: open asymmetriccirclesgridpattern.pdf

Fisheye Calibration Basics
Camera calibration is the process of computing the extrinsic and intrinsic parameters of a camera.
Once you calibrate a camera, you can use the image information to recover 3-D information from 2-D
images. You can also undistort images taken with a fisheye camera. The Computer Vision Toolbox
contains calibration algorithms for the pinhole camera model and the fisheye camera model. You can
use the fisheye model with cameras up to a field of view (FOV) of 195 degrees.

Fisheye cameras are used in odometry and to solve the simultaneous localization and mapping
(SLAM) problems visually. Other applications include, surveillance systems, GoPro, virtual reality
(VR) to capture 360 degree field of view (fov), and stitching algorithms. These cameras use a complex
series of lenses to enlarge the camera's field of view, enabling it to capture wide panoramic or
hemispherical images. However, the lenses achieve this extremely wide angle view by distorting the
lines of perspective in the images

Because of the extreme distortion a fisheye lens produces, the pinhole model cannot model a fisheye
camera.

 Fisheye Calibration Basics

16-11

16 Registration and Stereo Vision

16-12

Fisheye Camera Model
The Computer Vision Toolbox calibration algorithm uses the fisheye camera model proposed by
Scaramuzza [1] on page 16-22. The model uses an omnidirectional camera model. The process
treats the imaging system as a compact system. In order to relate a 3-D world point on to a 2-D
image, you must obtain the camera extrinsic and intrinsic parameters. World points are transformed
to camera coordinates using the extrinsic parameters. The camera coordinates are mapped into the
image plane using the intrinsic parameters.

 Fisheye Calibration Basics

16-13

16 Registration and Stereo Vision

16-14

Extrinsic Parameters

The extrinsic parameters consist of a rotation, R, and a translation, t. The origin of the camera's
coordinate system is at its optical center and its x- and y-axis define the image plane.

 Fisheye Calibration Basics

16-15

16 Registration and Stereo Vision

16-16

The transformation from world points to camera points is:

 Fisheye Calibration Basics

16-17

16 Registration and Stereo Vision

16-18

Intrinsic Parameters

For the fisheye camera model, the intrinsic parameters include the polynomial mapping coefficients
of the projection function. The alignment coefficients are related to sensor alignment and the
transformation from the sensor plane to a pixel location in the camera image plane.

The following equation maps an image point into its corresponding 3-D vector.

•
 are the ideal image projections of the real-world points.

• represents a scalar factor.
•

 are polynomial coefficients described by the Scaramuzza model, where .
• is a function of (u,v) and depends only on the distance of a point from the image center:

.

The intrinsic parameters also account for stretching and distortion. The stretch matrix compensates
for the sensor-to-lens misalignment, and the distortion vector adjusts the (0,0) location of the image
plane.

The following equation relates the real distorted coordinates (u'',v'') to the ideal distorted coordinates
(u,v).

 Fisheye Calibration Basics

16-19

Fisheye Camera Calibration in MATLAB
To remove lens distortion from a fisheye image, you can detect a checkerboard calibration pattern
and then calibrate the camera. You can find the checkerboard points using the
detectCheckerboardPoints and generateCheckerboardPoints functions. The
estimateFisheyeParameters function uses the detected points and returns the
fisheyeParameters object that contains the intrinsic and extrinsic parameters of a fisheye camera.
You can use the fisheyeCalibrationErrors object to check the accuracy of the calibration.

Correct Fisheye Image for Lens Distortion

Remove lens distortion from a fisheye image by detecting a checkboard calibration pattern and
calibrating the camera. Then, display the results.

Gather a set of checkerboard calibration images.

images = imageDatastore('calibrationImages');

Detect the calibration pattern from the images. The 'PartialDetections' Name-Value argument is set to
true by default allowing detection of partial checkerboards.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files, 'HighDistortion', true);

Generate world coordinates for the corners of the checkerboard squares.

squareSize = 20; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the fisheye camera calibration parameters based on the image and world points. Use the
first image to get the image size.

I = readimage(images,10);
imageSize = [size(I,1) size(I,2)];
params = estimateFisheyeParameters(imagePoints,worldPoints,imageSize);

Remove lens distortion from the first image I and display the results.

J1 = undistortFisheyeImage(I,params.Intrinsics);
figure
imshowpair(I,J1,'montage')
title('Original Image (left) vs. Corrected Image (right)')

J2 = undistortFisheyeImage(I,params.Intrinsics,'OutputView','same', 'ScaleFactor', 0.2);

16 Registration and Stereo Vision

16-20

figure
imshow(J2)

title('Output View with low Scale Factor')

 Fisheye Calibration Basics

16-21

References
[1] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating Omnidirectional

Cameras." Proceedings to IEEE International Conference on Intelligent Robots and Systems,
(IROS). Beijing, China, October 7–15, 2006.

See Also
Functions
estimateFisheyeParameters | undistortFisheyeImage | undistortFisheyePoints

16 Registration and Stereo Vision

16-22

Objects
fisheyeCalibrationErrors | fisheyeIntrinsics | fisheyeIntrinsicsEstimationErrors
| fisheyeParameters

Related Examples
• “Configure Monocular Fisheye Camera” (Automated Driving Toolbox)
• “Calibrate a Monocular Camera” (Automated Driving Toolbox)
• “Structure From Motion From Two Views” on page 1-113
• “Structure From Motion From Multiple Views” on page 1-158
• “Configure Monocular Fisheye Camera” (Automated Driving Toolbox)

 Fisheye Calibration Basics

16-23

Using the Single Camera Calibrator App
In this section...
“Camera Calibrator Overview” on page 16-24
“Choose a Calibration Pattern” on page 16-24
“Capture Calibration Images” on page 16-24
“Using the Camera Calibrator App” on page 16-25

Camera Calibrator Overview
You can use the Camera Calibrator app to estimate camera intrinsics, extrinsics, and lens distortion
parameters. You can use these camera parameters for various computer vision applications. These
applications, such as removing the effects of lens distortion from an image, measuring planar objects,
or reconstructing 3-D scenes from multiple cameras.

The suite of calibration functions used by the Camera Calibrator app provide the workflow for
camera calibration. You can use these functions directly in the MATLAB workspace. For a list of
functions, see “Camera Calibration”.

Follow this workflow to calibrate your camera using the app.

1 Prepare the images, camera, and calibration pattern.
2 Add the images and select standard or fisheye camera model.
3 Calibrate the camera.
4 Evaluate the calibration accuracy.
5 Adjust the parameters to improve the accuracy (if necessary).
6 Export the parameters object.

If the default values work well, then you do not need to make any adjustments before exporting the
parameters.

Choose a Calibration Pattern
The Camera Calibrator app supports checkerboard, circle grid, and custom detector patterns. For
details on each of these patterns and PDF files containing printable patterns, see “Calibration
Patterns” on page 16-6.

Capture Calibration Images
For best calibration results, use between 10 and 20 images of the calibration pattern. The calibrator
requires at least three images. Use uncompressed images or lossless compression formats such as

16 Registration and Stereo Vision

16-24

PNG. The calibration pattern and the camera setup must satisfy a set of requirements to work with
the calibrator. For more details on camera setup and capturing images, see “Prepare Camera and
Capture Images” on page 16-4.

Using the Camera Calibrator App
Open the App

• MATLAB Toolstrip: On the Apps tab, in the Image Processing and Computer Vision section,
click the Camera Calibrator icon.

• MATLAB command prompt: Enter cameraCalibrator

Add Images and Select Camera Model

To begin calibration, you must add images. You can add saved images from a folder or add images
directly from a camera. The calibrator analyzes the images to ensure they meet the calibrator
requirements. The calibrator then detects the points of the selected pattern. For details on camera
setup and capturing images, see “Prepare Camera and Capture Images” on page 16-4.

Add Images from File

On the Calibration tab, in the File section, click Add Images, and then select From file. You can
add images from multiple folders by repeating the process for each folder.

Acquire Live Images

The Camera Calibrator app works with UVC compliant webcams. You can acquire live images from
a webcam using MATLAB Webcam support. To use this feature, you must install the MATLAB Support
Package for USB Webcams. See “Webcam Acquisition Overview” (MATLAB Support Package for USB
Webcams). To add live images, follow these steps.

1 On the Calibration tab, in the File section, click Add Images, then select From camera.

This opens the Camera tab. If only one webcam is connected to your system, the app selects it
by default and a live preview pane opens. If you have multiple cameras connected and want to
use one other than the default, select that camera in the Camera list.

2 (Optional) Set properties for the camera to control the image. Select the Camera Properties to
open the Camera Properties dialog box for the selected camera. The available properties vary
depending on your device.

Use the sliders and lists to change the available property settings. The preview pane updates
dynamically when you change a setting. When you are done setting properties, click anywhere
outside of the dialog box to dismiss it.

3 Enter a location to save the acquired image files in the Save Location box. You can type the path
to a folder or use the Browse button. You must have permission to write to the folder you specify.

4 Set the capture parameters.

• To set the number of seconds between image captures, use the Capture Interval (sec) box
or slider. The default is 5 seconds, the minimum is 1 second, and the maximum is 60 seconds.

• To set the number of image captures, use the Number of images to capture box or slider.
The default is 20 images, the minimum is 2 images, and the maximum is 100 images.

The default configuration captures a total of 20 images, one every 5 seconds.

 Using the Single Camera Calibrator App

16-25

5 The preview pane shows the live images streamed as RGB data. After you adjust any device
properties and capture settings, use the Preview window as a guide to line up the camera to
acquire the pattern image you want to capture.

6 Select Capture. The app captures the specified number of images, and the thumbnails of the
snapshots appear in the Data Browser pane. They are automatically named incrementally, and
are captured as .png files.

You can stop the image capture before the designated number of images are captured by
selecting Stop Capture.

When you are capturing images of a pattern, after the designated number of images are
captured, the app displays the Image and Pattern Properties dialog box. Select the calibration
pattern in the image and specify the pattern properties. Click OK.

The app then calculates and displays the detection results.

7 To dismiss the Detection Results dialog box, click OK.
8 When you have finished acquiring live images, select Close Image Capture to close the Camera

tab.

After you add images, the Image and Pattern Properties dialog box to your session, appears. Before
the calibrator can analyze the calibration patterns, you must select the calibration pattern to detect
and set image properties for the pattern structure. For more details on this dialog, see “Select
Calibration Pattern and Set Properties” on page 16-2.

Analyze Images

The calibrator attempts to detect a pattern in each of the added images, and displays a progress bar
dialog box, that indicates detection progress. If any of the images are rejected, the Detection Results
dialog box appears and displays diagnostic information. The results indicate how many total images
have been processed and, of those processed, how many have been accepted, rejected, or skipped.
The calibrator skips duplicate images.

16 Registration and Stereo Vision

16-26

To view the rejected images, click view images. In addition to duplicate images, the calibrator also
rejects images where it could not detect the entire pattern. Possible reasons for no detection are a
blurry image or an extreme angle of the pattern. Detection takes longer for larger images and
patterns that contain a large number of elements.

View Images and Detected Points

The Data Browser pane displays a list of images with their IDs. Each image contains a detected
pattern. To view an image, select it from the Data Browser pane.

The Image pane displays the selected checkerboard image with green circles overlaid to indicate
detected points. You can verify that the corners have been detected correctly by using the zoom
controls. The yellow square indicates the (0,0) origin. The X and Y arrows indicate the checkerboard
axes orientation.

Calibrate

Once you are satisfied with the accepted images, on the Calibration tab, select Calibrate. The
default calibration settings use a minimum set of camera parameters. Start by running the calibration
with the default settings. After evaluating the results, you can try to improve calibration accuracy by
adjusting the settings or adding or removing images, and then calibrating again. If you switch
between the standard and fisheye camera models, you must recalibrate.

Select Camera Model

You can select either a standard or fisheye camera model. On the Calibration tab, in the Camera
Model section, select Standard or Fisheye.

You can switch camera models at any point in the session. You must recalibrate after changing the
camera model. Select Options to access settings and optimizations for either camera model.

 Using the Single Camera Calibrator App

16-27

Standard Model Options

When the camera has severe lens distortion, the app can fail to compute the initial values for the
camera intrinsics. If you have the manufacturer specifications for your camera and know the pixel
size, focal length, or lens characteristics, you can manually set initial guesses for the camera
intrinsics and radial distortion. To set initial guesses, select Options > Optimization Options.

• Select Specify initial intrinsics as a 3-by-3 matrix of the form [fx 0 0; s fy 0; cx cy 1], and
then enter a 3-by-3 matrix to specify initial intrinsics. If you do not specify an initial guess, the
function computes the initial intrinsic matrix using linear least squares.

• Select Specify initial radial distortion as 2- or 3-element vector, and then enter a 2- or 3-
element vector to specify the initial radial distortion. If you do not provide a value, the function
uses 0 as the initial value for all the coefficients.

For more details on calibration parameters, see “What Is Camera Calibration?” on page 16-51.

Fisheye Model Options

In the Camera Model section, with Fisheye selected, click Options. Select Estimate Alignment to
enable estimation of the axes alignment when the optical axis of the fisheye lens is not perpendicular
to the image plane.

For details about the fisheye camera model calibration algorithm, see “Fisheye Calibration Basics” on
page 16-11.

Calibration Algorithm

For fisheye camera model calibration, see “Fisheye Calibration Basics” on page 16-11.

The standard camera model calibration algorithm assumes a pinhole camera model:

w x y 1 = X Y Z 1
R
t

K

• (X,Y,Z) — World coordinates of a point.
• (x,y) — Image coordinates of the corresponding image point in pixels.
• w — Arbitrary homogeneous coordinates scale factor.
• K — Camera intrinsic matrix, defined as:

fx 0 0
s f y 0
cx cy 1

The coordinates (cx, cy) represent the optical center (the principal point), in pixels. When the x-
and y-axes are exactly perpendicular, the skew parameter, s, equals 0. The matrix elements are
defined as:

• fx = F*sx, expressed in pixels.
• fy = F*sy, expressed in pixels.
• F is the focal length in world units, typically expressed in millimeters.
• sx and sy are the number of pixels per world unit in the x- and y- respectively.

16 Registration and Stereo Vision

16-28

• R — Matrix representing the 3-D rotation of the camera.
• t — Translation of the camera relative to the world coordinate system.

The camera calibration algorithm estimates the values of the intrinsic parameters, the extrinsic
parameters, and the distortion coefficients. Camera calibration involves these steps:

1 Solve for the intrinsics and extrinsics in closed form, assuming that lens distortion is zero. [1]
2 Estimate all parameters simultaneously, including the distortion coefficients, using nonlinear

least-squares minimization (Levenberg–Marquardt algorithm). Use the closed-form solution from
the preceding step as the initial estimate of the intrinsics and extrinsics. Set the initial estimate
of the distortion coefficients to zero. [1][2]

Evaluate Calibration Results

You can evaluate calibration accuracy by examining the reprojection errors, examining the camera
extrinsics, or viewing the undistorted image. For best calibration results, use all three methods of
evaluation.

Examine Reprojection Errors

The reprojection errors are the distances, in pixels, between the detected and the corresponding
reprojected points. The Camera Calibrator app calculates reprojection errors by projecting points
from the world coordinates defined by the pattern into image coordinates. The app then compares the
reprojected points to the corresponding detected points. As a general rule, mean reprojection errors
of less than one pixel are acceptable.

 Using the Single Camera Calibrator App

16-29

The Camera Calibrator app displays, in pixels, the reprojection errors as a bar graph. The graph
helps you identify which images adversely impact the calibration. You can select a bar graph entry to
select an image, and then remove the image from the list of images in the Data Browser pane.

Reprojection Errors Bar Graph
The bar graph displays the mean reprojection error per image, along with the overall mean error. The
bar labels correspond to the image IDs. The highlighted bars correspond to the selected images.

Select an image in one of these ways:

• Click a corresponding bar in the graph.
• Select an image from the list of images in the Data Browser pane.
• Adjust the overall mean error. Slide the red line up or down to automatically select all images with

a mean error greater than the specified value.

16 Registration and Stereo Vision

16-30

Examine Extrinsic Parameter Visualization

The 3-D extrinsic parameters plot provides a camera-centric view of the patterns and a pattern-
centric view of the camera. The camera-centric view is helpful if the camera is stationary when the
images are captured. The pattern-centric view is helpful if the pattern is stationary. You can click and
drag the figure to rotate it. Click a checkerboard (or camera) to select it. The highlighted data in the
visualizations corresponds to the selected image in the list. Examine the relative positions of the
pattern and the camera to determine if they match what you expect. For example, a pattern that
appears behind the camera indicates a calibration error.

View Undistorted Image

To view the effects of removing lens distortion, on the Calibration tab, in the View section, select
Show Undistorted in the View section of the Calibration tab. If the calibration is accurate, the
distorted lines in the image preview become straight.

 Using the Single Camera Calibrator App

16-31

Note Checking the undistorted images is important even if the reprojection errors are low. For
example, if the pattern covers only a small percentage of the image, the distortion estimation can be
incorrect, even though the calibration resulted in few reprojection errors. This image shows an
example of this type of incorrect estimation for a single camera calibration.

For the fisheye camera model, while viewing the undistorted images, you can examine the fisheye
images more closely by, on the Calibration tab, in the View section, specifying the Fisheye Scale.
Enter a value in the Fisheye Scale box, or use the arrows to adjust the scale up or down.

Improve Calibration

To improve the calibration, you can remove high-error images, add more images, or modify the
calibrator settings.

Consider adding more images if:

• You have fewer than 10 images.
• The calibration patterns do not cover enough of the image frame.
• The calibration patterns do not have enough variation in orientation with respect to the camera.

Consider removing images if the images:

• Have a high mean reprojection error.
• Are blurry.
• Contain a calibration pattern at an angle greater than 45 degrees relative to the camera plane.

16 Registration and Stereo Vision

16-32

• Incorrectly detected calibration pattern points.

Standard Model: Change the Number of Radial Distortion Coefficients

You can specify two or three radial distortion coefficients. On the Calibrations tab, in the Camera
Model section, with Standard selected, click Options. Specify the Radial Distortion as either two
or three coefficients by selecting 2 Coefficients or 3 Coefficients, respectively.

Radial distortion is the displacement of image points along radial lines extending from the principal
point.

• As image points move away from the principal point (positive radial displacement), image
magnification decreases and a pincushion-shaped distortion occurs on the image.

• As image points move toward the principal point (negative radial displacement), image
magnification increases and a barrel-shaped distortion occurs on the image.

 Using the Single Camera Calibrator App

16-33

16 Registration and Stereo Vision

16-34

The radial distortion coefficients model this type of distortion. The distorted points are denoted as
(xdistorted, ydistorted):

xdistorted = x(1 + k1*r2 + k2*r4 + k3*r6)

ydistorted= y(1 + k1*r2 + k2*r4 + k3*r6)

• x, y — Undistorted pixel locations. x and y are in normalized image coordinates. Normalized image
coordinates are calculated from pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

• k1, k2, and k3 — Radial distortion coefficients of the lens.
• r2 = x2 + y2

Typically, two coefficients are sufficient for calibration. For severe distortion, such as in wide-angle
lenses, you can select three coefficients to include k3.

The undistorted pixel locations are in normalized image coordinates, with the origin at the optical
center. The coordinates are expressed in world units.

Standard Model: Compute Skew

To estimate the skew of the image axes, on the Calibration tab, in the Camera Model section, select
Options > Compute > Skew. Some camera sensors contain imperfections that cause the x- and y-
axes of the image to not be perpendicular. You can model this defect using a skew parameter. If you
do not select this option, the image axes are perpendicular, which is true for most modern cameras.

Standard Model: Compute Tangential Distortion

Tangential distortion occurs when the lens and the image plane are not parallel. The tangential
distortion coefficients model this type of distortion.

The distorted points are denoted as (xdistorted, ydistorted):

xdistorted = x + [2 * p1 * x * y + p2 * (r2 + 2 * x2)]

ydistorted = y + [p1 * (r2 + 2 *y2) + 2 * p2 * x * y]

 Using the Single Camera Calibrator App

16-35

• x, y — Undistorted pixel locations. x and y are in normalized image coordinates. Normalized image
coordinates are calculated from pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

• p1 and p2 — Tangential distortion coefficients of the lens.
• r2 = x2 + y2

To estimate the tangential distortion coefficients, on the Calibration tab, in the Camera Model
section, select Options > Compute > Tangential Distortion. Otherwise, the calibrator sets the
tangential distortion coefficients to zero.

Fisheye Model: Estimate Alignment

On theCalibration tab, in Camera Model section, with Fisheye selected, click Options. Select
Estimate Alignment to enable estimation of the axes alignment when the optical axis of the fisheye
lens is not perpendicular to the image plane.

Export Camera Parameters

When you are satisfied with your calibration accuracy, select Export Camera Parameters for a
standard camera model or Export Camera Parameters for a fisheye camera model. You can either
export the camera parameters to an object in the MATLAB workspace or generate the camera
parameters as a MATLAB script.

Export Camera Parameters

Under Export Camera Parameters, for a standard camera model, or Export Fisheye Parameters,
for a fisheye camera model, select Export Parameters to Workspace to create a
cameraParameters object in your workspace. The object contains the intrinsic and extrinsic
parameters of the camera and its distortion coefficients. You can use this object for various computer
vision tasks, such as image undistortion, measuring planar objects, and 3-D reconstruction. For more
information on measuring planar objects, see “Measuring Planar Objects with a Calibrated Camera”
on page 1-141. You can optionally export a cameraCalibrationErrors object that contains the
standard errors of the estimated camera parameters by selecting Export estimation errors.

Generate MATLAB Script

Under Export Camera Parameters, for a standard camera model, or Export Fisheye Parameters,
for a fisheye camera model, select Generate MATLAB script to save your camera parameters to a
MATLAB script, enabling you to reproduce the steps from your calibration session.

Note You cannot generate a MATLAB script for custom pattern camera parameters defined using the
vision.calibration.PatternDetector class.

References
[1] Zhang, Z. “A Flexible New Technique for Camera Calibration.” IEEE Transactions on Pattern

Analysis and Machine Intelligence. 22, no. 11 (November 2000): 1330–34. https://doi.org/
10.1109/34.888718.

[2] Heikkila, J., and O. Silven. “A Four-step Camera Calibration Procedure with Implicit Image
Correction.” In Proceedings of IEEE Computer Society Conference on Computer Vision and

16 Registration and Stereo Vision

16-36

Pattern Recognition. 1106–12. San Juan, Puerto Rico: IEEE Comput. Soc, 1997. https://
doi.org/10.1109/CVPR.1997.609468.

[3] Scaramuzza, Davide, Agostino Martinelli, and Roland Siegwart. "A Toolbox for Easily Calibrating
Omnidirectional Cameras." In Proceedings of IEEE International Workshop on Intelligent
Robots and Systems 2006 (IROS 2006), 5695–701. Beijing, China: IEEE, 2006. https://doi.org/
10.1109/IROS.2006.282372

[4] Urban, Steffen, Jens Leitloff, and Stefan Hinz. “Improved Wide-Angle, Fisheye and
Omnidirectional Camera Calibration.” ISPRS Journal of Photogrammetry and Remote Sensing
108 (October 2015): 72–79. https://doi.org/10.1016/j.isprsjprs.2015.06.005.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Functions
showReprojectionErrors | showExtrinsics | undistortImage |
detectCheckerboardPoints | generateCheckerboardPoints | estimateCameraParameters

Objects
cameraParameters | stereoParameters

Related Examples
• “Prepare Camera and Capture Images” on page 16-4
• “Select Calibration Pattern and Set Properties” on page 16-2
• “Evaluating the Accuracy of Single Camera Calibration” on page 1-136
• “Measuring Planar Objects with a Calibrated Camera” on page 1-141
• “Camera Calibration Using AprilTag Markers” on page 1-73
• “Structure From Motion From Two Views” on page 1-113
• “Structure From Motion From Multiple Views” on page 1-158
• “Depth Estimation From Stereo Video” on page 1-150
• “3-D Point Cloud Registration and Stitching” on page 5-71
• “Uncalibrated Stereo Image Rectification” on page 1-165
• Checkerboard pattern
• Symmetric Circles Grid Pattern
• Asymmetric Circles Grid Pattern

More About
• “Using the Stereo Camera Calibrator App” on page 16-38
• “Coordinate Systems”
• “Implement Visual SLAM in MATLAB” on page 11-8
• Camera Calibration with MATLAB

 Using the Single Camera Calibrator App

16-37

matlab: open checkerboardPattern.pdf
matlab: open symmetriccirclesgridpattern.pdf
matlab: open asymmetriccirclesgridpattern.pdf
https://www.mathworks.com/videos/camera-calibration-with-matlab-81233.html

Using the Stereo Camera Calibrator App
In this section...
“Stereo Camera Calibrator Overview” on page 16-38
“Choose a Calibration Pattern” on page 16-39
“Capture Calibration Images” on page 16-39
“Using the Stereo Camera Calibrator App” on page 16-39

Stereo Camera Calibrator Overview
You can use the Stereo Camera Calibrator app to calibrate a stereo camera, which you can then
use to recover depth from images. A stereo system consists of two cameras: camera 1 and camera 2.
The app can either estimate or import the parameters of individual cameras. The app also calculates
the position and orientation of camera 2, relative to camera 1.

The Stereo Camera Calibrator app produces an object containing the stereo camera parameters.
You can use this object to:

• Rectify stereo images using the rectifyStereoImages function.
• Reconstruct a 3-D scene using the reconstructScene function.
• Compute 3-D locations corresponding to matching pairs of image points using the triangulate

function.

The suite of calibration functions used by the Stereo Camera Calibrator app provide the workflow
for stereo system calibration. You can use these functions directly in the MATLAB workspace. For a
list of calibration functions, see “Camera Calibration”.

Note You can use the Camera Calibrator app with cameras up to a field of view (FOV) of 95
degrees.

Follow this workflow to calibrate your stereo camera using the app:

1 Prepare images, camera, and calibration pattern.
2 Add image pairs.
3 Calibrate the stereo camera.
4 Evaluate calibration accuracy.
5 Adjust parameters to improve accuracy (if necessary).
6 Export the parameters object.

16 Registration and Stereo Vision

16-38

7 In some cases, the default values work well, and you do not need to make any improvements
before exporting parameters. You can also make improvements using the camera calibration
functions directly in the MATLAB workspace. For a list of functions, see “Camera Calibration”.

Choose a Calibration Pattern
The Stereo Camera Calibrator app supports checkerboard, circle grid, and custom detector
patterns. For details on each of these patterns, see “Calibration Patterns” on page 16-6.

Capture Calibration Images
For best calibration results, use between 10 and 20 images of the calibration pattern. The calibrator
requires at least three images. Use uncompressed images or lossless compression formats such as
PNG. The calibration pattern and the camera setup must satisfy a set of requirements to work with
the calibrator. For more details on camera setup and capturing images, see “Prepare Camera and
Capture Images” on page 16-4.

Using the Stereo Camera Calibrator App
Open the App

• MATLAB Toolstrip: On the Apps tab, in the Image Processing and Computer Vision section,
click the Stereo Camera Calibrator icon.

• MATLAB command prompt: Enter stereoCameraCalibrator

Add Image Pairs and Select Camera Model

To begin calibration, you must add images. You can add saved images from a folder or add images
directly from a camera. The calibrator analyzes the images to ensure they meet the calibrator
requirements. The calibrator then detects the points on the pattern. For details on camera setup and
capturing images, see “Prepare Camera and Capture Images” on page 16-4

Add Images from File

On the Calibration tab, in the File section, click Add Images, and then select From file. You can
add images from multiple folders by clicking Add images for each folder. Enter the location for the
images corresponding to camera 1, or select it using the Browse button, and then do the same for
camera 2. Specify the calibration pattern by selecting one from the Choose Pattern list, or, in the
Custom Pattern section, select Import Pattern Detector. In the Properties section, specify the
properties for your detector, and then select OK to add your images.

After you load images, the Image and Pattern Properties dialog appears. Before the calibrator can
analyze the calibration patterns, you must select the calibration pattern to detect and set image
properties for the pattern structure. For more details on this dialog, see “Select Calibration Pattern
and Set Properties” on page 16-2.

Analyze Images

The calibrator attempts to detect a pattern in each of the added stereo pairs, displaying a progress
bar window, indicating detection progress. If any of the images are rejected, the Detection Results
dialog box appears, which contains diagnostic information. The results indicate how many total

 Using the Stereo Camera Calibrator App

16-39

images were processed, and of those processed, how many were accepted, rejected, or skipped. The
calibrator skips duplicate images.

To view the rejected images, click View images. The calibrator rejects duplicate images. It also
rejects images where the entire pattern could not be detected. Possible reasons for no detection are a
blurry image or an extreme angle of the pattern. Detection takes longer with larger images and with
patterns that contain a large number of squares.

View Images and Detected Points

The Data Browser pane displays a list of image pairs with IDs. These image pairs contain a detected
pattern. To view an image, select it from the Data Browser pane.

16 Registration and Stereo Vision

16-40

The Image pane displays the selected image pair with green circles to indicate detected points. You
can verify that the corners were detected correctly using the zoom controls. The yellow square
indicates the (0,0) origin. The X and Y arrows indicate the pattern axes orientation.

Intrinsics

You can choose for the app to compute camera intrinsics, or you can load precomputed, fixed
intrinsics. To load intrinsics into the app, on the Calibration tab, in the Intrinsics section, select
Use Fixed Intrinsics. The Radial Distortion and Compute options in the Options section are
disabled when you load intrinsics.

To load intrinsics as variables from your workspace, select Load Intrinsics. For example, if the
wideBaselineStereo structure contains the intrinsics for both cameras, enter this code at the
MATLAB command prompt.

ld = load("wideBaselineStereo");
int1 = ld.intrinsics1
int2 = ld.intrinsics2

Then, select Load Intrinsics to specify these variables in the Load intrinsics from Workspace dialog
box.

Calibrate

Once you are satisfied with the accepted image pairs, click the Calibrate button on the Calibration
tab. The default calibration settings assume the minimum set of camera parameters. Start by running
the calibration with the default settings. After evaluating the results, you can try to improve
calibration accuracy by adjusting the settings and adding or removing images, and then calibrate
again.

Optimization

When the camera has severe lens distortion, the app can fail to compute the initial values for the
camera intrinsics. If you have the manufacturer specifications for your camera and know the pixel
size, focal length, or lens characteristics, you can manually set initial guesses for the camera
intrinsics and radial distortion. To set initial guesses, select Options > Optimization Options.

 Using the Stereo Camera Calibrator App

16-41

• Select Specify initial intrinsics as a 3-by-3 matrix of the form [fx 0 0; s fy 0; cx cy 1], and
then enter a 3-by-3 matrix to specify initial intrinsics. If you do not specify an initial guess, the
function computes the initial intrinsic matrix using linear least squares.

• Select Specify initial radial distortion as 2- or 3-element vector, and then enter a 2- or 3-
element vector to specify the initial radial distortion. If you do not provide a value, the function
uses 0 as the initial value for all the coefficients.

For more details on calibration parameters, see “What Is Camera Calibration?” on page 16-51.

Evaluate Calibration Results

You can evaluate calibration accuracy by examining the reprojection errors, examining the camera
extrinsics, or viewing the undistorted image. For best calibration results, use all three methods of
evaluation.

Examine Reprojection Errors

The reprojection errors are the distances, in pixels, between the detected and the reprojected points.
The Stereo Camera Calibrator app calculates reprojection errors by projecting points from world
coordinates, defined by the pattern, into image coordinates. The app then compares the reprojected
points to the corresponding detected points. As a general rule, mean reprojection errors of less than
one pixel are acceptable.

16 Registration and Stereo Vision

16-42

The Stereo Calibration App displays, in pixels, the reprojection errors as a bar graph. The graph
helps you to identify which images that adversely contribute to the calibration. Select the bar graph
entry and remove the image from the list of images in the Data Browser pane.

Reprojection Errors Bar Graph
The bar graph displays the mean reprojection error per image, along with the overall mean error. The
bar labels correspond to the image pair IDs. The highlighted bars correspond to the selected image
pair.

 Using the Stereo Camera Calibrator App

16-43

Select an image pair in one of these ways:

• Click a corresponding bar in the graph.
• Select an image pair from the list in the Data Browser pane.
• Adjust the overall mean error. Click and slide the red line up or down to select pairs containing an

image with a mean error greater than the specified value.

Examine Extrinsic Parameter Visualization

The 3-D extrinsic parameters plot provides a camera-centric view of the patterns and a pattern-
centric view of the camera. The camera-centric view is helpful if the camera was stationary when the
images were captured. The pattern-centric view is helpful if the pattern was stationary. You can click
the cursor and hold down the mouse button with the rotate icon to rotate the figure. Click a pattern
(or the camera) in the display to select it. The highlighted data in the visualizations correspond to the
selected image pair in the list. Examine the relative positions of the pattern and the camera to
determine if they match what you expect. For example, a pattern that appears behind the camera
indicates a calibration error.

Show Rectified Images

To view the effects of stereo rectification, on the Calibration tab, in the View section, select Show
Rectified. If the calibration is accurate, the images become undistorted and row-aligned.

16 Registration and Stereo Vision

16-44

Note Checking the rectified images is important even if the reprojection errors are low. For example,
if the pattern covers only a small percentage of the image, the distortion estimation might be
incorrect, even though the calibration resulted in few reprojection errors.The following image shows
an example of this type of incorrect estimation for a single camera calibration.

Improve Calibration

To improve the calibration, you can remove high-error images, add more images, or modify the
calibrator settings.

Consider adding more image pairs if:

• You have fewer than 10 image pairs.
• The calibration patterns do not cover enough of the image frame.
• The calibration patterns do not have enough variation in orientation with respect to the camera.

Consider removing image pairs if the images:

 Using the Stereo Camera Calibrator App

16-45

• Have a high mean reprojection error.
• Are blurry.
• Contain a calibration pattern at an angle greater than 45 degrees relative to the camera plane.

• Incorrectly detected calibration pattern points.

Change the Number of Radial Distortion Coefficients

You can specify two or three radial distortion coefficients by selecting the corresponding option from
the Options section. Radial distortion occurs when light rays bend more near the edges of a lens
than they do at its optical center. The smaller the lens, the greater the distortion.

16 Registration and Stereo Vision

16-46

 Using the Stereo Camera Calibrator App

16-47

The radial distortion coefficients model this type of distortion. The distorted points are denoted as
(xdistorted, ydistorted):

xdistorted = x(1 + k1*r2 + k2*r4 + k3*r6)

ydistorted= y(1 + k1*r2 + k2*r4 + k3*r6)

• x, y — Undistorted pixel locations. x and y are in normalized image coordinates. Normalized image
coordinates are calculated from pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

• k1, k2, and k3 — Radial distortion coefficients of the lens.
• r2 = x2 + y2

Typically, two coefficients are sufficient for calibration. For severe distortion, such as in wide-angle
lenses, you can select three coefficients to include k3.

Compute Skew

To estimate the skew of the image axes, on the Calibration tab, in the Camera Model section, select
Options > Compute > Skew. Some camera sensors contain imperfections that cause the x- and y-
axes of the image to not be perpendicular. You can model this defect using a skew parameter. If you
do not select this option, the image axes are perpendicular, which is true for most modern cameras.

Compute Tangential Distortion

Tangential distortion occurs when the lens and the image plane are not parallel. The tangential
distortion coefficients model this type of distortion.

The distorted points are denoted as (xdistorted, ydistorted):

xdistorted = x + [2 * p1 * x * y + p2 * (r2 + 2 * x2)]

ydistorted = y + [p1 * (r2 + 2 *y2) + 2 * p2 * x * y]

• x, y — Undistorted pixel locations. x and y are in normalized image coordinates. Normalized image
coordinates are calculated from pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

16 Registration and Stereo Vision

16-48

• p1 and p2 — Tangential distortion coefficients of the lens.
• r2 = x2 + y2

When you select the Compute Tangential Distortion check box, the calibrator estimates the
tangential distortion coefficients. Otherwise, the calibrator sets the tangential distortion coefficients
to zero.

Export Camera Parameters

When you are satisfied with your calibration accuracy, select Export Camera Parameters. You can
either save and export the camera parameters to an object in the MATLAB workspace, or generate
the camera parameters as a MATLAB script.

Export Camera Parameters

Select Export Camera Parameters > Export Parameters to Workspace to create a
stereoParameters object in your workspace. The object contains the intrinsic and extrinsic
parameters of the camera and its distortion coefficients. You can use this object for various computer
vision tasks, such as image undistortion, measuring planar objects, and 3-D reconstruction. For more
information on measuring planar objects, see “Measuring Planar Objects with a Calibrated Camera”
on page 1-141. You can optionally export the stereoCalibrationErrors object, which contains the
standard errors of estimated stereo camera parameters, by selecting Export estimation errors.

Generate MATLAB Script

Select Export Camera Parameters > Generate MATLAB script to save your camera parameters
to a MATLAB script, enabling you to reproduce the steps from your calibration session.

Note You cannot generate a MATLAB script for custom pattern camera parameters defined using the
vision.calibration.PatternDetector class.

References
[1] Zhang, Z. “A Flexible New Technique for Camera Calibration”. IEEE Transactions on Pattern

Analysis and Machine Intelligence. 22, no. 11 (November 2000): 1330–34. https://doi.org/
10.1109/34.888718.

[2] Heikkila, J., and O. Silven. “A Four-step Camera Calibration Procedure with Implicit Image
Correction.” In Proceedings of IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 1106–12. San Juan, Puerto Rico: IEEE Comput. Soc, 1997. https://
doi.org/10.1109/CVPR.1997.609468.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Functions
showReprojectionErrors | showExtrinsics | undistortImage |
detectCheckerboardPoints | generateCheckerboardPoints | estimateCameraParameters

 Using the Stereo Camera Calibrator App

16-49

Objects
cameraParameters | stereoParameters

Related Examples
• “Evaluating the Accuracy of Single Camera Calibration” on page 1-136
• “Measuring Planar Objects with a Calibrated Camera” on page 1-141
• “Camera Calibration Using AprilTag Markers” on page 1-73
• “Structure From Motion From Two Views” on page 1-113
• “Structure from Motion from Multiple Views” on page 16-68
• “Depth Estimation From Stereo Video” on page 1-150
• “3-D Point Cloud Registration and Stitching” on page 5-71
• “Uncalibrated Stereo Image Rectification” on page 1-165
• Checkerboard pattern
• Symmetric Circles Grid Pattern
• Asymmetric Circles Grid Pattern

More About
• “Using the Single Camera Calibrator App” on page 16-24
• “Implement Visual SLAM in MATLAB” on page 11-8
• “Coordinate Systems”
• Camera Calibration with MATLAB

16 Registration and Stereo Vision

16-50

matlab: open checkerboardPattern.pdf
matlab: open symmetriccirclesgridpattern.pdf
matlab: open asymmetriccirclesgridpattern.pdf
https://www.mathworks.com/videos/camera-calibration-with-matlab-81233.html

What Is Camera Calibration?
Geometric camera calibration, also referred to as camera resectioning, estimates the parameters of a
lens and image sensor of an image or video camera. You can use these parameters to correct for lens
distortion, measure the size of an object in world units, or determine the location of the camera in the
scene. These tasks are used in applications such as machine vision to detect and measure objects.
They are also used in robotics, for navigation systems, and 3-D scene reconstruction.

Examples of what you can do after calibrating your camera:

Camera parameters include intrinsics, extrinsics, and distortion coefficients. To estimate the camera
parameters, you need to have 3-D world points and their corresponding 2-D image points. You can get
these correspondences using multiple images of a calibration pattern, such as a checkerboard. Using
the correspondences, you can solve for the camera parameters. After you calibrate a camera, to
evaluate the accuracy of the estimated parameters, you can:

• Plot the relative locations of the camera and the calibration pattern
• Calculate the reprojection errors.
• Calculate the parameter estimation errors.

Use the Camera Calibrator to perform camera calibration and evaluate the accuracy of the
estimated parameters.

Camera Models
The Computer Vision Toolbox contains calibration algorithms for the pinhole camera model and the
fisheye camera model. You can use the fisheye model with cameras up to a field of view (FOV) of 195
degrees.

 What Is Camera Calibration?

16-51

16 Registration and Stereo Vision

16-52

The pinhole calibration algorithm is based on the model proposed by Jean-Yves Bouguet [3]. The
model includes, the pinhole camera model [1] and lens distortion [2].The pinhole camera model does
not account for lens distortion because an ideal pinhole camera does not have a lens. To accurately
represent a real camera, the full camera model used by the algorithm includes the radial and
tangential lens distortion.

Because of the extreme distortion a fisheye lens produces, the pinhole model cannot model a fisheye
camera. For details on camera calibration using the fisheye model, see “Fisheye Calibration Basics”
on page 16-11.

Pinhole Camera Model
A pinhole camera is a simple camera without a lens and with a single small aperture. Light rays pass
through the aperture and project an inverted image on the opposite side of the camera. Think of the
virtual image plane as being in front of the camera and containing the upright image of the scene.

 What Is Camera Calibration?

16-53

16 Registration and Stereo Vision

16-54

The pinhole camera parameters are represented in a 3-by-4 matrix called the camera matrix. This
matrix maps the 3-D world scene into the image plane. The calibration algorithm calculates the
camera matrix using the extrinsic and intrinsic parameters. The extrinsic parameters represent the
location of the camera in the 3-D scene. The intrinsic parameters represent the optical center and
focal length of the camera.

 What Is Camera Calibration?

16-55

16 Registration and Stereo Vision

16-56

The world points are transformed to camera coordinates using the extrinsic parameters. The camera
coordinates are mapped into the image plane using the intrinsics parameters.

 What Is Camera Calibration?

16-57

16 Registration and Stereo Vision

16-58

Camera Calibration Parameters
The calibration algorithm calculates the camera matrix using the extrinsic and intrinsic parameters.
The extrinsic parameters represent a rigid transformation from 3-D world coordinate system to the 3-
D camera’s coordinate system. The intrinsic parameters represent a projective transformation from
the 3-D camera’s coordinates into the 2-D image coordinates.

 What Is Camera Calibration?

16-59

16 Registration and Stereo Vision

16-60

Extrinsic Parameters

The extrinsic parameters consist of a rotation, R, and a translation, t. The origin of the camera’s
coordinate system is at its optical center and its x- and y-axis define the image plane.

 What Is Camera Calibration?

16-61

16 Registration and Stereo Vision

16-62

Intrinsic Parameters

The intrinsic parameters include the focal length, the optical center, also known as the principal
point, and the skew coefficient. The camera intrinsic matrix, K, is defined as:

fx s cx
0 f y cy
0 0 1

The pixel skew is defined as:

cx cy — Optical center (the principal point), in pixels.
fx, f y — Focal length in pixels.

fx = F/px
f y = F/py
F — Focal length in world units, typically expressed in millimeters.
px, py — Size of the pixel in world units.

s — Skew coefficient, which is non-zero if the image axes are not perpendicular.
s = fxtanα

Distortion in Camera Calibration
The camera matrix does not account for lens distortion because an ideal pinhole camera does not
have a lens. To accurately represent a real camera, the camera model includes the radial and
tangential lens distortion.

Radial Distortion

Radial distortion occurs when light rays bend more near the edges of a lens than they do at its optical
center. The smaller the lens, the greater the distortion.

 What Is Camera Calibration?

16-63

16 Registration and Stereo Vision

16-64

The radial distortion coefficients model this type of distortion. The distorted points are denoted as
(xdistorted, ydistorted):

xdistorted = x(1 + k1*r2 + k2*r4 + k3*r6)

ydistorted= y(1 + k1*r2 + k2*r4 + k3*r6)

• x, y — Undistorted pixel locations. x and y are in normalized image coordinates. Normalized image
coordinates are calculated from pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

• k1, k2, and k3 — Radial distortion coefficients of the lens.
• r2 = x2 + y2

Typically, two coefficients are sufficient for calibration. For severe distortion, such as in wide-angle
lenses, you can select three coefficients to include k3.

Tangential Distortion

Tangential distortion occurs when the lens and the image plane are not parallel. The tangential
distortion coefficients model this type of distortion.

The distorted points are denoted as (xdistorted, ydistorted):

xdistorted = x + [2 * p1 * x * y + p2 * (r2 + 2 * x2)]

ydistorted = y + [p1 * (r2 + 2 *y2) + 2 * p2 * x * y]

• x, y — Undistorted pixel locations. x and y are in normalized image coordinates. Normalized image
coordinates are calculated from pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

• p1 and p2 — Tangential distortion coefficients of the lens.
• r2 = x2 + y2

 What Is Camera Calibration?

16-65

References
[1] Zhang, Z. “A Flexible New Technique for Camera Calibration.” IEEE Transactions on Pattern

Analysis and Machine Intelligence. Vol. 22, No. 11, 2000, pp. 1330–1334.

[2] Heikkila, J., and O. Silven. “A Four-step Camera Calibration Procedure with Implicit Image
Correction.” IEEE International Conference on Computer Vision and Pattern
Recognition.1997.

[3] Bouguet, J. Y. “Camera Calibration Toolbox for Matlab.” Computational Vision at the California
Institute of Technology.

[4] Bradski, G., and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV Library.
Sebastopol, CA: O'Reilly, 2008.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Related Examples
• “Implement Visual SLAM in MATLAB” on page 11-8
• “Using the Single Camera Calibrator App” on page 16-24
• “Using the Stereo Camera Calibrator App” on page 16-38
• “Evaluating the Accuracy of Single Camera Calibration” on page 1-136
• “Fisheye Calibration Basics” on page 16-11
• “Configure Monocular Fisheye Camera” (Automated Driving Toolbox)
• “Calibrate a Monocular Camera” (Automated Driving Toolbox)
• “Measuring Planar Objects with a Calibrated Camera” on page 1-141
• “Structure From Motion From Two Views” on page 1-113
• “Structure From Motion From Multiple Views” on page 1-158

16 Registration and Stereo Vision

16-66

Structure from Motion Overview
In this section...
“Structure from Motion from Two Views” on page 16-67
“Structure from Motion from Multiple Views” on page 16-68

Structure from motion (SfM) is the process of estimating the 3-D structure of a scene from a set of 2-
D images. SfM is used in many applications, such as 3-D scanning , augmented reality, and visual
simultaneous localization and mapping (vSLAM).

SfM can be computed in many different ways. The way in which you approach the problem depends
on different factors, such as the number and type of cameras used, and whether the images are
ordered. If the images are taken with a single calibrated camera, then the 3-D structure and camera
motion can only be recovered up to scale. up to scale means that you can rescale the structure and
the magnitude of the camera motion and still maintain observations. For example, if you put a camera
close to an object, you can see the same image as when you enlarge the object and move the camera
far away. If you want to compute the actual scale of the structure and motion in world units, you need
additional information, such as:

• The size of an object in the scene
• Information from another sensor, for example, an odometer.

Structure from Motion from Two Views
For the simple case of structure from two stationary cameras or one moving camera, one view must
be considered camera 1 and the other one camera 2. In this scenario, the algorithm assumes that
camera 1 is at the origin and its optical axis lies along the z-axis.

1 SfM requires point correspondences between images. Find corresponding points either by
matching features or tracking points from image 1 to image 2. Feature tracking techniques, such
as Kanade-Lucas-Tomasi (KLT) algorithm, work well when the cameras are close together. As
cameras move further apart, the KLT algorithm breaks down, and feature matching can be used
instead.

 Structure from Motion Overview

16-67

Distance Between
Cameras (Baseline)

Method for Finding Point
Correspondences

Example

Wide Match features using
matchFeatures

“Find Image Rotation and
Scale Using Automated
Feature Matching” on page
4-25

Narrow Track features using
vision.PointTracker

“Face Detection and Tracking
Using the KLT Algorithm” on
page 8-57

2 To find the pose of the second camera relative to the first camera, you must compute the
fundamental matrix. Use the corresponding points found in the previous step for the
computation. The fundamental matrix describes the epipolar geometry of the two cameras. It
relates a point in one camera to an epipolar line in the other camera. Use the
estimateFundamentalMatrix function to estimate the fundamental matrix.

3 Input the fundamental matrix to the estrelpose function. estrelpose returns the pose the
second camera in the coordinate system of the first camera. The location can only be computed
up to scale, so the distance between two cameras is set to 1. In other words, the distance
between the cameras is defined to be 1 unit.

4 Determine the 3-D locations of the matched points using triangulate. Because the pose is up
to scale, when you compute the structure, it has the right shape but not the actual size.

The triangulate function takes two camera matrices, which you can compute using the
cameraProjection function.

5 Use pcshow or pcplayer to display the reconstruction. Use plotCamera to visualize the
camera poses.

To recover the scale of the reconstruction, you need additional information. One method to recover
the scale is to detect an object of a known size in the scene. The “Structure From Motion From Two
Views” on page 1-113 example shows how to recover scale by detecting a sphere of a known size in
the point cloud of the scene.

Structure from Motion from Multiple Views
For most applications, such as robotics and autonomous driving, SfM uses more than two views.

16 Registration and Stereo Vision

16-68

The approach used for SfM from two views can be extended for multiple views. The set of multiple
views used for SfM can be ordered or unordered. The approach taken here assumes an ordered
sequence of views. SfM from multiple views requires point correspondences across multiple images,
called tracks. A typical approach is to compute the tracks from pairwise point correspondences. You
can use imageviewset to manage the pairwise correspondences and find the tracks. Each track
corresponds to a 3-D point in the scene. To compute 3-D points from the tracks, use
triangulateMultiview. The 3-D point can be stored in a worldpointset object. The
worldpointset object also stores the correspondence between the 3-D points and the 2-D image
points across camera views.

Using the approach in SfM from two views, you can find the pose of camera 2 relative to camera 1. To
extend this approach to the multiple view case, find the pose of camera 3 relative to camera 2, and so
on. The relative poses must be transformed into a common coordinate system. Typically, all camera
poses are computed relative to camera 1 so that all poses are in the same coordinate system. You can
use imageviewset to manage camera poses. The imageviewset object stores the views and
connections between the views.

 Structure from Motion Overview

16-69

Every camera pose estimation from one view to the next contains errors. The errors arise from
imprecise point localization in images, and from noisy matches and imprecise calibration. These
errors accumulate as the number of views increases, an effect known as drift. One way to reduce the
drift, is to refine camera poses and 3-D point locations. The nonlinear optimization algorithm, called
bundle adjustment, implemented by the bundleAdjustment function, can be used for the
refinement. You can fix the camera poses and refine only the 3-D point locations using
bundleAdjustmentMotion. You can also fix the camera poses and refine only the 3-D locations
using bundleAdjustmentStructure.

Another method of reducing drift is by using pose graph optimization over the imageviewset object.
Once there is a loop closure detected, add anew connection to the imageviewset object and use the
optimizePoses function to refine the camera poses constrained by relative poses.

The “Structure From Motion From Two Views” on page 1-113 example shows how to reconstruct a 3-
D scene from a sequence of 2-D views. The example uses the Camera Calibrator app to calibrate the
camera that takes the views. It uses an imageviewset object to store and manage the data
associated with each view.

The “Monocular Visual Simultaneous Localization and Mapping” on page 1-95 example shows you
how to process image data from a monocular camera to build a map of an indoor environment and
estimate the motion of the camera.

See Also
Apps
Stereo Camera Calibrator | Camera Calibrator

16 Registration and Stereo Vision

16-70

Functions
bundleAdjustment | bundleAdjustmentStructure | bundleAdjustmentMotion | estrelpose
| cameraProjection | triangulateMultiview | estimateFundamentalMatrix |
matchFeatures

Objects
imageviewset | worldpointset | vision.PointTracker | pointTrack

See Also

Related Examples
• “Structure From Motion From Two Views” on page 1-113
• “Structure From Motion From Multiple Views” on page 1-158
• “Monocular Visual Simultaneous Localization and Mapping” on page 1-95

 Structure from Motion Overview

16-71

Object Detection

• “Train Custom OCR Model” on page 17-2
• “Getting Started with OCR” on page 17-6
• “Getting Started with Anomaly Detection Using Deep Learning” on page 17-11
• “Getting Started with Video Classification Using Deep Learning” on page 17-14
• “Choose an Object Detector” on page 17-24
• “Getting Started with SSD Multibox Detection” on page 17-31
• “Getting Started with Object Detection Using Deep Learning” on page 17-34
• “How Labeler Apps Store Exported Pixel Labels” on page 17-39
• “Anchor Boxes for Object Detection” on page 17-44
• “Getting Started with YOLO v2” on page 17-49
• “Getting Started with YOLO v3” on page 17-53
• “Getting Started with YOLO v4” on page 17-56
• “Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN” on page 17-61
• “Getting Started with Mask R-CNN for Instance Segmentation” on page 17-67
• “Getting Started with Semantic Segmentation Using Deep Learning” on page 17-75
• “Point Feature Types” on page 17-78
• “Local Feature Detection and Extraction” on page 17-84
• “Get Started with Cascade Object Detector” on page 17-102
• “Using OCR Trainer App” on page 17-116
• “Create a Custom Feature Extractor” on page 17-120
• “Image Retrieval with Bag of Visual Words” on page 17-123
• “Image Classification with Bag of Visual Words” on page 17-126

17

Train Custom OCR Model
In this section...
“Prepare Training Data” on page 17-2
“Train an OCR model” on page 17-4
“Evaluate OCR training” on page 17-5

Training an Optical Character Recognition (OCR) model to recognize custom text consists of three
steps:

1 Prepare training data
2 Train an OCR model
3 Evaluate OCR training

Prepare Training Data
The Computer Vision Toolbox provides deep learning based OCR training and supports transfer
learning and fine-tuning of OCR models shipped with the toolbox. Training with deep learning
requires hundreds of training samples, of each character part of the character set. After collecting
training images, you must label, save, and combine the data into a datastore before training an OCR
Model. Use these steps to prepare the data.

17 Object Detection

17-2

CupLoremipsum

Cus tom Labeled ImagesImage Labeler

GroundTruth object
OCR label data

ocrTrainingData

Image datas tore (imds)

Array datas tore (roids)

Array datas tore (txtds)

Images

ROIs

Text

combine(imds,roids,txtds)

datastore(imds,roids,txtds)

Train OCR Model

Training Options

 Train Custom OCR Model

17-3

Label Training Images

You can use the Image Labeler app to interactively label image ground truth data. Ground truth for
OCR must contain the location of text regions and the actual text within the regions. You can specify
the location and size of the text region using a rectangle ROI label. You can specify the actual text
within each rectangle ROI by adding a string Attribute to the rectangle ROI label. Use one of these
methods to launch the Image Labeler:

• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click

theImage Labeler app icon .
• MATLAB command prompt: Enter imageLabeler.

The Image Labeler toolstrip provides these buttons to use for labeling OCR data:

• Import — Load a collection of images.
• Label — Add Rectangle bounding box labels.
• Attribute — Add a string Attribute to the rectangle ROI label which defines the type of content

in the bounding box.
• Export — Export labels and label definitions as a ground truth object.

For more details about using the Image Labeler app, see “Get Started with the Image Labeler” on
page 9-34.

Create Label Data Using Image Labeler

1 Load an image collection from a folder or an ImageDatastore object into the Image Labeler
app.

2 Define a rectangle ROI and name it. For example, Text.
3 Define a string attribute for the label, which defines the type of text string in the ROI, and name

it. For example, word.
4 Label the text in the collection of images, or use an automation algorithm to prelabel some of the

text automatically. For more details using an automation algorithm, see “Automate Ground Truth
Labeling for OCR” on page 3-19.

5 Export the labeled data to the workspace or save it to a file. The app exports the labels as a
groundTruth object.

Load Training Data From Ground Truth

Use the ocrTrainingData function to load training data from the exported groundTruth object.
The ocrTrainingData function returns three datastores for images, bounding boxes, and text. For
the purposes of training, combine those datastores using the combine function.

Train an OCR model
Use the trainOCR function to train an OCR model and configure the training options using the
ocrTrainingOptions function. Optionally, for faster performance, you can quantize the trained
models using the quantizeOCR function, but this can decrease the accuracy of the model. This can
be helpful if the OCR model will be deployed in resource constrained systems. For an example that
demonstrates how to use these functions, see “Train an OCR Model to Recognize Seven-Segment
Digits” on page 3-8.

17 Object Detection

17-4

Evaluate OCR training
Use the metrics generated by the evaluateOCR function to evaluate the quality of the OCR model.

See Also
Apps
Image Labeler

Functions
ocr | trainOCR | evaluateOCR | quantizeOCR | ocrTrainingData

Objects
ocrText | ocrTrainingOptions

More About
• “Getting Started with OCR” on page 17-6
• “Automate Ground Truth Labeling for OCR” on page 3-19
• “Train an OCR Model to Recognize Seven-Segment Digits” on page 3-8

 Train Custom OCR Model

17-5

Getting Started with OCR
In this section...
“Text Detection” on page 17-6
“Text Recognition” on page 17-7
“Troubleshoot OCR Function Results” on page 17-8
“Train Custom OCR Models” on page 17-9
“Create Ground Truth Data” on page 17-9
“Evaluate and Quantize OCR Results” on page 17-9

Optical character recognition or Optical character recognition (OCR) refers to the ability to detect
text in an image. OCR is useful in many computer vision applications such as image search, document
analysis, and robot navigation. The images can be of any type of document, or a scene that contains
text (for example, license plates). Computer Vision Toolbox provides functionalities to detect and
recognize text in multiple languages and train OCR models to recognize custom text. The ocr
function is at the core of these functionalities, which use it to perform text detection and recognition
in an image.

Text Detection
The first step for OCR is to detect regions of text in an image. Computer Vision Toolbox includes
these approaches.

Built-in Layout Analysis

The ocr function uses the Tesseract OCR engine to perform automatic text detection and recognition,
which performs best when the text is located on a uniform background and formatted like a scanned
document. When the text has a different layout, use the LayoutAnalysis name-value argument of
the ocr function to specify the layout of the text in the image. You can set the layout to "auto",
"page", "block", "line", "word", or "character". When the layout is "line", "word", or
"character" layout it's best to also specify the locations of text region. For more details, see “Specify
Text Regions” on page 17-7.

The built-in layout analysis in the ocr function analyzes a binarized input image by assuming the
image has dark text against a uniform, light background. If the image contains a nonuniform
background or lighting, use binarization to prepare the input image for text recognition. For more
information, see the “Troubleshoot OCR Function Results” on page 17-8 section.

17 Object Detection

17-6

https://github.com/tesseract-ocr/

CRAFT Text Detector

The detectTextCRAFT function offers robust text detection based on the Character-Region
Awareness For Text detection (CRAFT) model, which can detect text regions in images regardless of
factors such as image background, contrast, and intensity values. When you have difficulty
segmenting the text regions in an image, use the pretrained, deep-learning-based CRAFT model. This
model requires more computational resources than other text detection approaches, and also
requires a Deep Learning Toolbox™ license. For more information, see “Automatically Detect and
Recognize Text Using Pretrained CRAFT Network and OCR” on page 4-14.

Custom Text Detection

Computer Vision Toolbox provides several tools for users to develop custom algorithms to detect text
in complex image scenes. These examples provide different approaches to image preprocessing
algorithms:

• “Recognize Text Using Optical Character Recognition (OCR)” on page 4-46 — Overview of
preprocessing, with an example using blob analysis.

• “Automatically Detect and Recognize Text Using MSER and OCR” on page 4-2 — ROI-based
preprocessing.

• Opening by Reconstruction — Remove artifacts to produce a cleaner image.
• “Correct Nonuniform Illumination and Analyze Foreground Objects” — Enhance an image.

Text Recognition
The ocr function supports text recognition functionality in 64 languages. The function recognizes
text in English by default, and works well on scanned documents when using all of the default values
for the function. For example, this image shows a scan of a business card.

Specify Text Regions

Using text regions for OCR can improve performance, especially when performing OCR on images of
a natural scene that contains words. To recognize text in these kinds of images, specify ROI bounding
boxes around text regions and then use the ocr function with an ROI input. For example, this code
snippet uses an ROI to specify the location of the tex ton an accessible parking sign:

I = imread("handicapSign.jpg");
roi = [360 118 384 560];
ocrResults = ocr(I,roi);

 Getting Started with OCR

17-7

https://blogs.mathworks.com/steve/2008/07/14/opening-by-reconstruction/

Specify OCR Model

The ocr function supports text recognition in 64 languages through built-in language model files. To
use these models, specify the Model name-value argument of the ocr function. For faster
performance (but with less accuracy) using the built-in models, you can append "-fast" to the
language model string. For example, "english-fast", "japanese-fast", and "seven-segment-
fast". This code snippet recognizes the seven-segment characters in an image.

I = imread("sevSegDisp.jpg");
roi = [506 725 1418 626];
ocrResults = ocr(I,roi,Language="seven-segment");

Note Computer Vision Toolbox ships with language model files for recognizing English, Japanese,
and seven-segment characters. To perform recognition on other language characters using the ocr
function you must install the OCR Language Data Files support package. For more details, see
“Install OCR Language Data Files” on page 13-3.

Troubleshoot OCR Function Results
If your OCR results are not what you expect, you can try one or more of these options:

17 Object Detection

17-8

• The built-in layout analysis in the ocr function analyzes binarized input image by assuming a
uniform background and dark text on a light background. If the image contains nonuniform
background or lighting, use binarization to prepare the input image for text recognition. Use the
graythresh and imbinarize functions to binarize the image. If the characters are not visible in
the results of the binarization, then the image has a potential nonuniform lighting issue. Try
applying top-hat filtering by using the imtophat function, or use other techniques that address
non-uniform illumination.

• Increase the image size 2–4 times larger.
• If the characters in the image are too close together or their edges are touching, use morphology

to thin out the characters. Using morphology to thin out the characters separates the characters.
• Use binarization to check for nonuniform lighting issues. Use the graythresh and imbinarize

functions to binarize the image. If the characters are not visible in the results of the binarization,
then the image has a potential nonuniform lighting issue. Try applying top-hat filtering by using
the imtophat function, or other techniques that address non-uniform illumination.

• Use the region-of-interest option to isolate the text. Specify the ROI manually or use text
detection.

• If your image looks like a natural scene that contain words, such as a street scene, rather than a
scanned document, try setting the LayoutAnalysis name-value argument to either "Block" or
"Word".

• Ensure that the image contains dark text on a light background. If the image instead contains
light text on a dark background, you can binarize the image and invert it before passing the image
to the ocr function.

Train Custom OCR Models
In some cases, to get accurate recognition results, you must train a custom OCR model. For example,
when the text in your images use a proprietary font that is significantly different from any of the
available fonts, or when OCR results are not what you expect even after trying the troubleshooting
steps. For more details on how to train a custom OCR model, see “Train Custom OCR Model” on page
17-2.

Create Ground Truth Data
You can use the Image Labeler app to interactively label images for ground truth data for training
and evaluating OCR models. For more details, see “Prepare Training Data” on page 17-2.

Evaluate and Quantize OCR Results
Optionally, you can quantize a trained model for faster performance, by using the quantizeOCR
function, but this can decrease the accuracy of the model. Use the metrics generated by the
evaluateOCR function to evaluate the quality of the OCR results.

See Also
Apps
Image Labeler

Functions
ocr | trainOCR | evaluateOCR | quantizeOCR | ocrTrainingData

 Getting Started with OCR

17-9

Objects
ocrText | ocrTrainingOptions

More About
• “Train Custom OCR Models” on page 17-9
• “Recognize Text Using Optical Character Recognition (OCR)” on page 4-46
• “Automatically Detect and Recognize Text Using MSER and OCR” on page 4-2
• “Automatically Detect and Recognize Text Using Pretrained CRAFT Network and OCR” on page

4-14
• “Automate Ground Truth Labeling for OCR” on page 3-19
• “Train an OCR Model to Recognize Seven-Segment Digits” on page 3-8
• “Using OCR Trainer App” on page 17-116

17 Object Detection

17-10

Getting Started with Anomaly Detection Using Deep Learning
Anomaly detection using deep learning is an increasingly popular approach to automating visual
inspection tasks. The goal of anomaly detection is to perform a binary classification of images as
normal or anomalous. For example, in the manufacturing industry, anomaly detection can determine
which manufactured units meet quality standards and which units are defective.

You can train an anomaly detector using semi-supervised training. A complete semi-supervised
workflow consists of training a model on normal image data and determining an anomaly threshold
that separates normal images from anomalous images. Anomaly detection techniques generally follow
these steps:

1 Prepare training data and calibration data.
2 Train a model to produce anomaly scores.
3 Calibrate the model by determining an anomaly score threshold, and evaluate the performance of

the model by classifying metrics and visualizing the classification results.
4 Classify test images using the trained model and the optimal anomaly threshold.
5 Deploy the model onto a production line.

Note An alternative to anomaly detection is anomaly classification. Classification can differentiate
between normal images and multiple known anomalous patterns. Classification can provide more
insight on the type of anomaly, but it requires a greater amount of training data of the anomaly
classes. For an example, see “Classify Defects on Wafer Maps Using Deep Learning” on page 3-83.

The Computer Vision Toolbox Automated Visual Inspection Library offers functions that enable you to
train, calibrate, and evaluate anomaly detection networks. You can install the Computer Vision
Toolbox Automated Visual Inspection Library from Add-On Explorer. For more information about
installing add-ons, see Get and Manage Add-Ons. The functionality also requires Deep Learning
Toolbox.

Prepare Training and Calibration Data
You can train an anomaly detector using one-class learning, which means that the network trains on
data consisting only of normal images. Despite training on samples only of normal images, the model
learns how to distinguish between normal and anomalous images. One-class learning offers many
advantages for anomaly detection problems:

• Representations of anomalies can be scarce.
• Anomalies can represent expensive or catastrophic outcomes.
• There can be many types of anomalies, and the types of anomalies can change over the lifetime of

the model. Describing what a normal image looks like is often more feasible than providing data
that represents all possible anomalies in real world settings.

You can use the Image Labeler app to interactively label images with scene labels. The app returns
the ground truth labeled data as a groundTruth object. Convert the ground truth scene labels to an
image datastore for training by using the sceneLabelTrainingData function. For more
information, see “Get Started with the Image Labeler” on page 9-34.

In semi-supervised learning, you can tune the performance of the trained model using calibration
data. The calibration data set consists of labeled samples of normal and anomalous images. Avoid

 Getting Started with Anomaly Detection Using Deep Learning

17-11

overfitting the model by using different images in the training and calibration data sets. You can use
functions such as partition to split a datastore into separate datastores for training and
calibration.

Some techniques, such as Outlier Exposure, add a small number of anomalous images to the training
data set.

Train the Model
The Computer Vision Toolbox Automated Visual Inspection Library provides framework for training
anomaly detection networks. Start by creating an untrained network object. Then, train the network
by passing the network and the training data to the appropriate training function. The table shows
the supported networks and training functions.

Network Description Network Object Training Function
Fully convolutional data
description (FCDD) [1 on page
17-13]

fcddAnomalyDetector trainFCDDAnomalyDetector

FastFlow [2 on page 17-13] fastFlowAnomalyDetector trainFastFlowAnomalyDete
ctor

PatchCore [3 on page 17-13] patchCoreAnomalyDetector trainPatchCoreAnomalyDet
ector

If you want to train an anomaly detection network that uses a different framework, then design a
model that accepts images as input and returns scalar valued anomaly scores. The score represents
the likelihood that an image is anomalous. Larger scores indicate a higher probability that an image
in anomalous samples. Optionally, you can design a network that returns localized anomaly scores in
addition to a scalar aggregate score for the image. Localized score information enables you to
subjectively understand the network classification decisions.

Calibrate and Evaluate the Model
Calibrate the model by determining an anomaly score threshold that separates the scores of good
samples from the scores of anomaly samples. Unfortunately, most data sets cannot be cleanly
separated into these two categories, and will have misclassifications in the form of false positives
(normal images classified as anomalous) and false negatives (anomalous images classified as normal).
By adjusting the threshold, you can tune the false positive and false negative rates to satisfy your
operating requirements.

To select a threshold, you can use the anomalyThreshold function. The function supports different
optimization methods based on statistical techniques such as receiver operating characteristic (ROC)
and precision-recall (PR) curves. The function optionally returns the performance metrics as an
rocmetrics function, which you can use to plot the ROC and PR curves.

Use the evaluateAnomalyDetection function to evaluate the quality of the anomaly detection
results using metrics such as the confusion matrix and average precision. The
anomalyDetectionMetrics object stores the metrics.

You can visualize the localized anomaly scores to understand the classification results. For example,
you can display an anomaly score map as a heatmap overlayed on a calibration or test image using
the anomalyMapOverlay function. You can display an interactive figure that displays the

17 Object Detection

17-12

classification results and score maps for an entire data set using the
viewAnomalyDetectionResults function. Visualizing localized anomaly scores is useful for
identifying patterns in false negatives and false positives. The patterns can indicate strategies to
further improve the classifier performance.

Perform Classification Using the Model
Classify test images as normal or anomalous by using the classify function. You can get the
unnormalized anomaly scores for the test images using the predict function.

Deploy the Model
The end goal of visual inspection is often to deploy trained models for use in making business
decisions in real-time production systems on assembly lines. The model determines acceptance or
rejection given an image. The MATLAB Coder and GPU Coder™ products are effective tools for
deploying visual inspection systems to CPU and NVIDIA® GPU targets.

References
[1] Liznerski, Philipp, Lukas Ruff, Robert A. Vandermeulen, Billy Joe Franks, Marius Kloft, and Klaus-

Robert Müller. "Explainable Deep One-Class Classification." Preprint, submitted March 18,
2021. https://arxiv.org/abs/2007.01760.

[2] Yu, Jiawei, Ye Zheng, Xiang Wang, Wei Li, Yushuang Wu, Rui Zhao, and Liwei Wu. "FastFlow:
Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows." arXiv,
November 16, 2021. https://doi.org/10.48550/arXiv.2111.07677.

[3] Roth, Karsten, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, and Peter
Gehler. “Towards Total Recall in Industrial Anomaly Detection.” arXiv, May 5, 2022. https://
arxiv.org/abs/2106.08265.

See Also

Related Examples
• “Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings” on page 3-112
• “Detect Image Anomalies Using Explainable FCDD Network” on page 3-99

More About
• “ROC Curve and Performance Metrics” (Deep Learning Toolbox)

 Getting Started with Anomaly Detection Using Deep Learning

17-13

Getting Started with Video Classification Using Deep Learning
Video classification is similar to image classification, in that the algorithm uses feature extractors,
such as convolutional neural networks (CNNs), to extract feature descriptors from a sequence of
images and then classify them into categories. Video classification using deep learning provides a
means to analyze, classify, and track activity contained in visual data sources, such as a video stream.
Video classification has many applications, such as human activity recognition, gesture recognition,
anomaly detection, and surveillance.

Video classification methodology includes these steps:

1 Prepare training data
2 Choose a video classifier
3 Train and evaluate the classifier
4 Use the classifier to process video data

You can train a classifier using a video classifier pretrained on a large activity recognition video data
set, such as the Kinetics-400 Human Action Dataset, which is a large-scale and high-quality data set
collection. Start by providing the video classifier with labeled video or video clips. Then, using a deep
learning video classifier that consists of convolution neural networks that match the nature of the
video input, you can predict and classify the videos. Ideally, your workflow should include the
evaluation of your classifier. Finally, you can use the classifier to classify activity in a collection of
videos or a streaming video from a webcam.

Computer Vision Toolbox provides the slow and fast pathway (SlowFast), ResNet with (2+1)D
convolutions, and two-stream Inflated-3D techniques for training a classifier of video classification.

17 Object Detection

17-14

Create Training Data for Video Classification
To train a classifier network, you need a collection of videos and its corresponding collection of scene
labels. A scene label is a label applied to a time range in a video. For example, you could label a range
of frames "jumping".

You can use the Video Labeler or Ground Truth Labeler to interactively label ground truth data in
a video, image sequence, or custom data source with scene labels. For a summary all labelers, see
“Choose an App to Label Ground Truth Data” on page 9-44.

The labeler apps export labeled data into MAT files that contain groundTruth objects. For an
example showing how to extract training data from ground truth objects, see “Extract Training Data
for Video Classification” on page 3-200.

Augment and Preprocess Data

Data augmentation provides a way to use limited data sets for training. Minor changes, such as
translating, cropping, or transforming an image, provide new, distinct, and unique images that you
can use to train a robust video classifier. Datastores are a convenient way to read and augment
collections of data. Use the fileDatastore function with a read function that uses the
VideoReader to read video files, to create datastores for videos and labeled scene label data. For an
example that augments and preprocesses data, see “Gesture Recognition using Videos and Deep
Learning” on page 3-207.

To learn how to augment and preprocess data, see “Perform Additional Image Processing Operations
Using Built-In Datastores” (Deep Learning Toolbox) and “Datastores for Deep Learning” (Deep
Learning Toolbox).

Create Video Classifier
Choose one of the listed video classifier objects to create deep learning classification networks using
models pretrained models using the Kinetics-400 data set (which contains 400 class labels):

 Getting Started with Video Classification Using Deep Learning

17-15

• The slowFastVideoClassifier model is pretrained on the Kinetics-400 data set which
contains the residual network ResNet-50 model as the backbone architecture with slow and fast
pathways. This functionality requires the Computer Vision Toolbox Model for SlowFast Video
Classification.

• The r2plus1dVideoClassifier model is pretrained on the Kinetics-400 data set which
contains 18 spatio-temporal (ST) residual layers. This functionality requires the Computer Vision
Toolbox Model for R(2+1)D Video Classification.

• The inflated3dVideoClassifier model contains two subnetworks: the video network and the
optical flow network. These networks are trained on the Kinetics-400 data set with RGB data and
optical flow data, respectively. This functionality requires the Computer Vision Toolbox Model for
Inflated-3D Video Classification.

The table provides a comparison of the these deep learning supported classifiers:

17 Object Detection

17-16

Model Data Sources Classifier
Model Size
(Pretrained
on
Kinetics-400
Dataset)

GPU Support Multiple Class
Support

Description

SlowFast Video data 124 MB Yes Yes • Faster
convergenc
e during
training
than the
Inflated-3D
video
classifier.
Transfer
learning on
your data
set can be
slower than
the
R(2+1)D
video
classifier
because of
the two
pathways in
the 3-D
convolution
al neural
network.

• The 3-D
convolution
al neural
network is
deeper than
those of the
Inflated-3D
and
R(2+1)D
video
classifiers.

• Does not
require
optical flow
data, in
addition to
video data

• You must
use a low
MiniBatch

 Getting Started with Video Classification Using Deep Learning

17-17

Model Data Sources Classifier
Model Size
(Pretrained
on
Kinetics-400
Dataset)

GPU Support Multiple Class
Support

Description

Size value
per GPU
because of
the depth
of the
residual
layers. The
value must
be much
lower than
for a
correspondi
ng R(2+1)D
classifier
because of
the two
pathways
(roughly
half the
value you
would use
for
R(2+1)D).

• Choose this
classifier to
obtain good
classificatio
n accuracy
results for
your data
set, and for
faster
convergenc
e during
transfer
learning at
the expense
of greater
GPU
memory
requiremen
ts.

17 Object Detection

17-18

Model Data Sources Classifier
Model Size
(Pretrained
on
Kinetics-400
Dataset)

GPU Support Multiple Class
Support

Description

R(2+1)D Video data 112 MB Yes Yes • Faster
convergenc
e during
training
than the
Inflated-3D
video
classifier.

• The 3-D
convolution
al neural
network is
deeper than
the
Inflated-3D
CNN.

• Does not
require
optical flow
data or
RGB data.

• Choose this
classifier to
obtain good
classificatio
n accuracy
results for
your data
set, and for
faster
convergenc
e during
transfer
learning at
the expense
of greater
GPU
memory
requiremen
ts.

• You must
reduce the
MiniBatch
Size per

 Getting Started with Video Classification Using Deep Learning

17-19

Model Data Sources Classifier
Model Size
(Pretrained
on
Kinetics-400
Dataset)

GPU Support Multiple Class
Support

Description

GPU,
because of
the depth
of the
residual
layers.

17 Object Detection

17-20

Model Data Sources Classifier
Model Size
(Pretrained
on
Kinetics-400
Dataset)

GPU Support Multiple Class
Support

Description

Inflated-3D • Optical flow
data

• Video data

91 MB Yes Yes • Accuracy of
the
classifier
improves
when
combining
optical flow
and RGB
data.

• Slower
convergenc
e during
training
compared
to R(2+1)D
and
SlowFast
video
classifiers.

• Use with
optical flow
data to
capture
motion
information
, as the
accuracy of
the
classifier
improves
with optical
flow data
and video
data.

• Commonly
used as a
baseline
when
comparing
video
classifiers.
Choose this
classifier to
obtain

 Getting Started with Video Classification Using Deep Learning

17-21

Model Data Sources Classifier
Model Size
(Pretrained
on
Kinetics-400
Dataset)

GPU Support Multiple Class
Support

Description

baseline
results for
your data
set through
transfer
learning,
and to train
while using
less GPU
memory.

• You can set
MiniBatch
Size to a
value
greater
than for
either
R(2+1)D or
SlowFast.

This table shows sample code you can use to create a video classifier using each of the listed video
classifiers:

Video Classifier Sample Creation Code
SlowFast inputSize = [112 112 64 3];

classes = ["wavingHello","clapping"];
sf = slowFastVideoClassifier("resnet50-3d",classes,InputSize=inputSize)

R(2+1)D inputSize = [112 112 64 3];
classes = ["wavingHello","clapping"];
rd = r2plus1dVideoClassifier("resnet-3d-18",classes,InputSize=inputSize)

Inflated 3-D inputSize = [112 112 64 3];
classes = ["wavingHello","clapping"];
i3d = inflated3dVideoClassifier("googlenet-video-flow",classes,InputSize=inputSize)

Train Video Classifier and Evaluate Results
To learn how to train and evaluate the results for the listed video classifiers, see these examples:

• “Gesture Recognition using Videos and Deep Learning” on page 3-207 — Train and evaluate a
SlowFast video classifier

• “Activity Recognition Using R(2+1)D Video Classification” on page 3-145 — Train and evaluate an
R(2+1)D video classifier

• “Activity Recognition from Video and Optical Flow Data Using Deep Learning” on page 3-168 —
Train and evaluate a two-stream Inflated-3D video classifier

17 Object Detection

17-22

Classify Using Deep Learning Video Classifiers
To learn how to classify videos using a video classifier, see these examples:

• “Evaluate a Video Classifier” on page 3-196
• “Classify Streaming Webcam Video Using SlowFast Video Classifier” on page 3-204

See Also
Apps
Video Labeler | Ground Truth Labeler

More About
• “Classify Videos Using Deep Learning” (Deep Learning Toolbox)
• “Get Started with the Video Labeler” on page 9-48

 Getting Started with Video Classification Using Deep Learning

17-23

Choose an Object Detector
The Computer Vision Toolbox provides object detectors to use for finding and classifying objects in an
image or video. Train a detector using an object detector function, then use it with machine learning
and deep learning to quickly and accurately predict the location of an object in an image.

When choosing a detector, consider whether you need these features::

Application and Performance

• Single vs Multiple classes — Multiple classes require a variation of different classifiers used at
multiple locations and scales on the image or video.

• Runtime performance — Detectors vary in performance depending on the time it takes to detect
objects in an image. A detector trained for a single class, or a detector trained to detect objects
that are similar in pose and shape, will have a faster runtime performance than a deep learning
detector trained on multiple objects. More importantly, deep learning is slower because it requires
more computations than machine learning or feature-based detection approaches.

• Machine learning — Machine learning uses two types of techniques: supervised learning, which
trains a model on known input and output data so that it can predict future outputs, and
unsupervised learning, which finds hidden patterns or intrinsic structures in input data. For
more details, see “Machine Learning in MATLAB” (Statistics and Machine Learning Toolbox)

• Deep learning — Implements deep neural networks with algorithms, pretrained models, and apps.
You can use convolutional neural networks to perform classification and regression on images. For
more details, see “Getting Started with Object Detection Using Deep Learning” on page 17-34.

Deployment

• C/C++ code generation — SSD, YOLO, ACF, and system object-based detectors support MATLAB
Coder C and C++ code generation for a variety of hardware platforms, from desktop systems to
embedded hardware. For more details, see MATLAB Coder. The R-CNN-based detectors do not
support code generation.

• GPU code generation — Deep learning-based detectors support GPU code generation with
optimized CUDA® by GPU Coder for embedded vision, and autonomous systems. For more details,
see GPU Coder.

Use the table to view and compare the object detector functions.

17 Object Detection

17-24

https://www.mathworks.com/products/matlab-coder.html
https://www.mathworks.com/products/gpu-coder.html?s_tid=srchtitle

Detector Multipl
e
Classe
s
Suppor
t

Deep
Learnin
g
Support

Code
Generati
on
Support

GPU
Suppor
t

Example Description

fasterRC
NNObject
Detector

Yes Yes No Yes “Object
Detection
Using Faster
R-CNN Deep
Learning” on
page 3-424

• Requires GPU for optimal
performance.

• Use this detector when you
need more precise object
localization accuracy.

• Best performance of the R-
CNN family, but slower than
YOLO v2 and SSD.

Faster R-CNN is a two-stage
network. The second stage
refines detection proposals
produced by the first stage,
which helps improve localization
at the cost of runtime
performance.

“Comparison of R-CNN Object
Detectors” on page 17-63

fastRCNN
ObjectDe
tector

Yes Yes No Yes Train Fast R-
CNN Stop
Sign Detector
on page 3-474

• Consider starting with the
fasterRCNNObjectDetecto
r.

• Requires GPU for optimal
performance.

• Use this detector if you have
your own method for
producing object regions.

• Faster than R-CNN, but
slower than Faster R-CNN.

“Comparison of R-CNN Object
Detectors” on page 17-63

 Choose an Object Detector

17-25

Detector Multipl
e
Classe
s
Suppor
t

Deep
Learnin
g
Support

Code
Generati
on
Support

GPU
Suppor
t

Example Description

rcnnObje
ctDetect
or

Yes Yes No Yes “Train Object
Detector
Using R-CNN
Deep
Learning” on
page 3-411

• Consider starting with the
fasterRCNNObjectDetecto
r.

• Requires GPU for optimal
performance.

• Slowest of the R-CNN-based
detectors.

This algorithm combines
rectangular region proposals
with convolutional neural
network features. It is a two-
stage detection algorithm. The
first stage identifies a subset of
regions in an image that might
contain an object. The second
stage classifies the object in each
region.

“Comparison of R-CNN Object
Detectors” on page 17-63

yolov2Ob
jectDete
ctor

Yes Yes Yes Yes “Object
Detection
Using YOLO
v2 Deep
Learning” on
page 3-396

• Consider using SSD or YOLO
v3 for better performance
across various sizes.

• Requires GPU for optimal
performance.

• Use this detector when better
runtime performance is
desired and you have objects
that do not drastically vary in
size or are small in the image.

• Better runtime performance
compared to Faster R-CNN.

YOLO v2 uses a single stage
network to perform object
detection.

17 Object Detection

17-26

Detector Multipl
e
Classe
s
Suppor
t

Deep
Learnin
g
Support

Code
Generati
on
Support

GPU
Suppor
t

Example Description

ssdObjec
tDetecto
r

Yes Yes Yes Yes “Object
Detection
Using SSD
Deep
Learning” on
page 3-258

• Requires GPU for optimal
performance.

• Use this detector when you
need to detect objects of
various sizes and better
runtime performance is
desired.

• Better runtime performance
than Faster R-CNN and YOLO
v2.

Single shot detector (SSD) uses a
single stage detection network to
detects objects using multi-scale
features.

acfObjec
tDetecto
r

No No Yes No Train ACF-
based Stop
Sign Detector
on page 3-471

• A rigid object detector that is
suited for single class object
detection.

• Consider using a deep
learning object detector if you
need to detect multiple object
classes or have objects that
belong to the same class but
are in different configurations
or poses.

• Use this detector when the
object you want to detect has
similar pose and shape, and
when runtime performance is
critical.

• Better runtime performance
than deep-learning-based
detectors on CPU.

ACF would not work well for
detecting vehicles from various
viewpoints, such as front, side,
and rear.

peopleDe
tectorAC
F

Pretrai
ned

No Yes No “Tracking
Pedestrians
from a
Moving Car”
on page 8-77

Use this pretrained detector to
detect upright positioned people.

 Choose an Object Detector

17-27

Detector Multipl
e
Classe
s
Suppor
t

Deep
Learnin
g
Support

Code
Generati
on
Support

GPU
Suppor
t

Example Description

vision.P
eopleDet
ector

Pretrai
ned

No Yes No “Depth
Estimation
From Stereo
Video” on
page 1-150

Use this pretrained cascade
object detector to detect upright
positioned people.

vision.C
ascadeOb
jectDete
ctor

No No Yes No “Detect Faces
in an Image
Using the
Frontal Face
Classification
Model”

• Viola-Jones object detector
suitable for rigid object
detection. Uses HAAR, HOG,
or LBP features.

• If training a new detector,
consider starting with ACF for
better performance.

• Use this detector when a
pretrained detector is
available for an object class
you're interested in detecting,
and there is little variation in
the object's pose or shape.

Mask R-
CNN

Yes Yes No Yes “Getting
Started with
Mask R-CNN
for Instance
Segmentation
” on page 17-
67

Use this detector when you need
to segment individual objects.

yolov3Ob
jectDete
ctor

Yes Yes Yes Yes “Object
Detection
Using YOLO
v3 Deep
Learning” on
page 3-381

YOLO v3 is a single stage
network that uses multi-scale
features to better handle
detection of objects of various
sizes.

yolov4Ob
jectDete
ctor

Yes Yes Yes Yes “Object
Detection
Using YOLO
v4 Deep
Learning” on
page 3-482

YOLO v4 is a single stage object
detector that is fast and accurate
than YOLO v3. The detector uses
spatial pyramid pooling and path
aggregation network for
computing aggregated features
and is capable of detecting small
objects of different sizes.

17 Object Detection

17-28

Detector Multipl
e
Classe
s
Suppor
t

Deep
Learnin
g
Support

Code
Generati
on
Support

GPU
Suppor
t

Example Description

vehicleD
etectorA
CF

Pretrai
ned

No Yes No “Track
Multiple
Vehicles
Using a
Camera”
(Automated
Driving
Toolbox)

Pretrained ACF detector

vehicleD
etectorF
asterRCN
N

Pretrai
ned

Yes No Yes “Train a Deep
Learning
Vehicle
Detector”
(Automated
Driving
Toolbox)

Pretrained Faster R-CNN
detector

vehicleD
etectorY
OLOv2

Pretrai
ned

Yes Yes Yes “Detect
Vehicles
Using
Monocular
Camera and
YOLO v2”
(Automated
Driving
Toolbox)

Pretrained YOLO v2 detector

See Also
Apps
Image Labeler | Video Labeler | Ground Truth Labeler

Objects
ssdObjectDetector | acfObjectDetector | rcnnObjectDetector |
vision.CascadeObjectDetector | fastRCNNObjectDetector | fasterRCNNObjectDetector
| yolov2ObjectDetector | vehicleDetectorYOLOv2

Functions
trainACFObjectDetector | trainRCNNObjectDetector | trainCascadeObjectDetector |
trainSSDObjectDetector | trainFasterRCNNObjectDetector |
trainYOLOv2ObjectDetector | trainFastRCNNObjectDetector | vehicleDetectorACF |
vehicleDetectorFasterRCNN | acfObjectDetectorMonoCamera

More About
• “Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN” on page 17-61

 Choose an Object Detector

17-29

• “Getting Started with SSD Multibox Detection” on page 17-31
• “Getting Started with Object Detection Using Deep Learning” on page 17-34
• “Getting Started with YOLO v2” on page 17-49
• “Getting Started with Mask R-CNN for Instance Segmentation” on page 17-67

17 Object Detection

17-30

Getting Started with SSD Multibox Detection
The single shot multibox detector (SSD) uses a single stage object detection network that merges
detections predicted from multiscale features. The SSD is faster than two-stage detectors, such as the
Faster R-CNN detector, and can localize objects more accurately compared to single-scale feature
detectors, such as the YOLO v2 detector.

The SSD runs a deep learning CNN on an input image to produce network predictions from multiple
feature maps. The object detector gathers and decodes predictions to generate bounding boxes.

Predict Objects in the Image
SSD uses anchor boxes to detect classes of objects in an image. For more details, see “Anchor Boxes
for Object Detection” on page 17-44. The SSD predicts these two attributes for each anchor box.

• Anchor box offsets — Refine the anchor box position.
• Class probability — Predict the class label assigned to each anchor box.

This figure shows predefined anchor boxes (the dotted lines) at each location in a feature map and
the refined location after offsets are applied. Matched boxes with a class are in blue and orange.

 Getting Started with SSD Multibox Detection

17-31

Design an SSD Detection Network
You can design a custom SSD model programmatically by using the ssdObjectDetector function.

To design an SSD Multibox detection network, follow these steps.

1 Start the model with a feature extractor network, which can be a pretrained or untrained CNN.
2 Select prediction layers from the feature extraction network. Any layer from the feature

extraction network can be used as a prediction layer. However, to leverage the benefits of using
multiscale features for object detection, choose feature maps of different sizes.

3 Specify the names of the prediction layers as detection network source input to the
ssdObjectDetector object. Also, specify the names of the classes and the anchor boxes as
inputs to configure the detector for training.

4 The ssdObjectDetector object connects the outputs of the prediction layers to a classification
branch and to a regression branch. The classification branch predicts the class for each tiled
anchor box. The regression branch predicts anchor box offsets.

The ssdObjectDetector object combines the outputs of the classification branches from all the
prediction layers by using a merge layer. Then, the output from the merge layer of the
classification branch is connected to a softmax layer followed by a binary cross-entropy layer. The
classification branch computes classification loss by using binary cross-entropy function.

Similarly, the ssdObjectDetector object combines the outputs of the regression branches from
all the prediction layers by using a merge layer. Then, the output from the merge layer of the
regression branch is connected to a bounding box regression layer. The regression branch
computes the bounding box loss by using smooth L1 function.

5 Train the SSD object detection network configured by the ssdObjectDetector object to detect
objects in an image. You can use the trained SSD detector for multiclass object detection.

Train an Object Detector and Detect Objects with an SSD Model
To train a SSD object detection network, use the trainSSDObjectDetector function. For more
information, see “Train SSD Object Detector”. To learn how to perform object detection by using the
SSD deep learning technique, see the “Object Detection Using SSD Deep Learning” on page 3-258
example.

17 Object Detection

17-32

Transfer Learning
With transfer learning, you can use a pretrained CNN as the feature extractor in an SSD detection
network. Use the ssdObjectDetector function to create an SSD detection network from a
pretrained CNN, such as MobileNetv2. For a list of pretrained CNNs, see “Pretrained Deep Neural
Networks” (Deep Learning Toolbox).

Code Generation
To learn how to generate CUDA code using the SSD object detector (created using the
ssdObjectDetector object), see “Code Generation for Object Detection by Using Single Shot
Multibox Detector” on page 2-2.

Label Training Data for Deep Learning
You can use the Image Labeler, Video Labeler, or Ground Truth Labeler apps to interactively
label pixels and export label data for training. The apps can also be used to label rectangular regions
of interest (ROIs) for object detection, scene labels for image classification, and pixels for semantic
segmentation. To create training data from any of the labelers exported ground truth object, you can
use the objectDetectorTrainingData or pixelLabelTrainingData functions. For more
details, see “Training Data for Object Detection and Semantic Segmentation” on page 9-89.

References
[1] Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and

Alexander C. Berg. "SSD: Single Shot MultiBox Detector." In Computer Vision – ECCV 2016,
edited by Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, 9905:21-37. Cham: Springer
International Publishing, 2016. https://doi.org/10.1007/978-3-319-46448-0_2.

See Also
Apps
Image Labeler | Ground Truth Labeler | Video Labeler | Deep Network Designer

Objects
ssdObjectDetector

Functions
trainSSDObjectDetector | analyzeNetwork

Related Examples
• “Object Detection Using SSD Deep Learning” on page 3-258

More About
• “Anchor Boxes for Object Detection” on page 17-44
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

 Getting Started with SSD Multibox Detection

17-33

Getting Started with Object Detection Using Deep Learning
Object detection using deep learning provides a fast and accurate means to predict the location of an
object in an image. Deep learning is a powerful machine learning technique in which the object
detector automatically learns image features required for detection tasks. Several techniques for
object detection using deep learning are available such as Faster R-CNN, you only look once (YOLO)
v2, YOLO v3, YOLO v4, and single shot detection (SSD).

Applications for object detection include:

• Image classification
• Scene understanding
• Self-driving vehicles
• Surveillance

Create Training Data for Object Detection
Use a labeling app to interactively label ground truth data in a video, image sequence, image
collection, or custom data source. You can label object detection ground truth using rectangle labels,
which define the position and size of the object in the image.

• “Choose an App to Label Ground Truth Data” on page 9-44
• “Training Data for Object Detection and Semantic Segmentation” on page 9-89

Augment and Preprocess Data

Using data augmentation provides a way to use limited data sets for training. Minor changes, such as
translation, cropping, or transforming an image, provide, new, distinct, and unique images that you
can use to train a robust detector. Datastores are a convenient way to read and augment collections

17 Object Detection

17-34

of data. Use imageDatastore and the boxLabelDatastore to create datastores for images and
labeled bounding box data.

• “Augment Bounding Boxes for Object Detection” (Deep Learning Toolbox)
• “Preprocess Images for Deep Learning” (Deep Learning Toolbox)
• “Preprocess Data for Domain-Specific Deep Learning Applications” (Deep Learning Toolbox)

For more information about augmenting training data using datastores, see “Datastores for Deep
Learning” (Deep Learning Toolbox), and “Perform Additional Image Processing Operations Using
Built-In Datastores” (Deep Learning Toolbox).

Create Object Detection Network
Each object detector contains a unique network architecture. For example, the Faster R-CNN
detector uses a two-stage network for detection, whereas the YOLO v2 detector uses a single stage.
Use functions like fasterRCNNLayers or yolov2Layers to create a network. You can also design a
network layer by layer using the Deep Network Designer.

• “Pretrained Deep Neural Networks” (Deep Learning Toolbox)
• “Design a YOLO v2 Detection Network” on page 17-50
• “Design an R-CNN, Fast R-CNN, and a Faster R-CNN Model” on page 17-64

Train Detector and Evaluate Results
Use the trainFasterRCNNObjectDetector, trainYOLOv2ObjectDetector,
trainYOLOv4ObjectDetector, and trainSSDObjectDetector functions to train an object
detector. Use the evaluateDetectionMissRate and evaluateDetectionPrecision functions to
evaluate the training results.

• “Train Faster R-CNN Vehicle Detector”
• Train YOLO v2 Object Detector
• “Train YOLO v4 Network for Vehicle Detection”
• “Train SSD Object Detector”

Detect Objects Using Deep Learning Detectors
Detect objects in an image using the trained detector. For example, the partial code shown below
uses the trained detector on an image I. Use the detect object function on
fasterRCNNObjectDetector, yolov2ObjectDetector, yolov3ObjectDetector,
yolov4ObjectDetector, or ssdObjectDetector objects to return bounding boxes, detection
scores, and categorical labels assigned to the bounding boxes.

I = imread(input_image)
[bboxes,scores,labels] = detect(detector,I)

• “Multiclass Object Detection Using YOLO v2 Deep Learning” on page 3-62
• “Object Detection Using YOLO v3 Deep Learning” on page 3-381
• “Object Detection Using YOLO v4 Deep Learning” on page 3-482
• “Object Detection Using SSD Deep Learning” on page 3-258

 Getting Started with Object Detection Using Deep Learning

17-35

• “Object Detection Using Faster R-CNN Deep Learning” on page 3-424

Detect Objects Using Pretrained Object Detection Models
Computer Vision Toolbox provides pretrained object detection models to use for performing out-of-
the-box inference.

To use a pretrained object detection model

1 Download a pretrained model. The pretrained models are shipped as support packages that you
can download and install using either the visionSupportPackages function or the Add-On
Explorer.

2 Use an object detector in the Computer Vision Toolbox to load the pretrained model and detect
objects in a test image.

The table lists the names of the pretrained models, names of the corresponding support packages,
and the object detectors in Computer Vision Toolbox.

Name of Pretrained
Models

Description Name of Support
Package

Object Detector

resnet50-coco A pretrained Mask R-
CNN object detector
trained on the COCO
data set with a
ResNet-50 network as
the feature extractor.

Computer Vision
Toolbox Model for Mask
R-CNN Instance
Segmentation

maskrcnn

darknet19-coco A pretrained YOLO v2
deep learning network
created using
DarkNet-19 as the base
network and trained on
COCO dataset.

Computer Vision
Toolbox Model for YOLO
v2 Object Detection

yolov2ObjectDetect
or

tiny-yolov2-coco A pretrained YOLO v2
deep learning network
created using a small
base network and
trained on COCO
dataset.

darknet53-coco A pretrained YOLO v3
deep learning network
created using
DarkNet-53 as the base
network and trained on
COCO dataset.

Computer Vision
Toolbox Model for YOLO
v3 Object Detection

yolov3ObjectDetect
or

17 Object Detection

17-36

tiny-yolov3-coco A pretrained YOLO v3
deep learning network
created using a small
base network and
trained on COCO
dataset.

csp-darknet53-coco A pretrained YOLO v4
deep learning network
created using CSP-
DarkNet-53 as the base
network and trained on
COCO dataset.

Computer Vision
Toolbox Model for YOLO
v4 Object Detection

yolov4ObjectDetect
or

tiny-yolov4-coco A pretrained YOLO v4
deep learning network
created using a small
base network and
trained on COCO
dataset.

For example, to use the darknet19-coco pretrained YOLO v2 model for object detection, load the
model by using the yolov2ObjectDetector object. You can then use the detect function of
yolov2ObjectDetector object to detect objects in an unknown image.

detector = yolov2ObjectDetector("darknet19-coco");
testImage = imread("highway.png");
[bboxes,scores,labels] = detect(detector,testImage);

MathWorks GitHub
MathWorks® GitHub repository provides implementations of the latest pretrained object detection
deep learning networks to download and use for performing out-of-the-box inference. The pretrained
object detection networks are already trained on standard data sets such as the COCO and Pascal
VOC data sets. You can use these pretrained models directly to detect different objects in a test
image.

For a list of all the latest MathWorks pretrained object detectors, see MATLAB Deep Learning
(GitHub).

See Also
Apps
Image Labeler | Video Labeler

More About
• “Choose an Object Detector” on page 17-24
• “Getting Started with YOLO v2” on page 17-49
• “Getting Started with YOLO v3” on page 17-53
• “Getting Started with YOLO v4” on page 17-56

 Getting Started with Object Detection Using Deep Learning

17-37

https://github.com/matlab-deep-learning/MATLAB-Deep-Learning-Model-Hub#ObjectDetection
https://github.com/matlab-deep-learning/MATLAB-Deep-Learning-Model-Hub#ObjectDetection

• “Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN” on page 17-61
• “Getting Started with SSD Multibox Detection” on page 17-31
• “Getting Started with Mask R-CNN for Instance Segmentation” on page 17-67
• “Anchor Boxes for Object Detection” on page 17-44

17 Object Detection

17-38

How Labeler Apps Store Exported Pixel Labels
When you create and export pixel labels from the Image Labeler, Video Labeler, or Ground Truth
Labeler (requires Automated Driving Toolbox) app, two sets of data are saved.

• A folder named PixelLabelData, which contains the PNG files of pixel label information. These
labels are encoded as indexed values.

• A MAT-file containing the pixel label data, along with any other label data. This data is stored in a
groundTruth object, or, if you are using the Ground Truth Labeler app, a
groundTruthMultisignal object. For pixel label data, the object also stores correspondences
between image or video frames and the PNG files.

The PNG files within the PixelLabelData folder are stored as a categorical matrix. The
categorical matrices contain values assigned to categories. Categorical is a data type. A
categorical matrix provides efficient storage and convenient manipulation of nonnumeric data, while
also maintaining meaningful names for the values. These matrices are natural representations for
semantic segmentation ground truth, where each pixel is one of a predefined category of labels.

Location of Pixel Label Data Folder
The ground truth object stores the folder path and name for the pixel label data folder. The
LabelData property of the groundTruth object or ROILabelData property of the
groundTruthMultisignal object contains the information in the 'PixelLabelData' column. If
you change the location of the pixel data file, you must also update the related information in the
ground truth object. You can use the changeFilePaths function to update the information.

View Exported Pixel Label Data
The labeler apps store the semantic segmentation ground truth as lossless PNG files, with a uint8
value representing each category. The app uses the categorical function to associate the uint8
values to a category. To view your pixel data, you can either overlay the categories on images or
create a datastore from the labeled images.

 How Labeler Apps Store Exported Pixel Labels

17-39

View Exported Pixel Label Data By Overlaying Categories on Images

Use the imread function with the categorical and labeloverlay functions. You cannot view the
pixel data directly from the categorical matrix. See “View Exported Pixel Label Data” on page 17-40.

View Exported Pixel Label Data from Datastore of Labeled Images

Use the pixelLabelDatastore function to create a datastore from a set of labeled images. Use the
read function to read the pixel label data. See “Read and Display Pixel Label Data” on page 17-41.

Examples
View Exported Pixel Label Data

Read image and corresponding pixel label data that was exported from a labeler app.

visiondatadir = fullfile(toolboxdir('vision'),'visiondata');

buildingImage = imread(fullfile(visiondatadir,'building','building1.JPG'));
buildingLabels = imread(fullfile(visiondatadir,'buildingPixelLabels','Label_1.png'));

Define categories for each pixel value in buildingLabels.

labelIDs = [1,2,3,4];
labelcats = ["sky" "grass" "building" "sidewalk"];

Construct a categorical matrix using the image and the definitions.

buildingLabelCats = categorical(buildingLabels,labelIDs,labelcats);

Display the categories overlaid on the image.

figure
imshow(labeloverlay(buildingImage,buildingLabelCats))

17 Object Detection

17-40

Read and Display Pixel Label Data

Overlay pixel label data on an image.

Set the location of the image and pixel label data.

dataDir = fullfile(toolboxdir('vision'),'visiondata');
imDir = fullfile(dataDir,'building');
pxDir = fullfile(dataDir,'buildingPixelLabels');

Create an image datastore.

imds = imageDatastore(imDir);

Create a pixel label datastore.

classNames = ["sky" "grass" "building" "sidewalk"];
pixelLabelID = [1 2 3 4];
pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID);

Read the image and pixel label data. read(pxds) returns a categorical matrix, C. The element C(i,j)
in the matrix is the categorical label assigned to the pixel at the location l(i,j).

 How Labeler Apps Store Exported Pixel Labels

17-41

I = read(imds);
C = read(pxds);

Display the label categories in C.

categories(C{1})

ans = 4x1 cell
 {'sky' }
 {'grass' }
 {'building'}
 {'sidewalk'}

Overlay and display the pixel label data onto the image.

B = labeloverlay(I,C{1});
figure
imshow(B)

17 Object Detection

17-42

See Also
Apps
Image Labeler | Video Labeler | Ground Truth Labeler

Objects
groundTruth | groundTruthMultisignal | pixelLabelImageDatastore

Functions
changeFilePaths (groundTruthMultisignal) | changeFilePaths (groundTruth)

More About
• “Label Pixels for Semantic Segmentation” on page 9-19
• “Share and Store Labeled Ground Truth Data” on page 9-72

 How Labeler Apps Store Exported Pixel Labels

17-43

Anchor Boxes for Object Detection
Object detection using deep learning neural networks can provide a fast and accurate means to
predict the location and size of an object in an image. Ideally, the network returns valid objects in a
timely manner, regardless of the scale of the objects. The use of anchor boxes improves the speed and
efficiency for the detection portion of a deep learning neural network framework.

What Is an Anchor Box?
Anchor boxes are a set of predefined bounding boxes of a certain height and width. These boxes are
defined to capture the scale and aspect ratio of specific object classes you want to detect and are
typically chosen based on object sizes in your training datasets. During detection, the predefined
anchor boxes are tiled across the image. The network predicts the probability and other attributes,
such as background, intersection over union (IoU) and offsets for every tiled anchor box. The
predictions are used to refine each individual anchor box. You can define several anchor boxes, each
for a different object size. Anchor boxes are fixed initial boundary box guesses.

The network does not directly predict bounding boxes, but rather predicts the probabilities and
refinements that correspond to the tiled anchor boxes. The network returns a unique set of
predictions for every anchor box defined. The final feature map represents object detections for each
class. The use of anchor boxes enables a network to detect multiple objects, objects of different
scales, and overlapping objects.

Advantage of Using Anchor Boxes
When using anchor boxes, you can evaluate all object predictions at once. Anchor boxes eliminate the
need to scan an image with a sliding window that computes a separate prediction at every potential
position. Examples of detectors that use a sliding window are those that are based on aggregate
channel features (ACF) or histogram of gradients (HOG) features. An object detector that uses anchor
boxes can process an entire image at once, making real-time object detection systems possible.

17 Object Detection

17-44

Because a convolutional neural network (CNN) can process an input image in a convolutional manner,
a spatial location in the input can be related to a spatial location in the output. This convolutional
correspondence means that a CNN can extract image features for an entire image at once. The
extracted features can then be associated back to their location in that image. The use of anchor
boxes replaces and drastically reduces the cost of the sliding window approach for extracting
features from an image. Using anchor boxes, you can design efficient deep learning object detectors
to encompass all three stages (detect, feature encode, and classify) of a sliding-window based object
detector.

How Do Anchor Boxes Work?
The position of an anchor box is determined by mapping the location of the network output back to
the input image. The process is replicated for every network output. The result produces a set of tiled
anchor boxes across the entire image. Each anchor box represents a specific prediction of a class. For
example, there are two anchor boxes to make two predictions per location in the image below.

Each anchor box is tiled across the image. The number of network outputs equals the number of tiled
anchor boxes. The network produces predictions for all outputs.

 Anchor Boxes for Object Detection

17-45

Localization Errors and Refinement

The distance, or stride, between the tiled anchor boxes is a function of the amount of downsampling
present in the CNN. Downsampling factors between 4 and 16 are common. These downsampling
factors produce coarsely tiled anchor boxes, which can lead to localization errors.

17 Object Detection

17-46

To fix localization errors, deep learning object detectors learn offsets to apply to each tiled anchor
box refining the anchor box position and size.

Downsampling can be reduced by removing downsampling layers. To reduce downsampling, lower
the ‘Stride’ property of the convolution or max pooling layers, (such as convolution2dLayer and
maxPooling2dLayer.) You can also choose a feature extraction layer earlier in the network. Feature
extraction layers from earlier in the network have higher spatial resolution but may extract less
semantic information compared to layers further down the network

Generate Object Detections

To generate the final object detections, tiled anchor boxes that belong to the background class are
removed, and the remaining ones are filtered by their confidence score. Anchor boxes with the
greatest confidence score are selected using nonmaximum suppression (NMS). For more details
about NMS, see the selectStrongestBboxMulticlass function.

 Anchor Boxes for Object Detection

17-47

Anchor Box Size
Multiscale processing enables the network to detect objects of varying size. To achieve multiscale
detection, you must specify anchor boxes of varying size, such as 64-by-64, 128-by-128, and 256-
by-256. Specify sizes that closely represent the scale and aspect ratio of objects in your training data.
For an example of estimating sizes, see Estimate Anchor Boxes From Training Data on page 3-377.

See Also

Related Examples
• “Create YOLO v2 Object Detection Network” on page 3-406
• “Train Object Detector Using R-CNN Deep Learning” on page 3-411
• “Object Detection Using Faster R-CNN Deep Learning” on page 3-424
• Estimate Anchor Boxes From Training Data on page 3-377

More About
• “Getting Started with YOLO v2” on page 17-49
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

17 Object Detection

17-48

Getting Started with YOLO v2
The you-only-look-once (YOLO) v2 object detector uses a single stage object detection network. YOLO
v2 is faster than other two-stage deep learning object detectors, such as regions with convolutional
neural networks (Faster R-CNNs).

The YOLO v2 model runs a deep learning CNN on an input image to produce network predictions.
The object detector decodes the predictions and generates bounding boxes.

Predicting Objects in the Image
YOLO v2 uses anchor boxes to detect classes of objects in an image. For more details, see “Anchor
Boxes for Object Detection” on page 17-44.The YOLO v2 predicts these three attributes for each
anchor box:

• Intersection over union (IoU) — Predicts the objectness score of each anchor box.
• Anchor box offsets — Refine the anchor box position
• Class probability — Predicts the class label assigned to each anchor box.

The figure shows predefined anchor boxes (the dotted lines) at each location in a feature map and the
refined location after offsets are applied. Matched boxes with a class are in color.

 Getting Started with YOLO v2

17-49

Transfer Learning
With transfer learning, you can use a pretrained CNN as the feature extractor in a YOLO v2 detection
network. Use the yolov2Layers function to create a YOLO v2 detection network from any
pretrained CNN, for example MobileNet v2. For a list of pretrained CNNs, see “Pretrained Deep
Neural Networks” (Deep Learning Toolbox)

You can also design a custom model based on a pretrained image classification CNN. For more
details, see “Design a YOLO v2 Detection Network” on page 17-50.

Design a YOLO v2 Detection Network
You can design a custom YOLO v2 model layer by layer. The model starts with a feature extractor
network, which can be initialized from a pretrained CNN or trained from scratch. The detection
subnetwork contains a series of Conv, Batch norm, and ReLu layers, followed by the transform and
output layers, yolov2TransformLayer and yolov2OutputLayer objects, respectively.
yolov2TransformLayer transforms the raw CNN output into a form required to produce object
detections. yolov2OutputLayer defines the anchor box parameters and implements the loss
function used to train the detector.

You can also use the Deep Network Designer app to manually create a network. The designer
incorporates Computer Vision Toolbox YOLO v2 features.

Design a YOLO v2 Detection Network with a Reorg Layer

The reorganization layer (created using the spaceToDepthLayer object) and the depth
concatenation layer (created using the depthConcatenationLayer object) are used to combine
low-level and high-level features. These layers improve detection by adding low-level image
information and improving detection accuracy for smaller objects. Typically, the reorganization layer
is attached to a layer within the feature extraction network whose output feature map is larger than
the feature extraction layer output.

Tip

• Adjust the 'BlockSize' property of the spaceToDepthLayer object such that its output size
matches the input size of the depthConcatenationLayer object.

• To simplify designing a network, use the interactive Deep Network Designer app and the
analyzeNetwork function.

17 Object Detection

17-50

For more details on how to create this kind of network, see “Create YOLO v2 Object Detection
Network” on page 3-406.

Train an Object Detector and Detect Objects with a YOLO v2 Model
To learn how to train an object detector by using the YOLO deep learning technique with a CNN, see
the “Object Detection Using YOLO v2 Deep Learning” on page 3-396 example.

Code Generation
To learn how to generate CUDA code using the YOLO v2 object detector (created using the
yolov2ObjectDetector object) see “Code Generation for Object Detection by Using YOLO v2” on
page 2-5.

Label Training Data for Deep Learning
You can use the Image Labeler, Video Labeler, or Ground Truth Labeler apps to interactively
label pixels and export label data for training. The apps can also be used to label rectangular regions
of interest (ROIs) for object detection, scene labels for image classification, and pixels for semantic
segmentation. To create training data from any of the labelers exported ground truth object, you can
use the objectDetectorTrainingData or pixelLabelTrainingData functions. For more
details, see “Training Data for Object Detection and Semantic Segmentation” on page 9-89.

References
[1] Redmon, Joseph, and Ali Farhadi. “YOLO9000: Better, Faster, Stronger.” In 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 6517–25. Honolulu, HI: IEEE, 2017.
https://doi.org/10.1109/CVPR.2017.690.

[2] Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. "You only look once: Unified,
real-time object detection." Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 779–788. Las Vegas, NV: CVPR, 2016.

 Getting Started with YOLO v2

17-51

See Also
Apps
Image Labeler | Ground Truth Labeler | Video Labeler | Deep Network Designer

Objects
yolov2TransformLayer | yolov2OutputLayer | spaceToDepthLayer |
yolov2ObjectDetector | depthConcatenationLayer

Functions
trainYOLOv2ObjectDetector | analyzeNetwork

Related Examples
• “Train Object Detector Using R-CNN Deep Learning” on page 3-411
• “Object Detection Using YOLO v2 Deep Learning” on page 3-396
• “Code Generation for Object Detection by Using YOLO v2” on page 2-5

More About
• “Anchor Boxes for Object Detection” on page 17-44
• “Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN” on page 17-61
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

17 Object Detection

17-52

Getting Started with YOLO v3
The you-only-look-once (YOLO) v3 object detector is a multi-scale object detection network that uses
a feature extraction network and multiple detection heads to make predictions at multiple scales.

The YOLO v3 object detection model runs a deep learning convolutional neural network (CNN) on an
input image to produce network predictions from multiple feature maps. The object detector gathers
and decodes predictions to generate the bounding boxes.

Predicting Objects in the Image
YOLO v3 uses anchor boxes to detect classes of objects in an image. For more details, see “Anchor
Boxes for Object Detection” on page 17-44.The YOLO v3 predicts these three attributes for each
anchor box:

• Intersection over union (IoU) — Predicts the objectness score of each anchor box.
• Anchor box offsets — Refine the anchor box position
• Class probability — Predicts the class label assigned to each anchor box.

The figure shows predefined anchor boxes (the dotted lines) at each location in a feature map and the
refined location after offsets are applied. Matched boxes with a class are in color.

 Getting Started with YOLO v3

17-53

Design a YOLO v3 Detection Network
To design a YOLO v3 object detection network, follow these steps.

1 Start the model with a feature extraction network. The feature extraction network serves as the
base network for creating the YOLO v3 deep learning network. The base network can be a
pretrained or untrained CNN. If the base network is a pretrained network, you can perform
transfer learning.

2 Create detection subnetworks by using convolution, batch normalization, and ReLu layers. Add
the detection subnetworks to any of the layers in the base network. The output layers that
connect as inputs to the detection subnetworks are the detection network source. Any layer from
the feature extraction network can be used as a detection network source. To use multiscale
features for object detection, choose feature maps of different sizes.

To manually create a YOLO v3 deep learning network, use the Deep Network Designer app. To
programmatically create a YOLO v3 deep learning network, use the yolov3ObjectDetector object.

Transfer Learning
To perform transfer learning, you can use a pretrained deep learning network as the base network for
YOLO v3 deep learning network. Configure the YOLO v3 deep learning for training on a new dataset
by specifying the anchor boxes and the new object classes. Use the yolov3ObjectDetector object
to create a YOLO v3 detection network from any pretrained CNN, like SqueezeNet and perform
transfer learning. For a list of pretrained CNNs, see “Pretrained Deep Neural Networks” (Deep
Learning Toolbox).

Train an Object Detector and Detect Objects with a YOLO v3 Model
To learn how to create a custom YOLO v3 object detector by using a deep learning network as base
network and train for object detection, see the “Object Detection Using YOLO v3 Deep Learning” on
page 3-381 example.

Label Training Data for Deep Learning
You can use the Image Labeler, Video Labeler, or Ground Truth Labeler apps to interactively
label pixels and export label data for training. The apps can also be used to label rectangular regions
of interest (ROIs) for object detection, scene labels for image classification, and pixels for semantic
segmentation. To create training data from any of the labelers exported ground truth object, you can
use the objectDetectorTrainingData or pixelLabelTrainingData functions. For more
details, see “Training Data for Object Detection and Semantic Segmentation” on page 9-89.

17 Object Detection

17-54

References
[1] Redmon, Joseph, and Ali Farhadi. “YOLO9000: Better, Faster, Stronger.” In 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 6517–25. Honolulu, HI: IEEE, 2017.
https://doi.org/10.1109/CVPR.2017.690.

[2] Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. "You only look once: Unified,
real-time object detection." Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 779–788. Las Vegas, NV: CVPR, 2016.

See Also
Apps
Image Labeler | Ground Truth Labeler | Video Labeler | Deep Network Designer

Objects
yolov3ObjectDetector

Functions
detect | preprocess | forward | predict

Related Examples
• “Object Detection Using YOLO v3 Deep Learning” on page 3-381

More About
• “Anchor Boxes for Object Detection” on page 17-44
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

 Getting Started with YOLO v3

17-55

Getting Started with YOLO v4
The you only look once version 4 (YOLO v4) object detection network is a one-stage object detection
network and is composed of three parts: backbone, neck, and head.

• The backbone can be a pretrained convolutional neural network such as VGG16 or CSPDarkNet53
trained on COCO or ImageNet data sets. The backbone of the YOLO v4 network acts as the
feature extraction network that computes feature maps from the input images.

• The neck connects the backbone and the head. It is composed of a spatial pyramid pooling (SPP)
module and a path aggregation network (PAN). The neck concatenates the feature maps from
different layers of the backbone network and sends them as inputs to the head.

• The head processes the aggregated features and predicts the bounding boxes, objectness scores,
and classification scores. The YOLO v4 network uses one-stage object detectors, such as YOLO v3,
as detection heads.

The YOLO v4 network uses CSPDarkNet-53 as the backbone for extracting features from the input
images. The backbone has five residual block modules, and the feature map outputs from the residual
block modules are fused at the neck of the YOLO v4 network.

The SPP module in the neck concatenates the max-pooling outputs of the low-resolution feature map
to extract the most representative features. The SPP module uses kernels of size 1-by-1, 5-by-5, 9-
by-9, and 13-by-13 for the max-pooling operation. The stride value is set to 1. Concatenating the
feature maps increases the receptive field of backbone features and increases the accuracy of the
network for detecting small objects. The concatenated feature maps from the SPP module are fused
with the high-resolution feature maps by using a PAN. The PAN uses upsampling and downsampling
operations to set bottom-up and top-down paths for combining the low-level and high-level features.

17 Object Detection

17-56

The PAN module outputs a set of aggregated feature maps to use for predictions. The YOLO v4
network has three detection heads. Each detection head is a YOLO v3 network that computes the
final predictions. The YOLO v4 network outputs feature maps of sizes 19-by-19, 38-by-38, and 76-
by-76 to predict the bounding boxes, classification scores, and objectness scores.

Tiny YOLO v4 network is a lightweight version of the YOLO v4 network with fewer network layers.
The tiny YOLO v4 network uses a feature pyramid network as the neck and has two YOLO v3
detection heads. The network outputs feature maps of size 13-by-13 and 26-by-26 for computing
predictions.

Predict Objects Using YOLO v4
YOLO v4 uses anchor boxes to detect classes of objects in an image. For details about anchor boxes,
see “Anchor Boxes for Object Detection” on page 17-44. Similar to YOLO v3, YOLO v4 predicts these
three attributes for each anchor box:

• Intersection over union (IoU) — Predicts the objectness score of each anchor box.
• Anchor box offsets — Refines the anchor box position.
• Class probability — Predicts the class label assigned to each anchor box.

The figure shows predefined anchor boxes, represented by dotted lines, at each location in a feature
map, and the refined location after applying the offsets. The anchor boxes that have been matched
with a class are in color.

You must specify the predefined anchor boxes, also known as a priori boxes, and the classes while
training the network.

Create YOLO v4 Object Detection Network
To programmatically create a YOLO v4 deep learning network, use the yolov4ObjectDetector
object. You can create a yolov4ObjectDetector object, to detect objects in an image, using the
pretrained YOLO v4 deep learning networks csp-darknet53-coco and tiny-yolov4-coco. These
networks are trained on the COCO data set. csp-darknet53-coco is a YOLO v4 network with three
detection heads, and tiny-yolov4-coco is a tiny YOLO v4 network with two detection heads. To
download these YOLO v4 pretrained networks, you must install the Computer Vision Toolbox Model
for YOLO v4 Object Detection support package.

 Getting Started with YOLO v4

17-57

Train and Detect Objects Using YOLOv4 Network
To train a YOLO v4 object detection network on a labeled dataset, use the
trainYOLOv4ObjectDetector function . You must specify the class names and the predefined
anchor boxes for the data set you use to train the network.

The training function returns the trained network as a yolov4ObjectDetector object. You can then
use the detect function to detect unknown objects in a test image with the trained YOLO v4 object
detector. To learn how to create a YOLO v4 object detector and train for object detection, see the
“Object Detection Using YOLO v4 Deep Learning” on page 3-482 example.

Specify Anchor Boxes

The shape, size, and number of anchor boxes used for training impact the efficiency and accuracy of
the YOLO v4 object detection network. The anchor boxes must closely represent the sizes and aspect
ratios of the objects in the training data. The training data must contain both the ground truth images
and labels. The size of the training images must be the same as the network input size, and the
bounding box labels must correspond to the size of the training images.

You must assign the same number of anchor boxes to each detection head in the YOLO v4 network.
The size of the anchor boxes assigned to each detection head must correspond to the size of the
feature map output from the detection head. You must assign large anchor boxes to detection heads
with lower resolution feature maps and small anchor boxes to detection heads with higher resolution
feature maps.

For example, these steps show you how to specify anchor boxes to train a YOLO v4 network that has
three detection heads with feature map sizes of 19-by-19, 38-by-38, and 76-by-76, respectively.

1 Assume that you specify four anchor boxes for each detection head. Then, the total number of
anchor boxes that you use for training the network must be twelve. You can use the
estimateAnchorBoxes function to automatically estimate the anchor boxes for your specified
training data.

numAnchors = 12;
[anchors] = estimateAnchorBoxes(trainingData,numAnchors);

2 Compute the area of each anchor box and sort them in descending order.

area = anchors(:,1).*anchors(:,2);
[~,idx] = sort(area,"descend");
sortedAnchors = anchors(idx,:)

3 There are three detection heads in the YOLO v4 network, so make three sets of four anchor
boxes each.

anchorBoxes = {sortedAnchors(1:4,:) sortedAnchors(5:8,:) sortedAnchors(9:12,:)};
4 Create a YOLO v4 object detection network by using the yolov4ObjectDetector function.

Specify the classes and the sorted anchor boxes. The function assigns the first set of anchor
boxes to the first detection head, the second set to the second detection head, and so on. The
first four anchor boxes have large areas and must be assigned to the first detection head, which
outputs the lower resolution 19-by-19 feature map. The next four anchor boxes must be assigned
to the second detection head, which outputs the feature map of size 38-by-38. The last four
anchor boxes are assigned to the third detection head that outputs the highest resolution 76-
by-76 feature map.

detector = yolov4ObjectDetector("csp-darknet53-coco","car",anchorBoxes);

17 Object Detection

17-58

5 Train the detector by using the trainYOLOv4ObjectDetector function.

detector = trainYOLOv4ObjectDetector(trainingData,detector,trainingOptions);

Transfer Learning
To perform transfer learning, use a pretrained convolutional neural network (CNN) as the base
network for a YOLO v4 deep learning network. Configure the YOLO v4 deep learning network for
training on a new data set by specifying the anchor boxes and the new object classes. Use the
yolov4ObjectDetector object to create a custom YOLO v4 detection network from any pretrained
CNN, such as ResNet-50. Then, train the network by using the trainYOLOv4ObjectDetector
function.

For information about how to create a custom YOLO v4 object detector, see “Create Custom YOLO v4
Object Detector”.

Label Training Data for Deep Learning
You can use the Image Labeler, Video Labeler, or Ground Truth Labeler app to interactively label
pixels and export label data for training. You can also use the apps to label rectangular regions of
interest (ROIs) for object detection, scene labels for image classification, and pixels for semantic
segmentation. To create training data from a ground truth object exported by any of the labelers, use
the objectDetectorTrainingData or pixelLabelTrainingData functions. For more details,
see “Training Data for Object Detection and Semantic Segmentation” on page 9-89.

References
[1] Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4: Optimal Speed and

Accuracy of Object Detection.” ArXiv:2004.10934 [Cs, Eess], April 22, 2020. https://
arxiv.org/abs/2004.10934.

[2] Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. "You only look once: Unified,
real-time object detection." In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 779–788. Las Vegas, NV: USA: IEEE, 2016. https://doi.org/10.1109/
CVPR.2016.91.

See Also
Apps
Image Labeler | Ground Truth Labeler | Video Labeler | Deep Network Designer

Objects
yolov4ObjectDetector

Functions
trainYOLOv4ObjectDetector | detect

Related Examples
• “Object Detection Using YOLO v4 Deep Learning” on page 3-482

 Getting Started with YOLO v4

17-59

More About
• “Anchor Boxes for Object Detection” on page 17-44
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

17 Object Detection

17-60

Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN
Object detection is the process of finding and classifying objects in an image. One deep learning
approach, regions with convolutional neural networks (R-CNN), combines rectangular region
proposals with convolutional neural network features. R-CNN is a two-stage detection algorithm. The
first stage identifies a subset of regions in an image that might contain an object. The second stage
classifies the object in each region.

Applications for R-CNN object detectors include:

• Autonomous driving
• Smart surveillance systems
• Facial recognition

Computer Vision Toolbox provides object detectors for the R-CNN, Fast R-CNN, and Faster R-CNN
algorithms.

Instance segmentation expands on object detection to provide pixel-level segmentation of individual
detected objects. Computer Vision Toolbox provides layers that support a deep learning approach for
instance segmentation called Mask R-CNN. For more information, see “Getting Started with Mask R-
CNN for Instance Segmentation” on page 17-67.

Object Detection Using R-CNN Algorithms
Models for object detection using regions with CNNs are based on the following three processes:

• Find regions in the image that might contain an object. These regions are called region proposals.
• Extract CNN features from the region proposals.
• Classify the objects using the extracted features.

There are three variants of an R-CNN. Each variant attempts to optimize, speed up, or enhance the
results of one or more of these processes.

R-CNN

The R-CNN detector [2] first generates region proposals using an algorithm such as Edge Boxes[1].
The proposal regions are cropped out of the image and resized. Then, the CNN classifies the cropped
and resized regions. Finally, the region proposal bounding boxes are refined by a support vector
machine (SVM) that is trained using CNN features.

Use the trainRCNNObjectDetector function to train an R-CNN object detector. The function
returns an rcnnObjectDetector object that detects objects in an image.

 Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN

17-61

Fast R-CNN

As in the R-CNN detector , the Fast R-CNN[3] detector also uses an algorithm like Edge Boxes to
generate region proposals. Unlike the R-CNN detector, which crops and resizes region proposals, the
Fast R-CNN detector processes the entire image. Whereas an R-CNN detector must classify each
region, Fast R-CNN pools CNN features corresponding to each region proposal. Fast R-CNN is more
efficient than R-CNN, because in the Fast R-CNN detector, the computations for overlapping regions
are shared.

Use the trainFastRCNNObjectDetector function to train a Fast R-CNN object detector. The
function returns a fastRCNNObjectDetector that detects objects from an image.

Faster R-CNN

The Faster R-CNN[4] detector adds a region proposal network (RPN) to generate region proposals
directly in the network instead of using an external algorithm like Edge Boxes. The RPN uses “Anchor
Boxes for Object Detection” on page 17-44. Generating region proposals in the network is faster and
better tuned to your data.

Use the trainFasterRCNNObjectDetector function to train a Faster R-CNN object detector. The
function returns a fasterRCNNObjectDetector that detects objects from an image.

17 Object Detection

17-62

Comparison of R-CNN Object Detectors
This family of object detectors uses region proposals to detect objects within images. The number of
proposed regions dictates the time it takes to detect objects in an image. The Fast R-CNN and Faster
R-CNN detectors are designed to improve detection performance with a large number of regions.

R-CNN Detector Description
trainRCNNObjectDetector • Slow training and detection

• Allows custom region proposal
trainFastRCNNObjectDetector • Allows custom region proposal
trainFasterRCNNObjectDetecto
r

• Optimal run-time performance
• Does not support a custom region proposal

Transfer Learning
You can use a pretrained convolution neural network (CNN) as the basis for an R-CNN detector, also
referred to as transfer learning. See “Pretrained Deep Neural Networks” (Deep Learning Toolbox).
Use one of the following networks with the trainRCNNObjectDetector,
trainFasterRCNNObjectDetector, or trainFastRCNNObjectDetector functions. To use any of
these networks you must install the corresponding Deep Learning Toolbox model:

• 'alexnet'
• 'vgg16'
• 'vgg19'
• 'resnet50'
• 'resnet101'
• 'inceptionv3'
• 'googlenet'
• 'inceptionresnetv2'

 Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN

17-63

• 'squeezenet'

You can also design a custom model based on a pretrained image classification CNN. See the “Design
an R-CNN, Fast R-CNN, and a Faster R-CNN Model” on page 17-64 section and the Deep Network
Designer app.

Design an R-CNN, Fast R-CNN, and a Faster R-CNN Model
You can design custom R-CNN models based on a pretrained image classification CNN. You can also
use the Deep Network Designer to build, visualize, and edit a deep learning network.

1 The basic R-CNN model starts with a pretrained network. The last three classification layers are
replaced with new layers that are specific to the object classes you want to detect.

For an example of how to create an R-CNN object detection network, see “Create R-CNN Object
Detection Network”

2 The Fast R-CNN model builds on the basic R-CNN model. A box regression layer is added to
improve on the position of the object in the image by learning a set of box offsets. An ROI pooling
layer is inserted into the network to pool CNN features for each region proposal.

For an example of how to create a Fast R-CNN object detection network, see “Create Fast R-CNN
Object Detection Network”

17 Object Detection

17-64

3 The Faster R-CNN model builds on the Fast R-CNN model. A region proposal network is added to
produce the region proposals instead of getting the proposals from an external algorithm.

For an example of how to create a Faster R-CNN object detection network, see “Create Faster R-
CNN Object Detection Network”

Label Training Data for Deep Learning
You can use the Image Labeler, Video Labeler, or Ground Truth Labeler apps to interactively
label pixels and export label data for training. The apps can also be used to label rectangular regions
of interest (ROIs) for object detection, scene labels for image classification, and pixels for semantic
segmentation. To create training data from any of the labelers exported ground truth object, you can
use the objectDetectorTrainingData or pixelLabelTrainingData functions. For more
details, see “Training Data for Object Detection and Semantic Segmentation” on page 9-89.

References
[1] Zitnick, C. Lawrence, and P. Dollar. "Edge boxes: Locating object proposals from edges." Computer

Vision-ECCV. Springer International Publishing. Pages 391-4050. 2014.

[2] Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation." CVPR '14 Proceedings of the 2014 IEEE Conference
on Computer Vision and Pattern Recognition. Pages 580-587. 2014

[3] Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE International Conference on Computer
Vision. 2015

[4] Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. "Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks." Advances in Neural Information
Processing Systems . Vol. 28, 2015.

See Also
Apps
Image Labeler | Ground Truth Labeler | Video Labeler | Deep Network Designer

 Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN

17-65

Functions
trainRCNNObjectDetector | trainFastRCNNObjectDetector |
trainFasterRCNNObjectDetector | fasterRCNNObjectDetector |
fastRCNNObjectDetector | rcnnObjectDetector

Related Examples
• “Train Object Detector Using R-CNN Deep Learning” on page 3-411
• “Object Detection Using Faster R-CNN Deep Learning” on page 3-424

More About
• “Anchor Boxes for Object Detection” on page 17-44
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

17 Object Detection

17-66

Getting Started with Mask R-CNN for Instance Segmentation
Instance segmentation is an enhanced type of object detection that generates a segmentation map for
each detected instance of an object. Instance segmentation treats individual objects as distinct
entities, regardless of the class of the objects. In contrast, semantic segmentation considers all
objects of the same class as belonging to a single entity.

Mask R-CNN is a popular deep learning instance segmentation technique that performs pixel-level
segmentation on detected objects [1]. The Mask R-CNN algorithm can accommodate multiple classes
and overlapping objects.

You can create a pretrained Mask R-CNN network using the maskrcnn object. The network is trained
on the MS-COCO data set and can detect objects of 80 different classes. Perform instance
segmentation using segmentObjects function with the maskrcnn object.

If you want to modify the network to detect additional classes, or to adjust other parameters of the
network, then you can perform transfer learning. Transfer learning for Mask R-CNN generally follows
these steps:

1 Configure a Mask R-CNN model for transfer learning using the maskrcnn object.
2 Prepare training data.
3 Train the model using the trainMaskRCNN function.
4 Evaluate the Mask R-CNN model using the evaluateInstanceSegmentation function.

For an example that shows how to train a Mask R-CNN, see “Perform Instance Segmentation Using
Mask R-CNN” on page 3-477.

Design Mask R-CNN Model
To configure a Mask R-CNN network for transfer learning, specify the class names and anchor boxes
when you create a maskrcnn object. You can optionally specify additional network properties
including the network input size and the ROI pooling sizes.

The Mask R-CNN network consists of two stages. The first stage is a region proposal network (RPN),
which predicts object proposal bounding boxes based on anchor boxes. The second stage is an R-CNN
detector that refines these proposals, classifies them, and computes the pixel-level segmentation for
these proposals.

 Getting Started with Mask R-CNN for Instance Segmentation

17-67

The Mask R-CNN model builds on the Faster R-CNN model. Mask R-CNN replaces the ROI max
pooling layer in Faster R-CNN with an roiAlignLayer that provides more accurate sub-pixel level
ROI pooling. The Mask R-CNN network also adds a mask branch for pixel level object segmentation.
For more information about the Faster R-CNN network, see “Getting Started with R-CNN, Fast R-
CNN, and Faster R-CNN” on page 17-61.

This diagram shows a modified Faster R-CNN network on the left and a mask branch on the right.

Prepare Mask R-CNN Training Data
Load Data

To train a Mask R-CNN, you need the following data.

17 Object Detection

17-68

Data Description
RGB image RGB images that serve as network inputs, specified as H-by-W-by-3 numeric

arrays.

For example, this sample RGB image is a modified image from the CamVid data
set [2] that has been edited to remove personally identifiable information.

Ground-truth
bounding boxes

Bounding boxes for objects in the RGB images, specified as a NumObjects-by-4
matrix, with rows in the format [x y w h]).

For example, the bboxes variable shows the bounding boxes of six objects in
the sample RGB image.

bboxes =

 394 442 36 101
 436 457 32 88
 619 293 209 281
 460 441 210 234
 862 375 190 314
 816 271 235 305

 Getting Started with Mask R-CNN for Instance Segmentation

17-69

Data Description
Instance labels Label of each instance, specified as a NumObjects-by-1 string vector or a

NumObjects-by-1 cell array of character vectors.)

For example, the labels variable shows the labels of six objects in the sample
RGB image.

labels =

 6×1 cell array

 {'Person' }
 {'Person' }
 {'Vehicle'}
 {'Vehicle'}
 {'Vehicle'}
 {'Vehicle'}

17 Object Detection

17-70

Data Description
Instance masks Masks for instances of objects. Mask data comes in two formats:

• Binary masks, specified as a logical array of size H-by-W-by-NumObjects.
Each mask is the segmentation of one instance in the image.

• Polygon coordinates, specified as a NumObjects-by-2 cell array. Each row of
the array contains the (x,y) coordinates of a polygon along the boundary of
one instance in the image.

The Mask R-CNN network requires binary masks, not polygon coordinates.
To convert polygon coordinates to binary masks, use the poly2mask
function. The poly2mask function sets pixels that are inside the polygon to
1 and sets pixels outside the polygon to 0. This code shows how to convert
polygon coordinates in the masks_polygon variable to binary masks of size
h-by-w-by-numObjects.

denseMasks = false([h,w,numObjects]);
for i = 1:numObjects
 denseMasks(:,:,i) = poly2mask(masks_polygon{i}(:,1),masks_polygon{i}(:,2),h,w);
end

For example, this montage shows the binary masks of six objects in the sample
RGB image.

Create Datastore that Reads Data

Use a datastore to read data. The datastore must return data as a 1-by-4 cell array in the format
{RGB images, bounding boxes, labels, masks}. You can create a datastore in this format using these
steps:

1 Create an imageDatastore that returns RGB image data
2 Create a boxLabelDatastore that returns bounding box data and instance labels as a two-

column cell array

 Getting Started with Mask R-CNN for Instance Segmentation

17-71

3 Create an imageDatastore and specify a custom read function that returns mask data as a
binary matrix

4 Combine the three datastores using the combine function

The size of the images, bounding boxes, and masks must match the input size of the network. If you
need to resize the data, then you can use the imresize to resize the RGB images and masks, and the
bboxresize function to resize the bounding boxes.

For more information, see “Datastores for Deep Learning” (Deep Learning Toolbox).

Visualize Training Data

To display the instance masks over the image, use the insertObjectMask. You can specify a
colormap so that each instance appears in a different color. This sample code shows how display the
instance masks in the masks variable over the RGB image in the im variable using the lines
colormap.

imOverlay = insertObjectMask(im,masks,Color=lines(numObjects));
imshow(imOverlay);

To show the bounding boxes with labels over the image, use the showShape function. This sample
code shows how to show labeled rectangular shapes with bounding box size and position data in the
bboxes variable and label data in the labels variable.

imshow(imOverlay)
showShape("rectangle",bboxes,Label=labels,Color="red");

17 Object Detection

17-72

Train Mask R-CNN Model
Train the network by passing the configured maskrcnn object and the training data to the
trainMaskRCNN function. The function returns a trained maskrcnn object.

Perform Instance Segmentation and Evaluate Results
Perform instance segmentation by passing the trained maskrcnn object to the segmentObjects
function. The function returns the object masks and optionally returns labels, detection scores, and
bounding boxes.

Evaluate the quality of the instance segmentation results using the
evaluateInstanceSegmentation function. The function calculates metrics such as the confusion
matrix and average precision. The instanceSegmentationMetrics object stores the metrics.

References
[1] He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. "Mask R-CNN." ArXiv:1703.06870

[Cs], January 24, 2018. https://arxiv.org/pdf/1703.06870.

[2] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic Object Classes in Video: A
High-Definition Ground Truth Database." Pattern Recognition Letters 30, no. 2 (January
2009): 88–97. https://doi.org/10.1016/j.patrec.2008.04.005.

See Also
Apps
Image Labeler

Functions
maskrcnn | trainMaskRCNN | segmentObjects

 Getting Started with Mask R-CNN for Instance Segmentation

17-73

Related Examples
• “Perform Instance Segmentation Using Mask R-CNN” on page 3-477

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Datastores for Deep Learning” (Deep Learning Toolbox)

17 Object Detection

17-74

Getting Started with Semantic Segmentation Using Deep
Learning

Segmentation is essential for image analysis tasks. Semantic segmentation describes the process of
associating each pixel of an image with a class label, (such as flower, person, road, sky, ocean, or
car).

Applications for semantic segmentation include:

• Autonomous driving
• Industrial inspection
• Classification of terrain visible in satellite imagery
• Medical imaging analysis

Label Training Data for Semantic Segmentation
Large datasets enable faster and more accurate mapping to a particular input (or input aspect).
Using data augmentation provides a means of leveraging limited datasets for training. Minor
changes, such as translation, cropping, or transforming an image provides new distinct and unique
images. See “Augment Images for Deep Learning Workflows” (Deep Learning Toolbox)

You can use the Image Labeler, Video Labeler, or Ground Truth Labeler (available in Automated
Driving Toolbox) apps to interactively label pixels and export label data for training. The app can also
be used to label rectangular regions of interest (ROIs) and scene labels for image classification.

 Getting Started with Semantic Segmentation Using Deep Learning

17-75

Train and Test a Semantic Segmentation Network
The steps for training a semantic segmentation network are as follows:

1. “Analyze Training Data for Semantic Segmentation”

2. “Create a Semantic Segmentation Network”

3. “Train A Semantic Segmentation Network”

4. “Evaluate and Inspect the Results of Semantic Segmentation”

Segment Objects Using Pretrained DeepLabv3+ Network
MathWorks GitHub repository provides implementations of the latest pretrained deep learning
networks to download and use for performing out-of-the-box inference.

For a list of all the latest MathWorks pretrained semantic segmentation models and examples, see
MATLAB Deep Learning (GitHub).

See Also
Apps
Image Labeler

Functions
semanticseg | semanticSegmentationMetrics | evaluateSemanticSegmentation |
pixelLabelDatastore | segnetLayers | fcnLayers | unet3dLayers | unetLayers

Objects
pixelClassificationLayer | pixelLabelImageDatastore

See Also

Related Examples
• “Augment Pixel Labels for Semantic Segmentation” (Deep Learning Toolbox)
• “Import Pixel Labeled Dataset For Semantic Segmentation”

17 Object Detection

17-76

https://github.com/matlab-deep-learning/MATLAB-Deep-Learning-Model-Hub#SemanticSegmentation

• “Semantic Segmentation Using Deep Learning” on page 3-281
• “Label Pixels for Semantic Segmentation” on page 9-19
• “Define Custom Pixel Classification Layer with Tversky Loss” on page 10-54
• “Semantic Segmentation Using Dilated Convolutions” on page 10-49
• “Calculate Segmentation Metrics in Block-Based Workflow” on page 3-300
• “Explore Semantic Segmentation Network Using Grad-CAM” on page 3-228

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)

 Getting Started with Semantic Segmentation Using Deep Learning

17-77

Point Feature Types
Image feature detection is a building block of many computer vision tasks, such as image
registration, tracking, and object detection. The Computer Vision Toolbox includes a variety of
functions for image feature detection. These functions return points objects that store information
specific to particular types of features, including (x,y) coordinates (in the Location property). You
can pass a points object from a detection function to a variety of other functions that require feature
points as inputs. The algorithm that a detection function uses determines the type of points object it
returns. For more details, see “Local Feature Detection and Extraction” on page 17-84.

Functions That Return Points Objects
Points Object Returned By Type of Feature
cornerPoints detectFASTFeatures

Features from accelerated segment
test (FAST) algorithm
Uses an approximate metric to
determine corners. [1]

Corners
Single-scale detection
Point tracking, image registration with little or
no scale change, corner detection in scenes of
human origin, such as streets and indoor
scenes.

detectMinEigenFeatures
Minimum eigenvalue algorithm
Uses minimum eigenvalue metric to
determine corner locations. [4]
detectHarrisFeatures
Harris-Stephens algorithm
More efficient than the minimum
eigenvalue algorithm. [3]

BRISKPoints detectBRISKFeatures
Binary Robust Invariant Scalable
Keypoints (BRISK) algorithm [6]

Corners
Multiscale detection
Point tracking, image registration, handles
changes in scale and rotation, corner detection
in scenes of human origin, such as streets and
indoor scenes

17 Object Detection

17-78

Points Object Returned By Type of Feature
SIFTPoints detectSIFTFeatures

Scale-invariant feature transform

Blobs
Multiscale detection
Object detection and image registration with
scale and rotation changes

SURFPoints detectSURFFeatures
Speeded-up robust features (SURF)
algorithm [11]

Blobs
Multiscale detection
Object detection and image registration with
scale and rotation changes

ORBPoints detectORBFeatures
Oriented FAST and Rotated BRIEF
(ORB) method [13]

Corners
Multi-scale detection
Point tracking, image registration, handles
changes in rotation, corner detection in scenes
of human origin, such as streets and indoor
scenes

KAZEPoints detectKAZEFeatures
KAZE is not an acronym, but a
name derived from the Japanese
word kaze, which means wind. The
reference is to the flow of air ruled
by nonlinear processes on a large
scale. [12]

Multi-scale blob features

Reduced blurring of object boundaries

 Point Feature Types

17-79

Points Object Returned By Type of Feature
MSERRegions detectMSERFeatures

Maximally stable extremal regions
(MSER) algorithm [7] [8] [9] [10]

Regions of uniform intensity
Multi-scale detection
Registration, wide baseline stereo calibration,
text detection, object detection. Handles
changes to scale and rotation. More robust to
affine transforms in contrast to other
detectors.

Functions That Accept Points Objects
Function Description
estrelpose Compute relative rotation and translation between camera

poses
estimateFundamentalMatrix Estimate fundamental matrix from corresponding points in

stereo images
estgeotform2d Estimate geometric transform from matching point pairs
estimateUncalibratedRectification Uncalibrated stereo rectification
extractFeatures Extract interest point descriptors

Method Feature Vector
BRISK The function sets the Orientation

property of the validPoints output object
to the orientation of the extracted features,
in radians.

FREAK The function sets the Orientation
property of the validPoints output object
to the orientation of the extracted features,
in radians.

17 Object Detection

17-80

Function Description
SURF The function sets the Orientation

property of the validPoints output object
to the orientation of the extracted features,
in radians.

When you use an MSERRegions object with
the SURF method, the Centroid property
of the object extracts SURF descriptors.
The Axes property of the object selects the
scale of the SURF descriptors such that the
circle representing the feature has an area
proportional to the MSER ellipse area. The
scale is calculated as
1/4*sqrt((majorAxes/2).*
(minorAxes/2)) and saturated to 1.6, as
required by the SURFPoints object.

KAZE Non-linear pyramid-based features.

The function sets the Orientation
property of the validPoints output object
to the orientation of the extracted features,
in radians.

When you use an MSERRegions object with
the KAZE method, the Location property
of the object is used to extract KAZE
descriptors.

The Axes property of the object selects the
scale of the KAZE descriptors such that the
circle representing the feature has an area
proportional to the MSER ellipse area.

ORB The function does not set the
Orientation property of the
validPoints output object to the
orientation of the extracted features. By
default, the Orientation property of
validPoints is set to the Orientation
property of the input ORBPoints object.

Block Simple square neighbourhood.

The Block method extracts only the
neighborhoods fully contained within the
image boundary. Therefore, the output,
validPoints, can contain fewer points
than the input POINTS.

 Point Feature Types

17-81

Function Description
Auto The function selects the Method based on

the class of the input points and
implements:
The FREAK method for a cornerPoints
input object.
The SURF method for a SURFPoints or
MSERRegions input object.
The FREAK method for a BRISKPoints
input object.
The ORB method for a ORBPoints input
object.

For an M-by-2 input matrix of [x y]
coordinates, the function implements the
Block method.

extractHOGFeatures Extract histogram of oriented gradients (HOG) features
insertMarker Insert markers in image or video
showMatchedFeatures Display corresponding feature points
triangulate 3-D locations of undistorted matching points in stereo

images
undistortPoints Correct point coordinates for lens distortion

References
[1] Rosten, E., and T. Drummond, “Machine Learning for High-Speed Corner Detection.” 9th

European Conference on Computer Vision. Vol. 1, 2006, pp. 430–443.

[2] Mikolajczyk, K., and C. Schmid. “A performance evaluation of local descriptors.” IEEE
Transactions on Pattern Analysis and Machine Intelligence. Vol. 27, Issue 10, 2005, pp. 1615–
1630.

[3] Harris, C., and M. J. Stephens. “A Combined Corner and Edge Detector.” Proceedings of the 4th
Alvey Vision Conference. August 1988, pp. 147–152.

[4] Shi, J., and C. Tomasi. “Good Features to Track.” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. June 1994, pp. 593–600.

[5] Tuytelaars, T., and K. Mikolajczyk. “Local Invariant Feature Detectors: A Survey.” Foundations and
Trends in Computer Graphics and Vision. Vol. 3, Issue 3, 2007, pp. 177–280.

[6] Leutenegger, S., M. Chli, and R. Siegwart. “BRISK: Binary Robust Invariant Scalable Keypoints.”
Proceedings of the IEEE International Conference. ICCV, 2011.

[7] Nister, D., and H. Stewenius. "Linear Time Maximally Stable Extremal Regions." Lecture Notes in
Computer Science. 10th European Conference on Computer Vision. Marseille, France: 2008,
no. 5303, pp. 183–196.

[8] Matas, J., O. Chum, M. Urba, and T. Pajdla. "Robust wide-baseline stereo from maximally stable
extremal regions." Proceedings of British Machine Vision Conference. 2002, pp. 384–396.

17 Object Detection

17-82

[9] Obdrzalek D., S. Basovnik, L. Mach, and A. Mikulik. "Detecting Scene Elements Using Maximally
Stable Colour Regions." Communications in Computer and Information Science. La Ferte-
Bernard, France: 2009, Vol. 82 CCIS (2010 12 01), pp 107–115.

[10] Mikolajczyk, K., T. Tuytelaars, C. Schmid, A. Zisserman, T. Kadir, and L. Van Gool. "A Comparison
of Affine Region Detectors." International Journal of Computer Vision. Vol. 65, No. 1–2,
November, 2005, pp. 43–72 .

[11] Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool. “SURF:Speeded Up Robust Features.” Computer
Vision and Image Understanding (CVIU).Vol. 110, No. 3, 2008, pp. 346–359.

[12] Alcantarilla, P.F., A. Bartoli, and A.J. Davison. "KAZE Features", ECCV 2012, Part VI, LNCS 7577
pp. 214, 2012

[13] Rublee, E., V. Rabaud, K. Konolige and G. Bradski. "ORB: An efficient alternative to SIFT or
SURF." In Proceedings of the 2011 International Conference on Computer Vision, 2564–2571.
Barcelona, Spain, 2011.

[14] Rosten, E., and T. Drummond. "Fusing Points and Lines for High Performance Tracking,"
Proceedings of the IEEE International Conference on Computer Vision, Vol. 2 (October 2005):
pp. 1508–1511.

[15] Lowe, David G.. "Distinctive Image Features from Scale-Invariant Keypoints." Int. J. Comput.
Vision 60 , no. 2 (2004): 91–110.

See Also

More About
• Local Feature Detection and Extraction on page 17-84

See Also

Related Examples
• “Object Detection in a Cluttered Scene Using Point Feature Matching” on page 3-270

 Point Feature Types

17-83

Local Feature Detection and Extraction
Local features and their descriptors, which are a compact vector representations of a local
neighborhood, are the building blocks of many computer vision algorithms. Their applications include
image registration, object detection and classification, tracking, and motion estimation. Using local
features enables these algorithms to better handle scale changes, rotation, and occlusion. The
Computer Vision Toolbox provides the FAST, Harris, ORB, and Shi & Tomasi methods for detecting
corner features, and the SIFT, SURF, KAZE, and MSER methods for detecting blob features. The
toolbox includes the SIFT, SURF, KAZE, FREAK, BRISK, ORB, and HOG descriptors. You can mix and
match the detectors and the descriptors depending on the requirements of your application. For more
details, see “Point Feature Types” on page 17-78.

What Are Local Features?
Local features refer to a pattern or distinct structure found in an image, such as a point, edge, or
small image patch. They are usually associated with an image patch that differs from its immediate
surroundings by texture, color, or intensity. What the feature actually represents does not matter, just
that it is distinct from its surroundings. Examples of local features are blobs, corners, and edge
pixels.

Example 17.1. Example of Corner Detection
I = imread("circuit.tif");
corners = detectFASTFeatures(I,MinContrast=0.1);
J = insertMarker(I,corners,"circle");
imshow(J)

Benefits and Applications of Local Features
Local features let you find image correspondences regardless of occlusion, changes in viewing
conditions, or the presence of clutter. In addition, the properties of local features make them suitable
for image classification, such as in “Image Classification with Bag of Visual Words” on page 17-126.

Local features are used in two fundamental ways:

17 Object Detection

17-84

• To localize anchor points for use in image stitching or 3-D reconstruction.
• To represent image contents compactly for detection or classification, without requiring image

segmentation.

Application MATLAB Examples
Image registration and stitching “Feature Based Panoramic Image Stitching” on page 4-30
Object detection “Object Detection in a Cluttered Scene Using Point Feature

Matching” on page 3-270
Object recognition “Digit Classification Using HOG Features” on page 4-17
Object tracking “Face Detection and Tracking Using the KLT Algorithm” on

page 8-57
Image category recognition “Image Category Classification Using Bag of Features” on

page 3-333
Finding geometry of a stereo system “Uncalibrated Stereo Image Rectification” on page 1-165
3-D reconstruction “Structure From Motion From Two Views” on page 1-113,

“Structure From Motion From Multiple Views” on page 1-
158

Image retrieval “Image Retrieval Using Customized Bag of Features” on
page 3-349

What Makes a Good Local Feature?
Detectors that rely on gradient-based and intensity variation approaches detect good local features.
These features include edges, blobs, and regions. Good local features exhibit the following properties:

• Repeatable detections:
When given two images of the same scene, most features that the detector finds in both images
are the same. The features are robust to changes in viewing conditions and noise.

• Distinctive:
The neighborhood around the feature center varies enough to allow for a reliable comparison
between the features.

• Localizable:
The feature has a unique location assigned to it. Changes in viewing conditions do not affect its
location.

Feature Detection and Feature Extraction
Feature detection selects regions of an image that have unique content, such as corners or blobs. Use
feature detection to find points of interest that you can use for further processing. These points do
not necessarily correspond to physical structures, such as the corners of a table. The key to feature
detection is to find features that remain locally invariant so that you can detect them even in the
presence of rotation or scale change.

Feature extraction involves computing a descriptor, which is typically done on regions centered
around detected features. Descriptors rely on image processing to transform a local pixel
neighborhood into a compact vector representation. This new representation permits comparison
between neighborhoods regardless of changes in scale or orientation. Descriptors, such as SIFT or

 Local Feature Detection and Extraction

17-85

SURF, rely on local gradient computations. Binary descriptors, such as BRISK, ORB or FREAK, rely
on pairs of local intensity differences, which are then encoded into a binary vector.

Choose a Feature Detector and Descriptor
Select the best feature detector and descriptor by considering the criteria of your application and the
nature of your data. The first table helps you understand the general criteria to drive your selection.
The next two tables provide details on the detectors and descriptors available in Computer Vision
Toolbox.

Considerations for Selecting a Detector and Descriptor

Criteria Suggestion
Type of features in your image Use a detector appropriate for your data. For example, if your

image contains an image of bacteria cells, use the blob detector
rather than the corner detector. If your image is an aerial view
of a city, you can use the corner detector to find man-made
structures.

Context in which you are using the features:

• Matching key points
• Classification

The HOG, SURF, and KAZE descriptors are suitable for
classification tasks. In contrast, binary descriptors, such as
ORB, BRISK and FREAK, are typically used for finding point
correspondences between images, which are used for
registration.

Type of distortion present in your image Choose a detector and descriptor that addresses the distortion
in your data. For example, if there is no scale change present,
consider a corner detector that does not handle scale. If your
data contains a higher level of distortion, such as scale and
rotation, then use SIFT, SURF, ORB, or KAZE feature detector
and descriptor. The SURF and the KAZE methods are
computationally intensive.

Performance requirements:

• Real-time performance required
• Accuracy versus speed

Binary descriptors are generally faster but less accurate than
gradient-based descriptors. For greater accuracy, use several
detectors and descriptors at the same time.

17 Object Detection

17-86

Choose a Detection Function Based on Feature Type

Detector Feature Type Function Scale Independent
FAST [1] Corner detectFASTFeatures No
Minimum eigenvalue
algorithm [4]

Corner detectMinEigenFeatures No

Corner detector [3] Corner detectHarrisFeatures No
SIFT [14] on page 17-
101

Blob detectSIFTFeatures Yes

SURF [11] Blob detectSURFFeatures Yes
KAZE [12] Blob detectKAZEFeatures Yes
BRISK [6] Corner detectBRISKFeatures Yes
MSER [8] Region with

uniform intensity
detectMSERFeatures Yes

ORB [13] Corner detectORBFeatures No

Note Detection functions return objects that contain information about the features. The
extractHOGFeatures and extractFeatures functions use these objects to create descriptors.

 Local Feature Detection and Extraction

17-87

Choose a Descriptor Method

Descriptor Binar
y

Function and Method Invariance Typical Use
Scal
e

Rotatio
n

Finding Point
Correspondence
s

Classificatio
n

HOG No extractHOGFeatures(I, ...) No No No Yes
LBP No extractLBPFeatures(I, ...) No Yes No Yes
SIFT No extractFeatures(I,points,M

ethod="SIFT")
Yes Yes Yes Yes

SURF No extractFeatures(I,points,M
ethod="SURF")

Yes Yes Yes Yes

KAZE No extractFeatures(I,points,M
ethod="KAZE")

Yes Yes Yes Yes

FREAK Yes extractFeatures(I,points,'M
ethod="FREAK")

Yes Yes Yes No

BRISK Yes extractFeatures(I,points,'M
ethod="BRISK")

Yes Yes Yes No

ORB Yes extractFeatures(I,points,'M
ethod="ORB")

No Yes Yes No

• Block
• Simple pixel

neighborhood
around a
keypoint

No extractFeatures(I,points,'M
ethod="Block")

No No Yes Yes

Note

• The extractFeatures function provides different extraction methods to best match the
requirements of your application. When you do not specify the 'Method' input for the
extractFeatures function, the function automatically selects the method based on the type of
input point class.

• Binary descriptors are fast but less precise in terms of localization. They are not suitable for
classification tasks. The extractFeatures function returns a binaryFeatures object. This
object enables the Hamming-distance-based matching metric used in the matchFeatures
function.

Use Local Features

Registering two images is a simple way to understand local features. This example finds a geometric
transformation between two images. It uses local features to find well-localized anchor points.

Display two images

The first image is the original image.

17 Object Detection

17-88

original = imread('cameraman.tif');
figure
imshow(original);

The second image is the original image rotated and scaled.

scale = 1.3;
J = imresize(original,scale);
theta = 31;
distorted = imrotate(J,theta);
figure
imshow(distorted)

 Local Feature Detection and Extraction

17-89

Detect matching features between the original and distorted image

Detecting the matching SURF features is the first step in determining the transform needed to
correct the distorted image.

ptsOriginal = detectSURFFeatures(original);
ptsDistorted = detectSURFFeatures(distorted);

Extract features and compare the detected blobs between the two images

The detection step found several roughly corresponding blob structures in both images. Compare the
detected blob features. This process is facilitated by feature extraction, which determines a local
patch descriptor.

[featuresOriginal,validPtsOriginal] = ...
 extractFeatures(original,ptsOriginal);
[featuresDistorted,validPtsDistorted] = ...
 extractFeatures(distorted,ptsDistorted);

17 Object Detection

17-90

It is possible that not all of the original points were used to extract descriptors. Points might have
been rejected if they were too close to the image border. Therefore, the valid points are returned in
addition to the feature descriptors.

The patch size used to compute the descriptors is determined during the feature extraction step. The
patch size corresponds to the scale at which the feature is detected. Regardless of the patch size, the
two feature vectors, featuresOriginal and featuresDistorted, are computed in such a way
that they are of equal length. The descriptors enable you to compare detected features, regardless of
their size and rotation.

Find candidate matches

Obtain candidate matches between the features by inputting the descriptors to the matchFeatures
function. Candidate matches imply that the results can contain some invalid matches. Two patches
that match can indicate like features but might not be a correct match. A table corner can look like a
chair corner, but the two features are obviously not a match.

indexPairs = matchFeatures(featuresOriginal,featuresDistorted);

Find point locations from both images

Each row of the returned indexPairs contains two indices of candidate feature matches between
the images. Use the indices to collect the actual point locations from both images.

matchedOriginal = validPtsOriginal(indexPairs(:,1));
matchedDistorted = validPtsDistorted(indexPairs(:,2));

Display the candidate matches

figure
showMatchedFeatures(original,distorted,matchedOriginal,matchedDistorted)
title('Candidate matched points (including outliers)')

 Local Feature Detection and Extraction

17-91

Analyze the feature locations

If there are a sufficient number of valid matches, remove the false matches. An effective technique for
this scenario is the RANSAC algorithm. The estgeotform2d function implements M-estimator
sample consensus (MSAC), which is a variant of the RANSAC algorithm. MSAC finds a geometric
transform and separates the inliers (correct matches) from the outliers (spurious matches).

[tform,inlierIdx] = estgeotform2d(matchedDistorted, ...
 matchedOriginal,'similarity');
inlierDistorted = matchedDistorted(inlierIdx,:);
inlierOriginal = matchedOriginal(inlierIdx,:);

Display the matching points

figure
showMatchedFeatures(original,distorted,inlierOriginal,inlierDistorted)
title('Matching points (inliers only)')
legend('ptsOriginal','ptsDistorted')

17 Object Detection

17-92

Verify the computed geometric transform

Apply the computed geometric transform to the distorted image.

outputView = imref2d(size(original));
recovered = imwarp(distorted,tform,OutputView=outputView);

Display the recovered image and the original image.

figure
imshowpair(original,recovered,'montage')

 Local Feature Detection and Extraction

17-93

Image Registration Using Multiple Features

This example builds on the results of the "Use Local Features" example. Using more than one
detector and descriptor pair enables you to combine and reinforce your results. Multiple pairs are
also useful for when you cannot obtain enough good matches (inliers) using a single feature detector.

Load the original image.

original = imread('cameraman.tif');
figure
imshow(original);
text(size(original,2),size(original,1)+15, ...
 'Image courtesy of Massachusetts Institute of Technology', ...
 FontSize=7,HorizontalAlignment='right');

17 Object Detection

17-94

Scale and rotate the original image to create the distorted image.

scale = 1.3;
J = imresize(original,scale);

theta = 31;
distorted = imrotate(J,theta);
figure
imshow(distorted)

 Local Feature Detection and Extraction

17-95

Detect the features in both images. Use the BRISK detectors first, followed by the SURF detectors.

ptsOriginalBRISK = detectBRISKFeatures(original,MinContrast=0.01);
ptsDistortedBRISK = detectBRISKFeatures(distorted,MinContrast=0.01);

ptsOriginalSURF = detectSURFFeatures(original);
ptsDistortedSURF = detectSURFFeatures(distorted);

Extract descriptors from the original and distorted images. The BRISK features use the FREAK
descriptor by default.

[featuresOriginalFREAK,validPtsOriginalBRISK] = ...
 extractFeatures(original,ptsOriginalBRISK);
[featuresDistortedFREAK,validPtsDistortedBRISK] = ...
 extractFeatures(distorted,ptsDistortedBRISK);

[featuresOriginalSURF,validPtsOriginalSURF] = ...
 extractFeatures(original,ptsOriginalSURF);

17 Object Detection

17-96

[featuresDistortedSURF,validPtsDistortedSURF] = ...
 extractFeatures(distorted,ptsDistortedSURF);

Determine candidate matches by matching FREAK descriptors first, and then SURF descriptors. To
obtain as many feature matches as possible, start with detector and matching thresholds that are
lower than the default values. Once you get a working solution, you can gradually increase the
thresholds to reduce the computational load required to extract and match features.

indexPairsBRISK = matchFeatures(featuresOriginalFREAK,...
 featuresDistortedFREAK,MatchThreshold=40,MaxRatio=0.8);

indexPairsSURF = matchFeatures(featuresOriginalSURF,featuresDistortedSURF);

Obtain candidate matched points for BRISK and SURF.

matchedOriginalBRISK = validPtsOriginalBRISK(indexPairsBRISK(:,1));
matchedDistortedBRISK = validPtsDistortedBRISK(indexPairsBRISK(:,2));

matchedOriginalSURF = validPtsOriginalSURF(indexPairsSURF(:,1));
matchedDistortedSURF = validPtsDistortedSURF(indexPairsSURF(:,2));

Visualize the BRISK putative matches.

figure
showMatchedFeatures(original,distorted,matchedOriginalBRISK,...
 matchedDistortedBRISK)
title('Putative matches using BRISK & FREAK')
legend('ptsOriginalBRISK','ptsDistortedBRISK')

 Local Feature Detection and Extraction

17-97

Combine the candidate matched BRISK and SURF local features. Use the Location property to
combine the point locations from BRISK and SURF features.

matchedOriginalXY = ...
 [matchedOriginalSURF.Location; matchedOriginalBRISK.Location];
matchedDistortedXY = ...
 [matchedDistortedSURF.Location; matchedDistortedBRISK.Location];

Determine the inlier points and the geometric transform of the BRISK and SURF features.

[tformTotal,inlierIdx] = estgeotform2d(matchedDistortedXY,...
 matchedOriginalXY,'similarity');
inlierDistortedXY = matchedDistortedXY(inlierIdx, :);
inlierOriginalXY = matchedOriginalXY(inlierIdx, :);

Display the results. The result provides several more matches than the example that used a single
feature detector.

figure
showMatchedFeatures(original,distorted,inlierOriginalXY,inlierDistortedXY)

17 Object Detection

17-98

title('Matching points using SURF and BRISK (inliers only)')
legend('ptsOriginal','ptsDistorted')

Compare the original and recovered image.

outputView = imref2d(size(original));
recovered = imwarp(distorted,tformTotal,OutputView=outputView);

figure
imshowpair(original,recovered,'montage')

 Local Feature Detection and Extraction

17-99

References
[1] Rosten, E., and T. Drummond. “Machine Learning for High-Speed Corner Detection.” 9th

European Conference on Computer Vision. Vol. 1, 2006, pp. 430–443.

[2] Mikolajczyk, K., and C. Schmid. “A performance evaluation of local descriptors.” IEEE
Transactions on Pattern Analysis and Machine Intelligence. Vol. 27, Issue 10, 2005, pp. 1615–
1630.

[3] Harris, C., and M. J. Stephens. “A Combined Corner and Edge Detector.” Proceedings of the 4th
Alvey Vision Conference. August 1988, pp. 147–152.

[4] Shi, J., and C. Tomasi. “Good Features to Track.” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. June 1994, pp. 593–600.

[5] Tuytelaars, T., and K. Mikolajczyk. “Local Invariant Feature Detectors: A Survey.” Foundations and
Trends in Computer Graphics and Vision. Vol. 3, Issue 3, 2007, pp. 177–280.

[6] Leutenegger, S., M. Chli, and R. Siegwart. “BRISK: Binary Robust Invariant Scalable Keypoints.”
Proceedings of the IEEE International Conference. ICCV, 2011.

[7] Nister, D., and H. Stewenius. "Linear Time Maximally Stable Extremal Regions." 10th European
Conference on Computer Vision. Marseille, France: 2008, No. 5303, pp. 183–196.

[8] Matas, J., O. Chum, M. Urba, and T. Pajdla. "Robust wide-baseline stereo from maximally stable
extremal regions."Proceedings of British Machine Vision Conference. 2002, pp. 384–396.

[9] Obdrzalek D., S. Basovnik, L. Mach, and A. Mikulik. "Detecting Scene Elements Using Maximally
Stable Colour Regions."Communications in Computer and Information Science. La Ferte-
Bernard, France: 2009, Vol. 82 CCIS (2010 12 01), pp. 107–115.

17 Object Detection

17-100

[10] Mikolajczyk, K., T. Tuytelaars, C. Schmid, A. Zisserman, T. Kadir, and L. Van Gool. "A Comparison
of Affine Region Detectors. "International Journal of Computer Vision. Vol. 65, No. 1–2,
November 2005, pp. 43–72 .

[11] Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool. “SURF: Speeded Up Robust Features.” Computer
Vision and Image Understanding (CVIU). Vol. 110, No. 3, 2008, pp. 346–359.

[12] Alcantarilla, P.F., A. Bartoli, and A.J. Davison. "KAZE Features", ECCV 2012, Part VI, LNCS 7577
pp. 214, 2012

[13] Rublee, E., V. Rabaud, K. Konolige and G. Bradski. "ORB: An efficient alternative to SIFT or
SURF." In Proceedings of the 2011 International Conference on Computer Vision, 2564–2571.
Barcelona, Spain, 2011.

[14] Lowe, David G.. "Distinctive Image Features from Scale-Invariant Keypoints." Int. J. Comput.
Vision 60 , no. 2 (2004): 91--110.

See Also

Related Examples
• “Detect BRISK Points in an Image and Mark Their Locations”
• “Find Corner Points in an Image Using the FAST Algorithm”
• “Find Corner Points Using the Harris-Stephens Algorithm”
• “Find Corner Points Using the Eigenvalue Algorithm”
• “Find MSER Regions in an Image”
• “Detect SURF Interest Points in a Grayscale Image”
• “Automatically Detect and Recognize Text Using MSER and OCR” on page 4-2
• “Object Detection in a Cluttered Scene Using Point Feature Matching” on page 3-270

 Local Feature Detection and Extraction

17-101

Get Started with Cascade Object Detector
In this section...
“Why Train a Detector?” on page 17-102
“What Kinds of Objects Can You Detect?” on page 17-102
“How Does the Cascade Classifier Work?” on page 17-102
“Create a Cascade Classifier Using the trainCascadeObjectDetector” on page 17-103
“Troubleshooting” on page 17-106
“Examples” on page 17-108
“Train Stop Sign Detector” on page 17-112

Why Train a Detector?
The vision.CascadeObjectDetector System object comes with several pretrained classifiers for
detecting frontal faces, profile faces, noses, eyes, and the upper body. However, these classifiers are
not always sufficient for a particular application. Computer Vision Toolbox provides the
trainCascadeObjectDetector function to train a custom classifier.

What Kinds of Objects Can You Detect?
The Computer Vision Toolbox cascade object detector can detect object categories whose aspect ratio
does not vary significantly. Objects whose aspect ratio remains fixed include faces, stop signs, and
cars viewed from one side.

The vision.CascadeObjectDetector System object detects objects in images by sliding a window
over the image. The detector then uses a cascade classifier to decide whether the window contains
the object of interest. The size of the window varies to detect objects at different scales, but its aspect
ratio remains fixed. The detector is very sensitive to out-of-plane rotation, because the aspect ratio
changes for most 3-D objects. Thus, you need to train a detector for each orientation of the object.
Training a single detector to handle all orientations will not work.

How Does the Cascade Classifier Work?
The cascade classifier consists of stages, where each stage is an ensemble of weak learners. The
weak learners are simple classifiers called decision stumps. Each stage is trained using a technique
called boosting. Boosting provides the ability to train a highly accurate classifier by taking a weighted
average of the decisions made by the weak learners.

17 Object Detection

17-102

Each stage of the classifier labels the region defined by the current location of the sliding window as
either positive or negative. Positive indicates that an object was found and negative indicates no
objects were found. If the label is negative, the classification of this region is complete, and the
detector slides the window to the next location. If the label is positive, the classifier passes the region
to the next stage. The detector reports an object found at the current window location when the final
stage classifies the region as positive.

The stages are designed to reject negative samples as fast as possible. The assumption is that the
vast majority of windows do not contain the object of interest. Conversely, true positives are rare and
worth taking the time to verify.

• A true positive occurs when a positive sample is correctly classified.
• A false positive occurs when a negative sample is mistakenly classified as positive.
• A false negative occurs when a positive sample is mistakenly classified as negative.

To work well, each stage in the cascade must have a low false negative rate. If a stage incorrectly
labels an object as negative, the classification stops, and you cannot correct the mistake. However,
each stage can have a high false positive rate. Even if the detector incorrectly labels a nonobject as
positive, you can correct the mistake in subsequent stages.

The overall false positive rate of the cascade classifier is f s, where f is the false positive rate per
stage in the range (0 1), and s is the number of stages. Similarly, the overall true positive rate is ts,
where t is the true positive rate per stage in the range (0 1]. Thus, adding more stages reduces the
overall false positive rate, but it also reduces the overall true positive rate.

Create a Cascade Classifier Using the trainCascadeObjectDetector
Cascade classifier training requires a set of positive samples and a set of negative images. You must
provide a set of positive images with regions of interest specified to be used as positive samples. You
can use the Image Labeler to label objects of interest with bounding boxes. The Image Labeler
outputs a table to use for positive samples. You also must provide a set of negative images from which
the function generates negative samples automatically. To achieve acceptable detector accuracy, set
the number of stages, feature type, and other function parameters.

 Get Started with Cascade Object Detector

17-103

Considerations when Setting Parameters

Select the function parameters to optimize the number of stages, the false positive rate, the true
positive rate, and the type of features to use for training. When you set the parameters, consider
these tradeoffs.

Condition Consideration
A large training set (in the thousands). Increase the number of stages and set a higher

false positive rate for each stage.
A small training set. Decrease the number of stages and set a lower

false positive rate for each stage.
To reduce the probability of missing an object. Increase the true positive rate. However, a high

true positive rate can prevent you from achieving
the desired false positive rate per stage, making
the detector more likely to produce false
detections.

To reduce the number of false detections. Increase the number of stages or decrease the
false alarm rate per stage.

Feature Types Available for Training

Choose the feature that suits the type of object detection you need. The
trainCascadeObjectDetector supports three types of features: Haar, local binary patterns (LBP),
and histograms of oriented gradients (HOG). Haar and LBP features are often used to detect faces
because they work well for representing fine-scale textures. The HOG features are often used to
detect objects such as people and cars. They are useful for capturing the overall shape of an object.
For example, in the following visualization of the HOG features, you can see the outline of the bicycle.

17 Object Detection

17-104

You might need to run the trainCascadeObjectDetector function multiple times to tune the
parameters. To save time, you can use LBP or HOG features on a small subset of your data. Training a
detector using Haar features takes much longer. After that, you can run the Haar features to see if
the accuracy improves.

Supply Positive Samples

To create positive samples easily, you can use the Image Labeler app. The Image Labeler provides
an easy way to label positive samples by interactively specifying rectangular regions of interest
(ROIs).

You can also specify positive samples manually in one of two ways. One way is to specify rectangular
regions in a larger image. The regions contain the objects of interest. The other approach is to crop
out the object of interest from the image and save it as a separate image. Then, you can specify the
region to be the entire image. You can also generate more positive samples from existing ones by
adding rotation or noise, or by varying brightness or contrast.

Supply Negative Images

Negative samples are not specified explicitly. Instead, the trainCascadeObjectDetector function
automatically generates negative samples from user-supplied negative images that do not contain
objects of interest. Before training each new stage, the function runs the detector consisting of the
stages already trained on the negative images. Any objects detected from these image are false
positives, which are used as negative samples. In this way, each new stage of the cascade is trained to
correct mistakes made by previous stages.

 Get Started with Cascade Object Detector

17-105

As more stages are added, the detector's overall false positive rate decreases, causing generation of
negative samples to be more difficult. For this reason, it is helpful to supply as many negative images
as possible. To improve training accuracy, supply negative images that contain backgrounds typically
associated with the objects of interest. Also, include negative images that contain nonobjects similar
in appearance to the objects of interest. For example, if you are training a stop-sign detector, include
negative images that contain road signs and shapes similar to a stop sign.

Choose the Number of Stages

There is a trade-off between fewer stages with a lower false positive rate per stage or more stages
with a higher false positive rate per stage. Stages with a lower false positive rate are more complex
because they contain a greater number of weak learners. Stages with a higher false positive rate
contain fewer weak learners. Generally, it is better to have a greater number of simple stages
because at each stage the overall false positive rate decreases exponentially. For example, if the false
positive rate at each stage is 50%, then the overall false positive rate of a cascade classifier with two
stages is 25%. With three stages, it becomes 12.5%, and so on. However, the greater the number of
stages, the greater the amount of training data the classifier requires. Also, increasing the number of
stages increases the false negative rate. This increase results in a greater chance of rejecting a
positive sample by mistake. Set the false positive rate (FalseAlarmRate) and the number of stages,
(NumCascadeStages) to yield an acceptable overall false positive rate. Then you can tune these two
parameters experimentally.

Training can sometimes terminate early. For example, suppose that training stops after seven stages,
even though you set the number of stages parameter to 20. It is possible that the function cannot
generate enough negative samples. If you run the function again and set the number of stages to
seven, you do not get the same result. The results between stages differ because the number of
positive and negative samples to use for each stage is recalculated for the new number of stages.

Training Time of Detector

Training a good detector requires thousands of training samples. Large amounts of training data can
take hours or even days to process. During training, the function displays the time it took to train
each stage in the MATLAB Command Window. Training time depends on the type of feature you
specify. Using Haar features takes much longer than using LBP or HOG features.

Troubleshooting
What if you run out of positive samples?

The trainCascadeObjectDetector function automatically determines the number of positive
samples to use to train each stage. The number is based on the total number of positive samples
supplied by the user and the values of the TruePositiveRate and NumCascadeStages parameters.

17 Object Detection

17-106

The number of available positive samples used to train each stage depends on the true positive rate.
The rate specifies what percentage of positive samples the function can classify as negative. If a
sample is classified as a negative by any stage, it never reaches subsequent stages. For example,
suppose you set the TruePositiveRate to 0.9, and all of the available samples are used to train
the first stage. In this case, 10% of the positive samples are rejected as negatives, and only 90% of
the total positive samples are available for training the second stage. If training continues, then each
stage is trained with fewer and fewer samples. Each subsequent stage must solve an increasingly
more difficult classification problem with fewer positive samples. With each stage getting fewer
samples, the later stages are likely to overfit the data.

Ideally, use the same number of samples to train each stage. To do so, the number of positive samples
used to train each stage must be less than the total number of available positive samples. The only
exception is that when the value of TruePositiveRate times the total number of positive samples is
less than 1, no positive samples are rejected as negatives.

The function calculates the number of positive samples to use at each stage using the following
formula:

number of positive samples = floor(totalPositiveSamples / (1 + (NumCascadeStages - 1) * (1 -
TruePositiveRate)))

This calculation does not guarantee that the same number of positive samples are available for each
stage. The reason is that it is impossible to predict with certainty how many positive samples will be
rejected as negatives. The training continues as long as the number of positive samples available to
train a stage is greater than 10% of the number of samples the function determined automatically
using the preceding formula. If there are not enough positive samples the training stops and the
function issues a warning. The function also outputs a classifier consisting of the stages that it had
trained up to that point. If the training stops, you can add more positive samples. Alternatively, you
can increase TruePositiveRate. Reducing the number of stages can also work, but such reduction
can also result in a higher overall false alarm rate.

What to do if you run out of negative samples?

The function calculates the number of negative samples used at each stage. This calculation is done
by multiplying the number of positive samples used at each stage by the value of
NegativeSamplesFactor.

Just as with positive samples, there is no guarantee that the calculated number of negative samples
are always available for a particular stage. The trainCascadeObjectDetector function generates
negative samples from the negative images. However, with each new stage, the overall false alarm
rate of the cascade classifier decreases, making it less likely to find the negative samples.

The training continues as long as the number of negative samples available to train a stage is greater
than 10% of the calculated number of negative samples. If there are not enough negative samples,
the training stops and the function issues a warning. It outputs a classifier consisting of the stages
that it had trained up to that point. When the training stops, the best approach is to add more
negative images. Alternatively, you can reduce the number of stages or increase the false positive
rate.

 Get Started with Cascade Object Detector

17-107

Examples
Train a Five-Stage Stop-Sign Detector

This example shows you how to set up and train a five-stage, stop-sign detector, using 86 positive
samples. The default value for TruePositiveRate is 0.995.

Step 1: Load the positive samples data from a MAT-file. In this example, file names and bounding
boxes are contained in the array of structures labeled 'data'.

load('stopSigns.mat');

Step 2: Add the image directory to the MATLAB path.

imDir = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
addpath(imDir);

Step 3: Specify the folder with negative images.

negativeFolder = fullfile(matlabroot,'toolbox','vision','visiondata','nonStopSigns');

Step 4: Train the detector.
trainCascadeObjectDetector('stopSignDetector.xml',data,negativeFolder,'FalseAlarmRate',0.2,'NumCascadeStages',5);

Computer Vision Toolbox software returns the following message:

17 Object Detection

17-108

All 86 positive samples were used to train each stage. This high rate occurs because the true positive
rate is very high relative to the number of positive samples.

Train a Five-Stage Stop-Sign Detector with a Decreased True Positive Rate

This example shows you how to train a stop-sign detector on the same data set as the first example,
(steps 1–3), but with the TruePositiveRate decreased to 0.98.

Step 4: Train the detector.

trainCascadeObjectDetector('stopSignDetector_tpr0_98.xml',data,negativeFolder,...
'FalseAlarmRate',0.2,'NumCascadeStages', 5,...
'TruePositiveRate', 0.98);

 Get Started with Cascade Object Detector

17-109

Only 79 of the total 86 positive samples were used to train each stage. This lowered rate occurs
because the true positive rate was low enough for the function to start rejecting some of the positive
samples as false negatives.

Train a Ten-Stage Stop-Sign Detector

This example shows you how to train a stop-sign detector on the same data set as the first example,
(steps 1–3), but with the number of stages increased to 10.

Step 4: Train the detector.
trainCascadeObjectDetector('stopSignDetector_10stages.xml',data,negativeFolder,...
'FalseAlarmRate',0.2,'NumCascadeStages',10);

17 Object Detection

17-110

In this case, NegativeSamplesFactor was set to 2, therefore the number of negative samples used
to train each stage was 172. Notice that the function generated only 33 negative samples for stage 6
and was not able to train stage 7 at all. This condition occurs because the number of negatives in
stage 7 was less than 17, (roughly half of the previous number of negative samples). The function
produced a stop-sign detector with 6 stages, instead of the 10 previously specified. The resulting
overall false alarm rate is 0.27=1.28e-05, while the expected false alarm rate is 1.024e-07.

At this point, you can add more negative images, reduce the number of stages, or increase the false
positive rate. For example, you can increase the false positive rate, FalseAlarmRate, to 0.5. The
expected overall false-positive rate in this case is 0.0039.

Step 4: Train the detector.

 Get Started with Cascade Object Detector

17-111

trainCascadeObjectDetector('stopSignDetector_10stages_far0_5.xml',data,negativeFolder,...
'FalseAlarmRate',0.5,'NumCascadeStages',10);

This time the function trains eight stages before the threshold reaches the overall false alarm rate of
0.000587108 and training stops.

Train Stop Sign Detector

17 Object Detection

17-112

Load the positive samples data from a MAT file. The file contains the ground truth, specified as table
of bounding boxes for several object categories. The grount truth was labeled and exported from the
Image Labeler app.

load('stopSignsAndCars.mat');

Prefix the fullpath to the stop sign images.

stopSigns = fullfile(toolboxdir('vision'),'visiondata',stopSignsAndCars{:,1});

Create datastores to load the ground truth data for stop signs.

imds = imageDatastore(stopSigns);
blds = boxLabelDatastore(stopSignsAndCars(:,2));

Combine the image and box label datastores.

positiveInstances = combine(imds,blds);

Add the image folder path to the MATLAB path.

imDir = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
addpath(imDir);

Specify a folder for negative images.

negativeFolder = fullfile(matlabroot,'toolbox','vision','visiondata','nonStopSigns');

Create an imageDatastore object containing negative images.

negativeImages = imageDatastore(negativeFolder);

Train a cascade object detector called 'stopSignDetector.xml' using HOG features. NOTE: The
command can take several minutes to run.

trainCascadeObjectDetector('stopSignDetector.xml',positiveInstances,negativeFolder,FalseAlarmRate=0.01,NumCascadeStages=3);

Automatically setting ObjectTrainingSize to [35, 32]
Using at most 42 of 42 positive samples per stage
Using at most 84 negative samples per stage

--cascadeParams--
Training stage 1 of 3
[..]
Used 42 positive and 84 negative samples
Time to train stage 1: 1 seconds

Training stage 2 of 3
[..]
Used 42 positive and 84 negative samples
Time to train stage 2: 0 seconds

Training stage 3 of 3
[..]
Used 42 positive and 84 negative samples
Time to train stage 3: 2 seconds

Training complete

 Get Started with Cascade Object Detector

17-113

Use the newly trained classifier to detect a stop sign in an image.

detector = vision.CascadeObjectDetector('stopSignDetector.xml');

Read the test image.

img = imread('stopSignTest.jpg');

Detect a stop sign in the test image.

bbox = step(detector,img);

Insert bounding box rectangles and return the marked image.

 detectedImg = insertObjectAnnotation(img,'rectangle',bbox,'stop sign');

Display the detected stop sign.

figure;
imshow(detectedImg);

Warning: MATLAB has disabled some advanced graphics rendering features by switching to software OpenGL. For more information, click here.

Remove the image folder from the path.

rmpath(imDir);

See Also

More About
• “Get Started with the Image Labeler” on page 9-34

17 Object Detection

17-114

External Websites
• Cascade Trainer

 Get Started with Cascade Object Detector

17-115

https://www.mathworks.com/matlabcentral/fileexchange/39627-cascade-trainer-specify-ground-truth-train-a-detector

Using OCR Trainer App

In this section...
“Open the OCR Trainer App” on page 17-116
“Train OCR” on page 17-116
“App Controls” on page 17-118

The Computer Vision Toolbox provides two optical character recognition (OCR) workflows.

• Using a deep learning workflow, you can use the Image Labeler to interactively label text in
images, train, evaluate, quantize, and perform text recognition. For more details, see “Getting
Started with OCR” on page 17-6.

• You can use the OCR Trainer app to train the ocr function to recognize a custom language or
font. You can use this app to label character data interactively for OCR training and to generate an
OCR language data file for use with the ocr function.

Open the OCR Trainer App

•
MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click ,
the OCR app icon.

• MATLAB command prompt: Enter ocrTrainer.

Train OCR
1 In the OCR Trainer, click New Session to open the OCR Training Session Settings dialog box.
2 Under Output Settings, enter a name for the OCR language data file and choose the output

folder location for the file. The location you specify must be writable.
3 Under Labeling Method, either label the data manually or pre-label it using optical character

recognition. If you use OCR, you can select either the pre-installed English or Japanese language,
or you can download additional language support files.

Note To download a language support file, type visionSupportPackages in a MATLAB
Command Window. Alternatively, on the MATLAB Home tab, in the Environment section, click
Add-Ons > Get Add-Ons. Then use the search box to find “Computer Vision System Toolbox
OCR Language Data.”

4 Add images at any time during the training session. The trainer automatically segments the
images for OCR training. Inspect the results to verify expected text segmentation. To improve the
segmentation, pre-process your images using the Image Segmenter app. Once the images are
added, you can inspect segmentation results from the training image view.

17 Object Detection

17-116

To limit the OCR to a specific character set, select the Character set check box and add the
characters.

Note Use training images that contain text that you want OCR to recognize. Do not use training
images with only a few characters. OCR training works best if training images contain blocks of
many words. You can use the insertText function to automatically generate training images for
a known font.

I = zeros(500,500,3,'uint8');

textLines = [
 "some training text"
 "even more stuff to learn"
]
lineYLocation = 50;

for i = 1:numel(textLines)
 I = insertText(I,[50 lineYLocation],char(textLines(i)), ...
 'Font','LucidaSansRegular',...
 'FontSize',16,'TextColor','white',...
 'BoxOpacity',0);

 % increment to next line
 lineYLocation = lineYLocation + 20;
end
figure
imshow(I)

5 Remove any noisy images. To improve segmentation results, you can draw a region of interest to
select a portion of an image. The display shows the original image on the left and the edited one
on the right. When you are done, click Accept All.

6 Modify the extracted samples from the character view window.

• To correct samples, select a group of samples in the character view window and change the
labels using the Character Label field.

• To exclude a sample from training, right-click the sample and select the option to move that
sample to the Unknown category. Unknown samples are listed at the top of the data browser
window and are not used for training.

 Using OCR Trainer App

17-117

• If the bounding box clipped a character, double-click the character and modify it in the image
it was extracted from.

7 After correcting the samples, click Train. When the trainer completes training, the app creates
an OCR language data file and saves it to the folder you specified.

App Controls
Sessions

Starts a new session, opens a saved session, or adds a session to the current one. You can also save
and name the session. The sessions are saved as MAT files.

Add Images

Adds images. You can add images when you start a new session or after you accept the current
collection of images.

Settings

Set or change the font display.

Edit Box

Selects the image that contains the selected character, along with the bounding boxes. You can create
additional regions, merge, modify, or delete existing images. To delete an ROI, use the delete key.

Train

Creates an OCR data file from the session. To use the .traineddata file with the ocr function, set
the 'Language' property for the ocr function, and follow the directions for a custom language.

Generate Function

Creates an autogenerated evaluation function for verification of training results.

Note Before running the OCR Trainer app, check if your machine has only one Tesseract installation.
If there are multiple Tesseract installations, remove the extra installations and restart MATLAB to run
the OCR Trainer app. Otherwise, the app returns the error "Not enough input arguments" when you
click the Train button.

17 Object Detection

17-118

See Also
OCR Trainer | ocr

More About
• “Getting Started with OCR” on page 17-6

 Using OCR Trainer App

17-119

Create a Custom Feature Extractor
You can use the bag-of-features (BoF) framework with many different types of image features. To use
a custom feature extractor instead of the default speeded-up robust features (SURF) feature
extractor, use the CustomExtractor property of a bagOfFeatures object.

Example of a Custom Feature Extractor
This example shows how to write a custom feature extractor function for bagOfFeatures. You can
open this example function file and use it as a template by typing the following command at the
MATLAB command prompt:

edit('exampleBagOfFeaturesExtractor.m')

• Step 1. Define the image sets.
• Step 2. Create a new extractor function file.
• Step 3. Preprocess the image.
• Step 4. Select a point location for feature extraction.
• Step 5. Extract features.
• Step 6. Compute the feature metric.

Define the set of images and labels

Read the category images and create image sets.

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
 'foldernames');

Create a new extractor function file

The extractor function must be specified as a function handle:

extractorFcn = @exampleBagOfFeaturesExtractor;
bag = bagOfFeatures(imgSets,'CustomExtractor',extractorFcn)

exampleBagOfFeaturesExtractor is a MATLAB function. For example:

function [features,featureMetrics] = exampleBagOfFeaturesExtractor(img)
...

You can also specify the optional location output:

function [features,featureMetrics,location] = exampleBagOfFeaturesExtractor(img)
...

The function must be on the path or in the current working folder.

Argument Input/Output Description
img Input • Binary, grayscale, or truecolor image.

• The input image is from the image set that was originally passed
into bagOfFeatures.

17 Object Detection

17-120

Argument Input/Output Description
features Output • A binaryFeatures object.

• An M-by-N numeric matrix of image features, where M is the
number of features and N is the length of each feature vector.

• The feature length, N, must be greater than zero and be the
same for all images processed during the bagOfFeatures
creation process.

• If you cannot extract features from an image, supply an empty
feature matrix and an empty feature metrics vector. Use the
empty matrix and vector if, for example, you did not find any
keypoints for feature extraction.

• Numeric, real, and nonsparse.
featureMetrics Output • An M-by-1 vector of feature metrics indicating the strength of

each feature vector.
• Used to apply the 'SelectStrongest' criteria in

bagOfFeatures framework.
• Numeric, real, and nonsparse.

location Output • An M-by-2 matrix of 1-based [x y] values.
• The [x y] values can be fractional.
• Numeric, real, and nonsparse.

Preprocess the image

Input images can require preprocessing before feature extraction. To extract SURF features and to
use the detectSURFFeatures or detectMSERFeatures functions, the images must be grayscale. If
the images are not grayscale, you can convert them using the im2gray function.

grayImage = im2gray(I);

Select a point location for feature extraction

Use a regular spaced grid of point locations. Using the grid over the image allows for dense SURF
feature extraction. The grid step is in pixels.

gridStep = 8;
gridX = 1:gridStep:width;
gridY = 1:gridStep:height;

[x,y] = meshgrid(gridX,gridY);

gridLocations = [x(:) y(:)];

You can manually concatenate multiple SURFPoints objects at different scales to achieve multiscale
feature extraction.

multiscaleGridPoints = [SURFPoints(gridLocations,'Scale',1.6);
 SURFPoints(gridLocations,'Scale',3.2);
 SURFPoints(gridLocations,'Scale',4.8);
 SURFPoints(gridLocations,'Scale',6.4)];

Alternatively, you can use a feature detector, such as detectSURFFeatures or
detectMSERFeatures, to select point locations.

 Create a Custom Feature Extractor

17-121

multiscaleSURFPoints = detectSURFFeatures(I);

Extract features

Extract features from the selected point locations. By default, bagOfFeatures extracts upright
SURF features.

features = extractFeatures(grayImage,multiscaleGridPoints,'Upright',true);

Compute the feature metric

The feature metrics indicate the strength of each feature. Larger metric values are assigned to
stronger features. Use feature metrics to identify and remove weak features before using
bagOfFeatures to learn the visual vocabulary of an image set. Use the metric that is suitable for
your feature vectors.

For example, you can use the variance of the SURF features as the feature metric.

featureMetrics = var(features,[],2);

If you used a feature detector for the point selection, then use the detection metric instead.

featureMetrics = multiscaleSURFPoints.Metric;

You can optionally return the feature location information. The feature location can be used for
spatial or geometric verification image search applications. See the “Geometric Verification Using
estimateGeometricTransform2D Function” example. The retrieveImages and indexImages
functions are used for content-based image retrieval systems.

if nargout > 2
 varargout{1} = multiscaleGridPoints.Location;
end

17 Object Detection

17-122

Image Retrieval with Bag of Visual Words
You can use the Computer Vision Toolbox functions to search by image, also known as a content-
based image retrieval (CBIR) system. CBIR systems are used to retrieve images from a collection of
images that are similar to a query image. The application of these types of systems can be found in
many areas such as a web-based product search, surveillance, and visual place identification. First
the system searches a collection of images to find the ones that are visually similar to a query image.

The retrieval system uses a bag of visual words, a collection of image descriptors, to represent your
data set of images. Images are indexed to create a mapping of visual words. The index maps each
visual word to their occurrences in the image set. A comparison between the query image and the
index provides the images most similar to the query image. By using the CBIR system workflow, you
can evaluate the accuracy for a known set of image search results.

 Image Retrieval with Bag of Visual Words

17-123

Retrieval System Workflow
1 Create image set that represents image features for retrieval. Use imageDatastore to

store the image data. Use a large number of images that represent various viewpoints of the
object. A large and diverse number of images helps train the bag of visual words and increases
the accuracy of the image search.

2 Type of feature. The indexImages function creates the bag of visual words using the speeded
up robust features (SURF). For other types of features, you can use a custom extractor, and then
use bagOfFeatures to create the bag of visual words. See the “Create Search Index Using
Custom Bag of Features” example.

17 Object Detection

17-124

You can use the original imgSet or a different collection of images for the training set. To use a
different collection, create the bag of visual words before creating the image index, using the
bagOfFeatures function. The advantage of using the same set of images is that the visual
vocabulary is tailored to the search set. The disadvantage of this approach is that the retrieval
system must relearn the visual vocabulary to use on a drastically different set of images. With an
independent set, the visual vocabulary is better able to handle the additions of new images into
the search index.

3 Index the images. The indexImages function creates a search index that maps visual words to
their occurrences in the image collection. When you create the bag of visual words using an
independent or subset collection, include the bag as an input argument to indexImages. If you
do not create an independent bag of visual words, then the function creates the bag based on the
entire imgSet input collection. You can add and remove images directly to and from the image
index using the addImages and removeImages methods.

4 Search data set for similar images. Use the retrieveImages function to search the image
set for images which are similar to the query image. Use the NumResults property to control the
number of results. For example, to return the top 10 similar images, set the ROI property to use
a smaller region of a query image. A smaller region is useful for isolating a particular object in an
image that you want to search for.

Evaluate Image Retrieval
Use the evaluateImageRetrieval function to evaluate image retrieval by using a query image
with a known set of results. If the results are not what you expect, you can modify or augment image
features by the bag of visual words. Examine the type of the features retrieved. The type of feature
used for retrieval depends on the type of images within the collection. For example, if you are
searching an image collection made up of scenes, such as beaches, cities, or highways, use a global
image feature. A global image feature, such as a color histogram, captures the key elements of the
entire scene. To find specific objects within the image collections, use local image features extracted
around object keypoints instead.

See Also

Related Examples
• “Image Retrieval Using Customized Bag of Features” on page 3-349

 Image Retrieval with Bag of Visual Words

17-125

Image Classification with Bag of Visual Words
Use the Computer Vision Toolbox functions for image category classification by creating a bag of
visual words. The process generates a histogram of visual word occurrences that represent an image.
These histograms are used to train an image category classifier. The steps below describe how to
setup your images, create the bag of visual words, and then train and apply an image category
classifier.

Step 1: Set Up Image Category Sets
Organize and partition the images into training and test subsets. Use the imageDatastore function
to store images to use for training an image classifier. Organizing images into categories makes
handling large sets of images much easier. You can use the splitEachLabel function to split the
images into training and test data.

Read the category images and create image sets.

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
 'foldernames');

Separate the sets into training and test image subsets. In this example, 30% of the images are
partitioned for training and the remainder for testing.

[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');

Step 2: Create Bag of Features
Create a visual vocabulary, or bag of features, by extracting feature descriptors from representative
images of each category.

The bagOfFeatures object defines the features, or visual words, by using the k-means clustering
(Statistics and Machine Learning Toolbox) algorithm on the feature descriptors extracted from
trainingSets. The algorithm iteratively groups the descriptors into k mutually exclusive clusters.
The resulting clusters are compact and separated by similar characteristics. Each cluster center
represents a feature, or visual word.

You can extract features based on a feature detector, or you can define a grid to extract feature
descriptors. The grid method may lose fine-grained scale information. Therefore, use the grid for
images that do not contain distinct features, such as an image containing scenery, like the beach.

17 Object Detection

17-126

Using speeded up robust features (or SURF) detector provides greater scale invariance. By default,
the algorithm runs the 'grid' method.

This algorithm workflow analyzes images in their entirety. Images must have appropriate labels
describing the class that they represent. For example, a set of car images could be labeled cars. The
workflow does not rely on spatial information nor on marking the particular objects in an image. The
bag-of-visual-words technique relies on detection without localization.

Step 3: Train an Image Classifier With Bag of Visual Words
The trainImageCategoryClassifier function returns an image classifier. The function trains a
multiclass classifier using the error-correcting output codes (ECOC) framework with binary support
vector machine (SVM) classifiers. The trainImageCategoryClassfier function uses the bag of
visual words returned by the bagOfFeatures object to encode images in the image set into the
histogram of visual words. The histogram of visual words are then used as the positive and negative
samples to train the classifier.

1 Use the bagOfFeatures encode method to encode each image from the training set. This
function detects and extracts features from the image and then uses the approximate nearest
neighbor algorithm to construct a feature histogram for each image. The function then
increments histogram bins based on the proximity of the descriptor to a particular cluster center.
The histogram length corresponds to the number of visual words that the bagOfFeatures object
constructed. The histogram becomes a feature vector for the image.

2 Repeat step 1 for each image in the training set to create the training data.

 Image Classification with Bag of Visual Words

17-127

3 Evaluate the quality of the classifier. Use the imageCategoryClassifier evaluate method to
test the classifier against the validation image set. The output confusion matrix represents the
analysis of the prediction. A perfect classification results in a normalized matrix containing 1s on
the diagonal. An incorrect classification results fractional values.

Step 4: Classify an Image or Image Set
Use the imageCategoryClassifier predict method on a new image to determine its category.

References
[1] Csurka, G., C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual Categorization with Bags of

Keypoints. Workshop on Statistical Learning in Computer Vision. ECCV 1 (1–22), 1–2.

See Also

Related Examples
• “Image Category Classification Using Bag of Features” on page 3-333
• “Image Retrieval Using Customized Bag of Features” on page 3-349

17 Object Detection

17-128

Motion Estimation and Tracking

18

Multiple Object Tracking
Tracking is the process of locating a moving object or multiple objects over time in a video stream.
Unlike object detection, which is the process of locating an object of interest in a single frame,
tracking associates detections of an object across multiple frames.

Tracking multiple objects requires detection, prediction, and data association.

• Detection — Detect objects of interest in a video frame.
• Prediction — Predict the object locations in the next frame.
• Data association — Use the predicted locations to associate detections across frames to form

tracks.

Detection
Selecting the right approach for detecting objects of interest depends on what you want to track and
whether the camera is stationary.

Detect Objects Using Stationary Camera

To detect objects in motion with a stationary camera, you can perform background subtraction using
the vision.ForegroundDetector System object™. The background subtraction approach works
efficiently, but requires the camera to be stationary.

Detect Objects Using Moving Camera

To detect objects in motion with a moving camera, you can use a sliding-window detection approach.
This approach typically works more slowly than the background subtraction approach. To detect and
track a specific category of object, use the System objects or functions described in this table.

Select a Detection Algorithm

Type of Object to Track Camera Functionality
Anything that moves Stationary • vision.ForegroundDetector
Faces, eyes, nose, mouth, upper
body

Stationary, Moving • vision.CascadeObjectDetector

Pedestrians Stationary, Moving • vision.PeopleDetector
• yolov4ObjectDetector
• yolov3ObjectDetector
• yolov2ObjectDetector

You can filter the YOLO-based detector
results to keep only the "people" class. For
more information, see the “Detect People
Using YOLO v4 Object Detector” example.

Custom object category Stationary, Moving • See “Choose an Object Detector” on page
17-24 for a list of object detectors and
their respective benefits.

18 Motion Estimation and Tracking

18-2

Prediction
To track an object over time, you must predict its location in the next frame. The simplest method of
prediction assumes that the object remains near its last known location. In other words, the previous
detection serves as the next prediction. This method is especially effective at high frame rates.
However, using this prediction method can fail when objects do not move at constant speeds, or when
the frame rate is low relative to the speed of the object in motion.

A more sophisticated method of prediction is to use the previously observed motion of the object. The
Kalman filter (vision.KalmanFilter) predicts the next location of an object, by assuming that it
moves according to a motion model, such as constant velocity or constant acceleration. The Kalman
filter also takes into account process noise and measurement noise. Process noise is the deviation of
the actual motion of the object from the motion model. Measurement noise is the detection error.

To more easily configure a Kalman filter, use the configureKalmanFilter function. This function
sets up the filter for tracking a physical object moving with constant velocity or constant acceleration
within a Cartesian coordinate system. The statistics are the same along all dimensions. To configure a
Kalman filter with differing assumptions, you must construct the vision.KalmanFilter object
directly.

The Kalman filter assumes that motion and measurement models are linear, and that the uncertainty
in each model follows a Gaussian distribution. When these assumptions are incorrect, if the object
maneuvers, or when the measurements are incomplete, you must use another tracking filter. The
Sensor Fusion and Tracking Toolbox provides additional tracking filters. For more details, see
“Estimation Filters” (Sensor Fusion and Tracking Toolbox).

Data Association
Data association is the process of associating detections corresponding to the same physical object
across frames. The temporal history of a particular object consists of multiple detections, called a
track. A track representation can include the entire history of the previous locations of the object.
Alternatively, it can consist of only the last known location and current velocity of the object.

Detection to Track Cost Functions

To match a detection to a track, you must establish criteria for evaluating the matches. You can
establish these criteria by defining a cost function. The higher the cost of matching a detection to a
track, the less likely that the detection belongs to the track. You can define a simple cost function can
be defined as the degree of overlap between the bounding boxes of the predicted and detected
objects. The “Tracking Pedestrians from a Moving Car” on page 8-77 example implements this type of
cost function by using the bboxOverlapRatio function. You can implement a more sophisticated
cost function, such as one that accounts for the uncertainty of the prediction, by using the distance
function of the vision.KalmanFilter object. You can also implement a custom cost function that
can incorporate information about the size and appearance of the object.

Elimination of Unlikely Matches

Gating is a method of eliminating highly unlikely matches from consideration, such as by imposing a
threshold on your cost function. An observation does not match to a track if the cost exceeds a certain
threshold value. Using this threshold method effectively results in a circular gating region around
each prediction, within which a detection must be found to be considered a match. An alternative
gating technique is to make the gating region large enough to include the k-nearest neighbors of the
prediction.

 Multiple Object Tracking

18-3

Assign Detections to Track

Data association reduces to a minimum a weight bipartite matching problem, (an area of graph
theory). A bipartite graph represents tracks and detections as vertices. It also represents the cost of
matching a detection and a track as a weighted edge between the corresponding vertices.

The assignDetectionsToTracks function implements the Munkres variant of the Hungarian
bipartite matching algorithm. Its input is the cost matrix, where the rows correspond to tracks and
the columns correspond to detections. Each entry contains the cost of assigning a particular
detection to a particular track. You can implement gating by setting the cost of impossible matches to
infinity.

Track Management
Data association must account for the fact that new objects appearing in the field of view, or a
tracked object leaving the field of view. As such, for any given frame, you might need to create some
new tracks or discard some existing tracks. The assignDetectionsToTracks function returns the
indices of unassigned tracks and unassigned detections in addition to the matched pairs.

One way of handling unmatched detections is to create a new track from each of them. Alternatively,
you can create new tracks from only those unmatched detections greater than a certain size, or from
detections that have certain locations or appearances. For example, if the scene has a single entry
point, such as a doorway, then you can specify that only unmatched detections located near the entry
point can begin new tracks, and to discard all other unmatched detections as noise.

You can also handle unmatched tracks by deleting any track that remains unmatched for a certain
number of frames. Alternatively, you can specify to delete an unmatched track when its last known
location is near an exit point.

See Also
Objects
vision.KalmanFilter | vision.ForegroundDetector | vision.CascadeObjectDetector |
vision.PeopleDetector | vision.PointTracker

Functions
assignDetectionsToTracks | bboxOverlapRatio | configureKalmanFilter |
extractHOGFeatures | trainCascadeObjectDetector | selectStrongestBbox

Related Examples
• “Import Camera-Based Datasets in MOT Challenge Format for Object Tracking” on page 8-32
• “Implement Simple Online and Realtime Tracking” on page 8-23
• “Visual Tracking of Occluded and Unresolved Objects” on page 8-2
• “Tracking Pedestrians from a Moving Car” on page 8-77
• “Use Kalman Filter for Object Tracking” on page 8-87
• “Motion-Based Multiple Object Tracking” on page 8-68

18 Motion Estimation and Tracking

18-4

More About
• “Get Started with Cascade Object Detector” on page 17-102

External Websites
• Detect and Track Multiple Faces

 Multiple Object Tracking

18-5

https://www.mathworks.com/matlabcentral/fileexchange/47105-detect-and-track-multiple-faces

Filters, Transforms, and Enhancements

• “Adjust the Contrast of Intensity Images” on page 19-2
• “Adjust the Contrast of Color Images” on page 19-6
• “Remove Salt and Pepper Noise from Images” on page 19-10
• “Sharpen an Image” on page 19-14

19

Adjust the Contrast of Intensity Images
This example shows you how to modify the contrast in two intensity images using the Contrast
Adjustment and Histogram Equalization blocks.

1 Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity
Image From File Computer Vision Toolbox > Sources 2
Contrast Adjustment Computer Vision Toolbox > Analysis &

Enhancement
1

Histogram Equalization Computer Vision Toolbox > Analysis &
Enhancement

1

Video Viewer Computer Vision Toolbox > Sinks 4
2 Place the blocks listed in the table above into your new model.
3 Use the Image From File block to import the first image into the Simulink model. Set the File

name parameter to pout.tif.
4 Use the Image From File1 block to import the second image into the Simulink model. Set the File

name parameter to tire.tif.
5 Use the Contrast Adjustment block to modify the contrast in pout.tif. Set the Adjust pixel

values from parameter to Range determined by saturating outlier pixels. This block
adjusts the contrast of the image by linearly scaling the pixel values between user-specified
upper and lower limits.

6 Use the Histogram Equalization block to modify the contrast in tire.tif. Accept the default
parameters. This block enhances the contrast of images by transforming the values in an
intensity image so that the histogram of the output image approximately matches a specified
histogram.

7 Use the Video Viewer blocks to view the original and modified images. Accept the default
parameters.

8 Connect the blocks as shown in the following figure.

19 Filters, Transforms, and Enhancements

19-2

9 Set the configuration parameters. Open the Configuration Parameters dialog box from the
Modeling tab by selecting Model Settings > Model Settings. Set the parameters as follows:

• Solver pane, Stop time = 0
• Solver pane, Type = Fixed-step
• Solver pane, Solver = Discrete (no continuous states)

 Adjust the Contrast of Intensity Images

19-3

10 Run the model.

The results appear in the Video Viewer windows.

19 Filters, Transforms, and Enhancements

19-4

In this example, you used the Contrast Adjustment block to linearly scale the pixel values in
pout.tif between new upper and lower limits. You used the Histogram Equalization block to
transform the values in tire.tif so that the histogram of the output image approximately matches
a uniform histogram. For more information, see the Contrast Adjustment and Histogram Equalization
reference pages.

 Adjust the Contrast of Intensity Images

19-5

Adjust the Contrast of Color Images
This example shows you how to modify the contrast in color images using the Histogram Equalization
block.

ex_vision_adjust_contrast_color.mdl

1 Use the following code to read in an indexed RGB image, shadow.tif, and convert it to an RGB
image. The model provided above already includes this code in file > Model Properties >
Model Properties > InitFcn, and executes it prior to simulation.

[X map] = imread('shadow.tif');
shadow = ind2rgb(X,map);

2 Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity
Image From Workspace Computer Vision Toolbox > Sources 1
Color Space Conversion Computer Vision Toolbox > Conversions 2
Histogram Equalization Computer Vision Toolbox > Analysis &

Enhancement
1

Video Viewer Computer Vision Toolbox > Sinks 2
Constant Simulink > Sources 1
Divide Simulink > Math Operations 1
Product Simulink > Math Operations 1

3 Place the blocks listed in the table above into your new model.
4 Use the Image From Workspace block to import the RGB image from the MATLAB workspace

into the Simulink model. Set the block parameters as follows:

• Value = shadow
• Image signal = Separate color signals

5 Use the Color Space Conversion block to separate the luma information from the color
information. Set the block parameters as follows:

• Conversion = sR'G'B' to L*a*b*
• Image signal = Separate color signals

Because the range of the L* values is between 0 and 100, you must normalize them to be
between zero and one before you pass them to the Histogram Equalization block, which expects
floating point input in this range.

6 Use the Constant block to define a normalization factor. Set the Constant value parameter to
100.

7 Use the Divide block to normalize the L* values to be between 0 and 1. Accept the default
parameters.

8 Use the Histogram Equalization block to modify the contrast in the image. This block enhances
the contrast of images by transforming the luma values in the color image so that the histogram
of the output image approximately matches a specified histogram. Accept the default parameters.

9 Use the Product block to scale the values back to be between the 0 to 100 range. Accept the
default parameters.

19 Filters, Transforms, and Enhancements

19-6

matlab:ex_vision_adjust_contrast_color.mdl

10 Use the Color Space Conversion1 block to convert the values back to the sR'G'B' color space. Set
the block parameters as follows:

• Conversion = L*a*b* to sR'G'B'
• Image signal = Separate color signals

11 Use the Video Viewer blocks to view the original and modified images. For each block, set the
Image signal parameter to Separate Color Signals from the File menu.

12 Connect the blocks as shown in the following figure.

13 Set the configuration parameters. Open the Configuration Parameters dialog box from the
Modeling tab by selecting Model Settings > Model Settings. Set the parameters as follows:

• Solver pane, Stop time = 0
• Solver pane, Type = Fixed-step
• Solver pane, Solver = Discrete (no continuous states)

14 Run the model.

As shown in the following figure, the model displays the original image in the Video Viewer1
window.

 Adjust the Contrast of Color Images

19-7

As the next figure shows, the model displays the enhanced contrast image in the Video Viewer
window.

19 Filters, Transforms, and Enhancements

19-8

In this example, you used the Histogram Equalization block to transform the values in a color image
so that the histogram of the output image approximately matches a uniform histogram. For more
information, see the Histogram Equalization reference page.

 Adjust the Contrast of Color Images

19-9

Remove Salt and Pepper Noise from Images
Median filtering is a common image enhancement technique for removing salt and pepper noise.
Because this filtering is less sensitive than linear techniques to extreme changes in pixel values, it
can remove salt and pepper noise without significantly reducing the sharpness of an image. In this
topic, you use the Median Filter block to remove salt and pepper noise from an intensity image:

ex_vision_remove_noise

1 Define an intensity image in the MATLAB workspace and add noise to it by typing the following
at the MATLAB command prompt:

I= double(imread('circles.png'));
I= imnoise(I,'salt & pepper',0.02);

Iis a 256-by-256 matrix of 8-bit unsigned integer values.

The model provided with this example already includes this code in file>Model
Properties>Model Properties>InitFcn, and executes it prior to simulation.

2 To view the image this matrix represents, at the MATLAB command prompt, type

imshow(I)

The intensity image contains noise that you want your model to eliminate.
3 Create a Simulink model, and add the blocks shown in the following table.

Block Library Quantity
Image From Workspace Computer Vision Toolbox > Sources 1
Median Filter Computer Vision Toolbox > Filtering 1

19 Filters, Transforms, and Enhancements

19-10

matlab:ex_vision_remove_noise

Block Library Quantity
Video Viewer Computer Vision Toolbox > Sinks 2

4 Use the Image From Workspace block to import the noisy image into your model. Set the Value
parameter to I.

5 Use the Median Filter block to eliminate the black and white speckles in the image. Use the
default parameters.

The Median Filter block replaces the central value of the 3-by-3 neighborhood with the median
value of the neighborhood. This process removes the noise in the image.

6 Use the Video Viewer blocks to display the original noisy image, and the modified image. Images
are represented by 8-bit unsigned integers. Therefore, a value of 0 corresponds to black and a
value of 255 corresponds to white. Accept the default parameters.

7 Connect the blocks as shown in the following figure.

8 Set the configuration parameters. Open the Configuration Parameters dialog box from the
Modeling tab by selecting Model Settings > Model Settings. Set the parameters as follows:

• Solver pane, Stop time = 0
• Solver pane, Type = Fixed-step
• Solver pane, Solver = Discrete (no continuous states)

9 Run the model.

 Remove Salt and Pepper Noise from Images

19-11

The original and filtered images are displayed.

19 Filters, Transforms, and Enhancements

19-12

You have used the Median Filter block to remove noise from your image. For more information about
this block, see the Median Filter block reference page in the Computer Vision Toolbox Reference.

 Remove Salt and Pepper Noise from Images

19-13

Sharpen an Image
To sharpen a color image, you need to make the luma intensity transitions more acute, while
preserving the color information of the image. To do this, you convert an R'G'B' image into the Y'CbCr
color space and apply a highpass filter to the luma portion of the image only. Then, you transform the
image back to the R'G'B' color space to view the results. To blur an image, you apply a lowpass filter
to the luma portion of the image. This example shows how to use the 2-D FIR Filter block to sharpen
an image. The prime notation indicates that the signals are gamma corrected.

ex_vision_sharpen_image

1 Define an R'G'B' image in the MATLAB workspace. To read in an R'G'B' image from a PNG file
and cast it to the double-precision data type, at the MATLAB command prompt, type

I= im2double(imread('peppers.png'));

I is a 384-by-512-by-3 array of double-precision floating-point values. Each plane of this array
represents the red, green, or blue color values of the image.

The model provided with this example already includes this code in file>Model
Properties>Model Properties>InitFcn, and executes it prior to simulation.

2 To view the image this array represents, type this command at the MATLAB command prompt:

imshow(I)

19 Filters, Transforms, and Enhancements

19-14

matlab:ex_vision_sharpen_image

Now that you have defined your image, you can create your model.
3 Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity
Image From Workspace Computer Vision Toolbox > Sources 1
Color Space Conversion Computer Vision Toolbox > Conversions 2
2-D FIR Filter Computer Vision Toolbox > Filtering 1
Video Viewer Computer Vision Toolbox > Sinks 1

4 Use the Image From Workspace block to import the R'G'B' image from the MATLAB workspace.
Set the parameters as follows:

• Main pane, Value = I
• Main pane, Image signal = Separate color signals

The block outputs the R', G', and B' planes of the I array at the output ports.
5 The first Color Space Conversion block converts color information from the R'G'B' color space to

the Y'CbCr color space. Set the Image signal parameter to Separate color signals
6 Use the 2-D FIR Filter block to filter the luma portion of the image. Set the block parameters as

follows:

 Sharpen an Image

19-15

• Coefficients = fspecial('unsharp')
• Output size = Same as input port I
• Padding options = Symmetric
• Filtering based on = Correlation

The fspecial('unsharp') command creates two-dimensional highpass filter coefficients
suitable for correlation. This highpass filter sharpens the image by removing the low frequency
noise in it.

7 The second Color Space Conversion block converts the color information from the Y'CbCr color
space to the R'G'B' color space. Set the block parameters as follows:

• Conversion = Y'CbCr to R'G'B'
• Image signal = Separate color signals

8 Use the Video Viewer block to automatically display the new, sharper image in the Video Viewer
window when you run the model. Set the Image signal parameter to Separate color
signals, by selecting File > Image Signal.

9 Connect the blocks as shown in the following figure.

10 Set the configuration parameters. Open the Configuration Parameters dialog box from the
Modeling tab by selecting Model Settings > Model Settings. Set the parameters as follows:

• Solver pane, Stop time = 0
• Solver pane, Type = Fixed-step
• Solver pane, Solver = Discrete (no continuous states)

11 Run the model.

A sharper version of the original image appears in the Video Viewer window.

19 Filters, Transforms, and Enhancements

19-16

To blur the image, double-click the 2-D FIR Filter block. Set Coefficients parameter to
fspecial('gaussian',[15 15],7) and then click OK. The fspecial('gaussian',[15
15],7) command creates two-dimensional Gaussian lowpass filter coefficients. This lowpass
filter blurs the image by removing the high frequency noise in it.

In this example, you used the Color Space Conversion and 2-D FIR Filter blocks to sharpen an image.
For more information, see the Color Space Conversion and 2-D FIR Filter, and fspecial reference
pages.

 Sharpen an Image

19-17

Statistics and Morphological Operations

• “Correct Nonuniform Illumination” on page 20-2
• “Count Objects in an Image” on page 20-8

20

Correct Nonuniform Illumination
Global threshold techniques, which are often the first step in object measurement, cannot be applied
to unevenly illuminated images. To correct this problem, you can change the lighting conditions and
take another picture, or you can use morphological operators to even out the lighting in the image.
Once you have corrected for nonuniform illumination, you can pick a global threshold that delineates
every object from the background. In this topic, you use the Opening block to correct for uneven
lighting in an intensity image:

You can open the example model by typing

ex_vision_correct_uniform

on the MATLAB command line.

1 Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity
Image From File Computer Vision Toolbox > Sources 1
Opening Computer Vision Toolbox > Morphological

Operations
1

Video Viewer Computer Vision Toolbox > Sinks 4
Constant Simulink > Sources 1
Sum Simulink > Math Operations 2
Data Type Conversion Simulink > Signal Attributes 1

2 Use the Image From File block to import the intensity image. Set the File name parameter to
rice.png. This image is a 256-by-256 matrix of 8-bit unsigned integer values.

3 Use the Video Viewer block to view the original image. Accept the default parameters.
4 Use the Opening block to estimate the background of the image. Set the Neighborhood or

structuring element parameter to strel('disk',15).

The strel object creates a circular STREL object with a radius of 15 pixels. When working with
the Opening block, pick a STREL object that fits within the objects you want to keep. It often
takes experimentation to find the neighborhood or STREL object that best suits your application.

5 Use the Video Viewer1 block to view the background estimated by the Opening block. Accept the
default parameters.

6 Use the first Add block to subtract the estimated background from the original image. Set the
block parameters as follows:

• Icon shape = rectangular
• List of signs = -+

7 Use the Video Viewer2 block to view the result of subtracting the background from the original
image. Accept the default parameters.

8 Use the Constant block to define an offset value. Set the Constant value parameter to 80.
9 Use the Data Type Conversion block to convert the offset value to an 8-bit unsigned integer. Set

the Output data type mode parameter to uint8.
10 Use the second Sum block to lighten the image so that it has the same brightness as the original

image. Set the block parameters as follows:

20 Statistics and Morphological Operations

20-2

matlab:ex_vision_correct_uniform

• Icon shape = rectangular
• List of signs = ++

11 Use the Video Viewer3 block to view the corrected image. Accept the default parameters.
12 Connect the blocks as shown in the following figure.

13 Open the Configuration Parameters dialog box from the Modeling tab by selecting Model
Settings > Model Settings. Set the Solver parameters as follows:

• Solver pane, Stop time = 0
• Solver pane, Type = Fixed-step
• Solver pane, Solver = discrete (no continuous states)

14 Run the model.

The original image appears in the Video Viewer window.

 Correct Nonuniform Illumination

20-3

The estimated background appears in the Video Viewer1 window.

20 Statistics and Morphological Operations

20-4

The image without the estimated background appears in the Video Viewer2 window.

 Correct Nonuniform Illumination

20-5

The preceding image is too dark. The Constant block provides an offset value that you used to
brighten the image.

The corrected image, which has even lighting, appears in the Video Viewer3 window. The
following image is shown at its true size.

20 Statistics and Morphological Operations

20-6

In this section, you have used the Opening block to remove irregular illumination from an image. For
more information about this block, see the Opening reference page. For related information, see the
Top-hat block reference page. For more information about STREL objects, see the strel object in the
Image Processing Toolbox documentation.

 Correct Nonuniform Illumination

20-7

Count Objects in an Image
In this example, you import an intensity image of a wheel from the MATLAB workspace and convert it
to binary. Then, using the Opening and Label blocks, you count the number of spokes in the wheel.
You can use similar techniques to count objects in other intensity images. However, you might need to
use additional morphological operators and different structuring elements.

Note Running this example requires a DSP System Toolbox™ license.

You can open the example model by typing

ex_vision_count_objects

on the MATLAB command line.

1 Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity
Image From File Computer Vision Toolbox > Sources 1
Opening Computer Vision Toolbox> Morphological

Operations
1

Label Computer Vision Toolbox > Morphological
Operations

1

Video Viewer Computer Vision Toolbox > Sinks 2
Constant Simulink > Sources 1
Relational Operator Simulink > Logic and Bit Operations 1
Display Simulink > Sinks 1

2 Use the Image From File block to import your image. Set the File name parameter to
testpat1.png. This is a 256-by-256 matrix image of 8-bit unsigned integers.

3 Use the Constant block to define a threshold value for the Relational Operator block. Set the
Constant value parameter to 200.

4 Use the Video Viewer block to view the original image. Accept the default parameters.
5 Use the Relational Operator block to perform a thresholding operation that converts your

intensity image to a binary image. Set the Relational Operator parameter to <.

If the input to the Relational Operator block is less than 200, its output is 1; otherwise, its output
is 0. You must threshold your intensity image because the Label block expects binary input. Also,
the objects it counts must be white.

6 Use the Opening block to separate the spokes from the rim and from each other at the center of
the wheel. Use the default parameters.

The strel object creates a circular STREL object with a radius of 5 pixels. When working with
the Opening block, pick a STREL object that fits within the objects you want to keep. It often
takes experimentation to find the neighborhood or STREL object that best suits your application.

7 Use the Video Viewer1 block to view the opened image. Accept the default parameters.
8 Use the Label block to count the number of spokes in the input image. Set the Output parameter

to Number of labels.

20 Statistics and Morphological Operations

20-8

matlab:ex_vision_count_objects

9 The Display block displays the number of spokes in the input image. Use the default parameters.
10 Connect the block as shown in the following figure.

11 Open the Configuration Parameters dialog box from the Modeling tab by selecting Model
Settings > Model Settings. Set the Solver parameters as follows:

• Solver pane, Stop time = 0
• Solver pane, Type = Fixed-step
• Solver pane, Solver = discrete (no continuous states)

12 Run the model.

The original image appears in the Video Viewer1 window. To view the image at its true size, right-
click the window and select Set Display To True Size.

 Count Objects in an Image

20-9

The opened image appears in the Video Viewer window. The following image is shown at its true
size.

20 Statistics and Morphological Operations

20-10

As you can see in the preceding figure, the spokes are now separate white objects. In the model,
the Display block correctly indicates that there are 24 distinct spokes.

 Count Objects in an Image

20-11

You have used the Opening and Label blocks to count the number of spokes in an image. For more
information about these blocks, see the Opening and Label block reference pages in the Computer
Vision Toolbox Reference. If you want to send the number of spokes to the MATLAB workspace, use
the To Workspace block in Simulink. For more information about STREL objects, see strel in the
Image Processing Toolbox documentation.

20 Statistics and Morphological Operations

20-12

Fixed-Point Design

• “Fixed-Point Signal Processing” on page 21-2
• “Fixed-Point Concepts and Terminology” on page 21-4
• “Arithmetic Operations” on page 21-8
• “Fixed-Point Support for MATLAB System Objects” on page 21-15
• “Specify Fixed-Point Attributes for Blocks” on page 21-16

21

Fixed-Point Signal Processing

In this section...
“Fixed-Point Features” on page 21-2
“Benefits of Fixed-Point Hardware” on page 21-2
“Benefits of Fixed-Point Design with System Toolboxes Software” on page 21-2

Note To take full advantage of fixed-point support in System Toolbox software, you must install
Fixed-Point Designer™ software.

Fixed-Point Features
Many of the blocks in this product have fixed-point support, so you can design signal processing
systems that use fixed-point arithmetic. Fixed-point support in DSP System Toolbox software includes

• Signed two's complement and unsigned fixed-point data types
• Word lengths from 2 to 128 bits in simulation
• Word lengths from 2 to the size of a long on the Simulink Coder C code-generation target
• Overflow handling and rounding methods
• C code generation for deployment on a fixed-point embedded processor, with Simulink Coder code

generation software. The generated code uses all allowed data types supported by the embedded
target, and automatically includes all necessary shift and scaling operations

Benefits of Fixed-Point Hardware
There are both benefits and trade-offs to using fixed-point hardware rather than floating-point
hardware for signal processing development. Many signal processing applications require low-power
and cost-effective circuitry, which makes fixed-point hardware a natural choice. Fixed-point hardware
tends to be simpler and smaller. As a result, these units require less power and cost less to produce
than floating-point circuitry.

Floating-point hardware is usually larger because it demands functionality and ease of development.
Floating-point hardware can accurately represent real-world numbers, and its large dynamic range
reduces the risk of overflow, quantization errors, and the need for scaling. In contrast, the smaller
dynamic range of fixed-point hardware that allows for low-power, inexpensive units brings the
possibility of these problems. Therefore, fixed-point development must minimize the negative effects
of these factors, while exploiting the benefits of fixed-point hardware; cost- and size-effective units,
less power and memory usage, and fast real-time processing.

Benefits of Fixed-Point Design with System Toolboxes Software
Simulating your fixed-point development choices before implementing them in hardware saves time
and money. The built-in fixed-point operations provided by the System Toolboxes software save time
in simulation and allow you to generate code automatically.

This software allows you to easily run multiple simulations with different word length, scaling,
overflow handling, and rounding method choices to see the consequences of various fixed-point

21 Fixed-Point Design

21-2

designs before committing to hardware. The traditional risks of fixed-point development, such as
quantization errors and overflow, can be simulated and mitigated in software before going to
hardware.

Fixed-point C code generation with System Toolbox software and Simulink Coder code generation
software produces code ready for execution on a fixed-point processor. All the choices you make in
simulation in terms of scaling, overflow handling, and rounding methods are automatically optimized
in the generated code, without necessitating time-consuming and costly hand-optimized code.

 Fixed-Point Signal Processing

21-3

Fixed-Point Concepts and Terminology

In this section...
“Fixed-Point Data Types” on page 21-4
“Scaling” on page 21-5
“Precision and Range” on page 21-6

Fixed-Point Data Types
In digital hardware, numbers are stored in binary words. A binary word is a fixed-length sequence of
bits (1's and 0's). The way hardware components or software functions interpret this sequence of 1's
and 0's is defined by the data type.

Binary numbers are represented as either floating-point or fixed-point data types. In this section, we
discuss many terms and concepts relating to fixed-point numbers, data types, and mathematics.

A fixed-point data type is characterized by the word length in bits, the position of the binary point,
and the signedness of a number which can be signed or unsigned. Signed numbers and data types
can represent both positive and negative values, whereas unsigned numbers and data types can only
represent values that are greater than or equal to zero.

The position of the binary point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a generalized fixed-point number (either signed or unsigned)
is shown below:

where

• bi is the ith binary digit.
• wl is the number of bits in a binary word, also known as word length.
• bwl–1 is the location of the most significant, or highest, bit (MSB). In signed binary numbers, this

bit is the sign bit which indicates whether the number is positive or negative.
• b0 is the location of the least significant, or lowest, bit (LSB). This bit in the binary word can

represent the smallest value. The weight of the LSB is given by:

weightLSB = 2− f ractionlength

where, fractionlength is the number of bits to the right of the binary point.
• Bits to the left of the binary point are integer bits and/or sign bits, and bits to the right of the

binary point are fractional bits. Number of bits to the left of the binary point is known as the
integer length. The binary point in this example is shown four places to the left of the LSB.
Therefore, the number is said to have four fractional bits, or a fraction length of four.

21 Fixed-Point Design

21-4

Fixed-point data types can be either signed or unsigned.

Signed binary fixed-point numbers are typically represented in one of three ways:

• Sign/magnitude –– Representation of signed fixed-point or floating-point numbers. In the sign/
magnitude representation, one bit of a binary word is always the dedicated sign bit, while the
remaining bits of the word encode the magnitude of the number. Negation using sign/magnitude
representation consists of flipping the sign bit from 0 (positive) to 1 (negative), or from 1 to 0.

• One's complement
• Two's complement –– Two's complement is the most common representation of signed fixed-point

numbers. See “Two's Complement” on page 21-8 for more information.

Unsigned fixed-point numbers can only represent numbers greater than or equal to zero.

Scaling
In [Slope Bias] representation, fixed-point numbers can be encoded according to the scheme

real‐worldvalue = (slope × integer) + bias

where the slope can be expressed as

slope = slope ad justment × 2exponent

The term slope adjustment is sometimes used as a synonym for fractional slope.

In the trivial case, slope = 1 and bias = 0. Scaling is always trivial for pure integers, such as int8, and
also for the true floating-point types single and double.

The integer is sometimes called the stored integer. This is the raw binary number, in which the binary
point assumed to be at the far right of the word. In System Toolboxes, the negative of the exponent is
often referred to as the fraction length.

The slope and bias together represent the scaling of the fixed-point number. In a number with zero
bias, only the slope affects the scaling. A fixed-point number that is only scaled by binary point
position is equivalent to a number in the Fixed-Point Designer [Slope Bias] representation that has a
bias equal to zero and a slope adjustment equal to one. This is referred to as binary point-only scaling
or power-of-two scaling:

real‐world value = 2exponent × integer

or

real‐world value = 2− f ractionlength × integer

In System Toolbox software, you can define a fixed-point data type and scaling for the output or the
parameters of many blocks by specifying the word length and fraction length of the quantity. The
word length and fraction length define the whole of the data type and scaling information for binary-
point only signals.

All System Toolbox blocks that support fixed-point data types support signals with binary-point only
scaling. Many fixed-point blocks that do not perform arithmetic operations but merely rearrange
data, such as Delay and Matrix Transpose, also support signals with [Slope Bias] scaling.

 Fixed-Point Concepts and Terminology

21-5

Precision and Range
You must pay attention to the precision and range of the fixed-point data types and scalings you
choose for the blocks in your simulations, in order to know whether rounding methods will be invoked
or if overflows will occur.

Range

The range is the span of numbers that a fixed-point data type and scaling can represent. The range of
representable numbers for a two's complement fixed-point number of word length wl, scaling S, and
bias B is illustrated below:

For both signed and unsigned fixed-point numbers of any data type, the number of different bit
patterns is 2wl.

For example, in two's complement, negative numbers must be represented as well as zero, so the
maximum value is 2wl–1. Because there is only one representation for zero, there are an unequal
number of positive and negative numbers. This means there is a representation for -2wl–1 but not for
2wl–1:

The full range is the broadest range for a data type. For floating-point types, the full range is –∞ to ∞.
For integer types, the full range is the range from the smallest to largest integer value (finite) the
type can represent. For example, from -128 to 127 for a signed 8-bit integer.

Overflow Handling

Because a fixed-point data type represents numbers within a finite range, overflows can occur if the
result of an operation is larger or smaller than the numbers in that range.

System Toolbox software does not allow you to add guard bits to a data type on-the-fly in order to
avoid overflows. Guard bits are extra bits in either a hardware register or software simulation that
are added to the high end of a binary word to ensure that no information is lost in case of overflow.
Any guard bits must be allocated upon model initialization. However, the software does allow you to
either saturate or wrap overflows. Saturation represents positive overflows as the largest positive
number in the range being used, and negative overflows as the largest negative number in the range
being used. Wrapping uses modulo arithmetic to cast an overflow back into the representable range
of the data type. See “Modulo Arithmetic” on page 21-8 for more information.

21 Fixed-Point Design

21-6

Precision

The precision of a fixed-point number is the difference between successive values representable by its
data type and scaling, which is equal to the value of its least significant bit. The value of the least
significant bit, and therefore the precision of the number, is determined by the number of fractional
bits. A fixed-point value can be represented to within half of the precision of its data type and scaling.
The term resolution is sometimes used as a synonym for this definition.

For example, a fixed-point representation with four bits to the right of the binary point has a precision
of 2-4 or 0.0625, which is the value of its least significant bit. Any number within the range of this
data type and scaling can be represented to within (2-4)/2 or 0.03125, which is half the precision. This
is an example of representing a number with finite precision.

Rounding Modes

When you represent numbers with finite precision, not every number in the available range can be
represented exactly. If a number cannot be represented exactly by the specified data type and
scaling, it is rounded to a representable number. Although precision is always lost in the rounding
operation, the cost of the operation and the amount of bias that is introduced depends on the
rounding mode itself. To provide you with greater flexibility in the trade-off between cost and bias,
DSP System Toolbox software currently supports the following rounding modes:

• Ceiling rounds the result of a calculation to the closest representable number in the direction of
positive infinity.

• Convergent rounds the result of a calculation to the closest representable number. In the case of
a tie, Convergent rounds to the nearest even number. This is the least biased rounding mode
provided by the toolbox.

• Floor, which is equivalent to truncation, rounds the result of a calculation to the closest
representable number in the direction of negative infinity. The truncation operation results in
dropping of one or more least significant bits from a number.

• Nearest rounds the result of a calculation to the closest representable number. In the case of a
tie, Nearest rounds to the closest representable number in the direction of positive infinity.

• Round rounds the result of a calculation to the closest representable number. In the case of a tie,
Round rounds positive numbers to the closest representable number in the direction of positive
infinity, and rounds negative numbers to the closest representable number in the direction of
negative infinity.

• Simplest rounds the result of a calculation using the rounding mode (Floor or Zero) that adds
the least amount of extra rounding code to your generated code. For more information, see
“Rounding Mode: Simplest” (Fixed-Point Designer).

• Zero rounds the result of a calculation to the closest representable number in the direction of
zero.

To learn more about each of these rounding modes, see “Rounding” (Fixed-Point Designer).

For a direct comparison of the rounding modes, see “Choosing a Rounding Method” (Fixed-Point
Designer).

 Fixed-Point Concepts and Terminology

21-7

Arithmetic Operations

In this section...
“Modulo Arithmetic” on page 21-8
“Two's Complement” on page 21-8
“Addition and Subtraction” on page 21-9
“Multiplication” on page 21-10
“Casts” on page 21-12

Note These sections will help you understand what data type and scaling choices result in overflows
or a loss of precision.

Modulo Arithmetic
Binary math is based on modulo arithmetic. Modulo arithmetic uses only a finite set of numbers,
wrapping the results of any calculations that fall outside the given set back into the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers in this system can
only be 1 through 12. Therefore, in the “clock” system, 9 plus 9 equals 6. This can be more easily
visualized as a number circle:

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic results that fall outside
this range are wrapped “around the circle” to either 0 or 1.

Two's Complement
Two's complement is a common representation of signed fixed-point numbers. In two's complement,
positive numbers always start with a 0 and negative numbers always start with a 1. If the leading bit

21 Fixed-Point Design

21-8

of a two's complement number is 0, the value is obtained by calculating the standard binary value of
the number. If the leading bit of a two's complement number is 1, the value is obtained by assuming
that the leftmost bit is negative, and then calculating the binary value of the number. For example,

01 = (0 + 20) = 1

11 = ((− 21) + (20)) = (− 2 + 1) = − 1

To compute the negative of a binary number using two's complement,

1 Take the one's complement. That is, all 0's are flipped to 1's and all 1's are flipped to 0's.
2 Add a 1 using binary math.
3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one's complement of the
number, or flip the bits:

11010 00101

Next, add a 1, wrapping all numbers to 0 or 1:

00101
+1

00110
(6)

Addition and Subtraction
The addition of fixed-point numbers requires that the binary points of the addends be aligned. The
addition is then performed using binary arithmetic so that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

010010.1
+0110.110
011001.010

(18.5)
(6.75)
(25.25)

Fixed-point subtraction is equivalent to adding while using the two's complement value for any
negative values. In subtraction, the addends must be sign extended to match each other's length. For
example, consider subtracting 0110.110 (6.75) from 010010.1 (18.5):

Most fixed-point DSP System Toolbox blocks that perform addition cast the adder inputs to an
accumulator data type before performing the addition. Therefore, no further shifting is necessary
during the addition to line up the binary points. See “Casts” on page 21-12 for more information.

 Arithmetic Operations

21-9

Multiplication
The multiplication of two's complement fixed-point numbers is directly analogous to regular decimal
multiplication, with the exception that the intermediate results must be sign extended so that their
left sides align before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

Multiplication Data Types

The following diagrams show the data types used for fixed-point multiplication in the System Toolbox
software. The diagrams illustrate the differences between the data types used for real-real, complex-
real, and complex-complex multiplication. See individual reference pages to determine whether a
particular block accepts complex fixed-point inputs.

In most cases, you can set the data types used during multiplication in the block mask. For details,
see “Casts” on page 21-12.

Note The following diagrams show the use of fixed-point data types in multiplication in System
Toolbox software. They do not represent actual subsystems used by the software to perform
multiplication.

Real-Real Multiplication

The following diagram shows the data types used in the multiplication of two real numbers in System
Toolbox software. The software returns the output of this operation in the product output data type,
as the next figure shows.

Real-Complex Multiplication

The following diagram shows the data types used in the multiplication of a real and a complex fixed-
point number in System Toolbox software. Real-complex and complex-real multiplication are
equivalent. The software returns the output of this operation in the product output data type, as the
next figure shows.

21 Fixed-Point Design

21-10

Complex-Complex Multiplication

The following diagram shows the multiplication of two complex fixed-point numbers in System
Toolbox software. Note that the software returns the output of this operation in the accumulator
output data type, as the next figure shows.

System Toolbox blocks cast to the accumulator data type before performing addition or subtraction
operations. In the preceding diagram, this is equivalent to the C code

acc=ac;
acc-=bd;

for the subtractor, and

acc=ad;
acc+=bc;

for the adder, where acc is the accumulator.

 Arithmetic Operations

21-11

Casts
Many fixed-point System Toolbox blocks that perform arithmetic operations allow you to specify the
accumulator, intermediate product, and product output data types, as applicable, as well as the
output data type of the block. This section gives an overview of the casts to these data types, so that
you can tell if the data types you select will invoke sign extension, padding with zeros, rounding,
and/or overflow. Sign extension is the addition of bits that have the value of the most significant bit to
the high end of a two's complement number. Sign extension does not change the value of the binary
number. Padding is extending the least significant bit of a binary word with one or more zeros.

Casts to the Accumulator Data Type

For most fixed-point System Toolbox blocks that perform addition or subtraction, the operands are
first cast to an accumulator data type. Most of the time, you can specify the accumulator data type on
the block mask. For details, see the description for Accumulator data type parameter in “Specify
Fixed-Point Attributes for Blocks” (DSP System Toolbox). Since the addends are both cast to the same
accumulator data type before they are added together, no extra shift is necessary to insure that their
binary points align. The result of the addition remains in the accumulator data type, with the
possibility of overflow.

Casts to the Intermediate Product or Product Output Data Type

For System Toolbox blocks that perform multiplication, the output of the multiplier is placed into a
product output data type. Blocks that then feed the product output back into the multiplier might first
cast it to an intermediate product data type. Most of the time, you can specify these data types on the
block mask. For details, see the description for Intermediate Product and Product Output data
type parameters in “Specify Fixed-Point Attributes for Blocks” (DSP System Toolbox).

Casts to the Output Data Type

Many fixed-point System Toolbox blocks allow you to specify the data type and scaling of the block
output on the mask. Remember that the software does not allow mixed types on the input and output
ports of its blocks. Therefore, if you would like to specify a fixed-point output data type and scaling
for a System Toolbox block that supports fixed-point data types, you must feed the input port of that
block with a fixed-point signal. The final cast made by a fixed-point System Toolbox block is to the
output data type of the block.

Note that although you cannot mix fixed-point and floating-point signals on the input and output ports
of blocks, you can have fixed-point signals with different word and fraction lengths on the ports of
blocks that support fixed-point signals.

Casting Examples

It is important to keep in mind the ramifications of each cast when selecting these intermediate data
types, as well as any other intermediate fixed-point data types that are allowed by a particular block.
Depending upon the data types you select, overflow and/or rounding might occur. The following two
examples demonstrate cases where overflow and rounding can occur.

Cast from a Shorter Data Type to a Longer Data Type

Consider the cast of a nonzero number, represented by a four-bit data type with two fractional bits, to
an eight-bit data type with seven fractional bits:

21 Fixed-Point Design

21-12

As the diagram shows, the source bits are shifted up so that the binary point matches the destination
binary point position. The highest source bit does not fit, so overflow might occur and the result can
saturate or wrap. The empty bits at the low end of the destination data type are padded with either
0's or 1's:

• If overflow does not occur, the empty bits are padded with 0's.
• If wrapping occurs, the empty bits are padded with 0's.
• If saturation occurs,

• The empty bits of a positive number are padded with 1's.
• The empty bits of a negative number are padded with 0's.

You can see that even with a cast from a shorter data type to a longer data type, overflow might still
occur. This can happen when the integer length of the source data type (in this case two) is longer
than the integer length of the destination data type (in this case one). Similarly, rounding might be
necessary even when casting from a shorter data type to a longer data type, if the destination data
type and scaling has fewer fractional bits than the source.

Cast from a Longer Data Type to a Shorter Data Type

Consider the cast of a nonzero number, represented by an eight-bit data type with seven fractional
bits, to a four-bit data type with two fractional bits:

 Arithmetic Operations

21-13

As the diagram shows, the source bits are shifted down so that the binary point matches the
destination binary point position. There is no value for the highest bit from the source, so the result is
sign extended to fill the integer portion of the destination data type. The bottom five bits of the
source do not fit into the fraction length of the destination. Therefore, precision can be lost as the
result is rounded.

In this case, even though the cast is from a longer data type to a shorter data type, all the integer bits
are maintained. Conversely, full precision can be maintained even if you cast to a shorter data type,
as long as the fraction length of the destination data type is the same length or longer than the
fraction length of the source data type. In that case, however, bits are lost from the high end of the
result and overflow might occur.

The worst case occurs when both the integer length and the fraction length of the destination data
type are shorter than those of the source data type and scaling. In that case, both overflow and a loss
of precision can occur.

21 Fixed-Point Design

21-14

Fixed-Point Support for MATLAB System Objects
In this section...
“Getting Information About Fixed-Point System Objects” on page 21-15
“Setting System Object Fixed-Point Properties” on page 21-15

Getting Information About Fixed-Point System Objects
System objects that support fixed-point data processing have fixed-point properties. When you display
the properties of a System object, click Show all properties at the end of the property list to
display the fixed-point properties for that object. You can also display the fixed-point properties for a
particular object by typing vision.<ObjectName>.helpFixedPoint at the command line.

The following Computer Vision Toolbox objects support fixed-point data processing.

Fixed-Point Data Processing Support
vision.AlphaBlender
vision.BlobAnalysis
vision.BlockMatcher
vision.DCT
vision.Maximum
vision.Mean
vision.Median
vision.Minimum

Setting System Object Fixed-Point Properties
Several properties affect the fixed-point data processing used by a System object. Objects perform
fixed-point processing and use the current fixed-point property settings when they receive fixed-point
input.

You change the values of fixed-point properties in the same way as you change any System object
property value. You also use the Fixed-Point Designer numerictype object to specify the desired
data type as fixed point, the signedness, and the word- and fraction-lengths.

In the same way as for blocks, the data type properties of many System objects can set the
appropriate word lengths and scalings automatically by using full precision. System objects assume
that the target specified on the Configuration Parameters Hardware Implementation target is ASIC/
FPGA.

If you have not set the property that activates a dependent property and you attempt to change that
dependent property, you will get a warning message.

You must set the property that activates a dependent property before attempting to change the
dependent property. If you do not set the activating property, you will get a warning message.

Note System objects do not support fixed-point word lengths greater than 128 bits.

For any System object provided in the Toolbox, the fimath settings for any fimath attached to a fi
input or a fi property are ignored. Outputs from a System object never have an attached fimath.

 Fixed-Point Support for MATLAB System Objects

21-15

Specify Fixed-Point Attributes for Blocks
In this section...
“Fixed-Point Block Parameters” on page 21-16
“Specify System-Level Settings” on page 21-18
“Inherit via Internal Rule” on page 21-18
“Specify Data Types for Fixed-Point Blocks” on page 21-20

Fixed-Point Block Parameters

Toolbox blocks that have fixed-point support usually allow you to specify fixed-point characteristics
through block parameters. By specifying data type and scaling information for these fixed-point
parameters, you can simulate your target hardware more closely.

Note Floating-point inheritance takes precedence over the settings discussed in this section. When
the block has floating-point input, all block data types match the input.

You can find most fixed-point parameters on the Data Types pane of toolbox blocks. The following
figure shows a typical Data Types pane.

All toolbox blocks with fixed-point capabilities share a set of common parameters, but each block can
have a different subset of these fixed-point parameters. The following table provides an overview of
the most common fixed-point block parameters.

21 Fixed-Point Design

21-16

Fixed-Point Data Type
Parameter

Description

Rounding Mode Specifies the rounding mode for the block to use when the specified
data type and scaling cannot exactly represent the result of a fixed-point
calculation.

See “Rounding Modes” on page 21-7 for more information on the
available options.

Saturate on integer
overflow

When you select this parameter, the block saturates the result of its
fixed-point operation. When you clear this parameter, the block wraps
the result of its fixed-point operation.

For details on saturate and wrap, see “Overflow Handling” on page 21-6
for fixed-point operations.

Intermediate Product Specifies the data type and scaling of the intermediate product for fixed-
point blocks. Blocks that feed multiplication results back to the input of
the multiplier use the intermediate product data type.

See the reference page of a specific block to learn about the
intermediate product data type for that block.

Product Output Specifies the data type and scaling of the product output for fixed-point
blocks that must compute multiplication results.

See the reference page of a specific block to learn about the product
output data type for that block. For or complex-complex multiplication,
the multiplication result is in the accumulator data type. See
“Multiplication Data Types” on page 21-10 for more information on
complex fixed-point multiplication in toolbox software.

Accumulator Specifies the data type and scaling of the accumulator (sum) for fixed-
point blocks that must hold summation results for further calculation.
Most such blocks cast to the accumulator data type before performing
the add operations (summation).

See the reference page of a specific block for details on the accumulator
data type of that block.

Output Specifies the output data type and scaling for blocks.

Using the Data Type Assistant

The Data Type Assistant is an interactive graphical tool available on the Data Types pane of some
Fixed-Point Designer blocks.

To learn more about using the Data Type Assistant to help you specify block data type parameters,
see “Specify Data Types Using Data Type Assistant” (Simulink).

Checking Signal Ranges

Some Fixed-Point Designer blocks have Minimum and Maximum parameters on the Data Types
pane. When a fixed-point data type has these parameters, you can use them to specify appropriate
minimum and maximum values for range checking purposes.

 Specify Fixed-Point Attributes for Blocks

21-17

To learn how to specify signal ranges and enable signal range checking, see “Specify Signal Ranges”
(Simulink).

Specify System-Level Settings
You can monitor and control fixed-point settings for Fixed-Point Designer blocks at a system or
subsystem level with the Fixed-Point Tool. For more information, see Fixed-Point Tool.

Logging

The Fixed-Point Tool logs overflows, saturations, and simulation minimums and maximums for Fixed-
Point Designer blocks. The Fixed-Point Tool does not log overflows and saturations when the Data
overflow line in the Diagnostics > Data Integrity pane of the Configuration Parameters dialog
box is set to None.

Autoscaling

You can use the Fixed-Point Tool autoscaling feature to set the scaling for toolbox fixed-point data
types.

Data type override

Toolbox blocks obey the Use local settings, Double, Single, and Off modes of the Data type
override parameter in the Fixed-Point Tool. The Scaled double mode is also supported for
toolboxes source and byte-shuffling blocks, and for some arithmetic blocks such as Difference and
Normalization.

Scaled double is a double data type that retains fixed-point scaling information. Using the data type
override, you can convert your fixed-point data types to scaled doubles. You can then simulate to
determine the ideal floating-point behavior of your system. After you gather that information, you can
turn data type override off to return to fixed-point data types, and your quantities still have their
original scaling information because it was held in the scaled double data types.

Inherit via Internal Rule
Selecting appropriate word lengths and scalings for the fixed-point parameters in your model can be
challenging. To aid you, an Inherit via internal rule choice is often available for fixed-point
block data type parameters, such as the Accumulator and Product output signals. The following
sections describe how the word and fraction lengths are selected for you when you choose Inherit
via internal rule for a fixed-point block data type parameter in toolbox software:

• “Internal Rule for Accumulator Data Types” on page 21-19
• “Internal Rule for Product Data Types” on page 21-19
• “Internal Rule for Output Data Types” on page 21-19
• “The Effect of the Hardware Implementation Pane on the Internal Rule” on page 21-19
• “Internal Rule Examples” on page 21-20

Note In the equations in the following sections, WL = word length and FL = fraction length.

21 Fixed-Point Design

21-18

Internal Rule for Accumulator Data Types

The internal rule for accumulator data types first calculates the ideal, full-precision result. Where N is
the number of addends:

WLidealaccumulator = WLinputtoaccumulator + floor(log2(N − 1)) + 1

FLidealaccumulator = FLinputtoaccumulator

For example, consider summing all the elements of a vector of length 6 and data type sfix10_En8. The
ideal, full-precision result has a word length of 13 and a fraction length of 8.

The accumulator can be real or complex. The preceding equations are used for both the real and
imaginary parts of the accumulator. For any calculation, after the full-precision result is calculated,
the final word and fraction lengths set by the internal rule are affected by your particular hardware.
See “The Effect of the Hardware Implementation Pane on the Internal Rule” on page 21-19 for more
information.

Internal Rule for Product Data Types

The internal rule for product data types first calculates the ideal, full-precision result:

WLidealproduct = WLinput1 + WLinput2

FLidealproduct = FLinput1 + FLinput2

For example, multiplying together the elements of a real vector of length 2 and data type sfix10_En8.
The ideal, full-precision result has a word length of 20 and a fraction length of 16.

For real-complex multiplication, the ideal word length and fraction length is used for both the
complex and real portion of the result. For complex-complex multiplication, the ideal word length and
fraction length is used for the partial products, and the internal rule for accumulator data types
described above is used for the final sums. For any calculation, after the full-precision result is
calculated, the final word and fraction lengths set by the internal rule are affected by your particular
hardware. See “The Effect of the Hardware Implementation Pane on the Internal Rule” on page 21-
19 for more information.

Internal Rule for Output Data Types

A few toolbox blocks have an Inherit via internal rule choice available for the block output.
The internal rule used in these cases is block-specific, and the equations are listed in the block
reference page.

As with accumulator and product data types, the final output word and fraction lengths set by the
internal rule are affected by your particular hardware, as described in “The Effect of the Hardware
Implementation Pane on the Internal Rule” on page 21-19.

The Effect of the Hardware Implementation Pane on the Internal Rule

The internal rule selects word lengths and fraction lengths that are appropriate for your hardware. To
get the best results using the internal rule, you must specify the type of hardware you are using on
the Hardware Implementation pane of the Configuration Parameters dialog box. To open this
dialog box, click Modeling > Model Settings in the Simulink toolstrip.

 Specify Fixed-Point Attributes for Blocks

21-19

ASIC/FPGA

On an ASIC/FPGA target, the ideal, full-precision word length and fraction length calculated by the
internal rule are used. If the calculated ideal word length is larger than the largest allowed word
length, you receive an error.

Other Targets

For all targets other than ASIC/FPGA, the ideal, full-precision word length calculated by the internal
rule is rounded up to the next available word length of the target. The calculated ideal fraction length
is used, keeping the least-significant bits.

If the calculated ideal word length for a product data type is larger than the largest word length on
the target, you receive an error. If the calculated ideal word length for an accumulator or output data
type is larger than the largest word length on the target, the largest target word length is used.

The largest word length allowed for Simulink and toolbox software on any target is 128 bits.

Internal Rule Examples

For examples of how the internal rule interacts with the Hardware Implementation pane to
calculate accumulator data types and product data types, see Accumulator Data Types (DSP System
Toolbox) and Product Data Types (DSP System Toolbox).

Specify Data Types for Fixed-Point Blocks
For an example that shows how to select appropriate data types for fixed-point blocks using the
Fixed-Point Tool, see Specify Data Types for Fixed-Point Blocks (DSP System Toolbox).

21 Fixed-Point Design

21-20

Code Generation and Shared Library

• “Simulink Shared Library Dependencies” on page 22-2
• “Accelerating Simulink Models” on page 22-3
• “Portable C Code Generation for Functions That Use OpenCV Library” on page 22-4

22

Simulink Shared Library Dependencies
In general, the code you generate from Computer Vision Toolbox blocks is portable ANSI® C code.
After you generate the code, you can deploy it on another machine. For more information on how to
do so, see “Relocate or Share Generated Code” (Simulink Coder).

There are a few Computer Vision Toolbox blocks that generate code with limited portability. These
blocks use precompiled shared libraries, such as DLLs, to support I/O for specific types of devices and
file formats. To find out which blocks use precompiled shared libraries, open the Computer Vision
Toolbox Block Support Table. You can identify blocks that use precompiled shared libraries by
checking the footnotes listed in the Code Generation Support column of the table. All blocks that
use shared libraries have the following footnote:

Host computer only. Excludes Simulink Desktop Real-Time™ target.

Simulink Coder provides functions to help you set up and manage the build information for your
models. For example, one of the Build Information functions that Simulink Coder provides is
getNonBuildFiles. This function allows you to identify the shared libraries required by blocks in
your model. If your model contains any blocks that use precompiled shared libraries, you can install
those libraries on the target system. The folder that you install the shared libraries in must be on the
system path. The target system does not need to have MATLAB installed, but it does need to be
supported by MATLAB.

22 Code Generation and Shared Library

22-2

matlab:showvipblockdatatypetable

Accelerating Simulink Models
The Simulink software offer Accelerator and Rapid Accelerator simulation modes that remove
much of the computational overhead required by Simulink models. These modes compile target code
of your model. Through this method, the Simulink environment can achieve substantial performance
improvements for larger models. The performance gains are tied to the size and complexity of your
model. Therefore, large models that contain Computer Vision Toolbox blocks run faster in Rapid
Accelerator or Accelerator mode.

To change between Rapid Accelerator, Accelerator, and Normal mode, use the drop-down list
at the top of the model window.

For more information on the accelerator modes in Simulink, see “Choosing a Simulation Mode”
(Simulink).

 Accelerating Simulink Models

22-3

Portable C Code Generation for Functions That Use OpenCV
Library

The generated binary uses prebuilt OpenCV libraries that ship with the Computer Vision Toolbox
product. Your compiler must be compatible with the one used to build the libraries. The following
compilers are used to build the OpenCV libraries for MATLAB host:

Operating System Compatible Compiler
Windows 64 bit Microsoft Visual Studio 2015 or later (Professional or Community

editions)
Linux 64 bit gcc-4.9.3 (g++)
Mac 64 bit Xcode 6.2.0 (Clang++)

Limitations
Computer Vision Toolbox functions that use the OpenCV library do not support target code
generation from Simulink.

22 Code Generation and Shared Library

22-4

Vision Blocks Examples

• “Rotate ROI in Image” on page 23-4
• “Apply Horizontal Shear Transformation to Image” on page 23-7
• “Find Location of Object in Image Using Template Matching” on page 23-10
• “Compute Optical Flow Velocities” on page 23-13
• “Rotate an Image” on page 23-15
• “Generate Image Histogram” on page 23-18
• “Export Image to MATLAB Workspace” on page 23-20
• “Import Video from MATLAB Workspace” on page 23-23
• “Find Minimum Value in ROI” on page 23-25
• “Write Image to Binary File” on page 23-29
• “Compute Standard Deviation of ROIs” on page 23-30
• “Read Video Stored as Binary Data” on page 23-33
• “Compare Image Quality Using PSNR” on page 23-37
• “Compute Autocorrelation of Input Matrix” on page 23-39
• “Compute Correlation between Two Matrices” on page 23-40
• “Find Statistics of Circular Blobs in Image” on page 23-41
• “Replace Intensity Values in ROI with its Maximum Value” on page 23-45
• “Median based Image Thresholding” on page 23-49
• “Import Image From MATLAB Workspace” on page 23-52
• “Import Image from Specified Location” on page 23-54
• “Remove Interlacing Effect From Image” on page 23-58
• “Estimate Motion between Two Images” on page 23-61
• “Enhance Contrast of Grayscale Image Using Histogram Equalization” on page 23-63
• “Enhance Contrast of Color Image Using Histogram Equalization” on page 23-66
• “Compute Mean of ROIs in Image” on page 23-69
• “Detect Corners in Image” on page 23-72
• “Edge Detection of Intensity Image” on page 23-76
• “Read, Process, and Write Video Frames to File” on page 23-79
• “Find Local Maxima in Image” on page 23-81
• “Read, Convert, and View Video from File” on page 23-84
• “Read and Display YCbCr Video from File” on page 23-86
• “Display Frame Rate of Input Video” on page 23-88
• “Draw Rectangles on Image” on page 23-89
• “Draw Circles on Image” on page 23-91
• “Overlay Images Using Binary Mask” on page 23-93

23

• “Linearly Combine Two Images” on page 23-98
• “Pad Zeros to Image” on page 23-102
• “Insert Text into Image” on page 23-105
• “Compress Image Using 2-D DCT” on page 23-108
• “Draw Markers on Image” on page 23-112
• “Read and Display RGB Video from File” on page 23-115
• “Label Objects in Binary Image” on page 23-117
• “Boundary Extraction of Binary Image” on page 23-121
• “Select String to Insert into Image” on page 23-125
• “Insert Two Strings into Image at Different Locations” on page 23-128
• “Dilation of Binary Image” on page 23-130
• “Find Complement of Intensity Image” on page 23-132
• “Perform Top-Hat Filtering of Binary Image” on page 23-135
• “Perform Bottom-hat Filtering of Binary Image” on page 23-138
• “Perform Opening of Binary Image” on page 23-141
• “Perform Closing of Binary Image” on page 23-144
• “Blur Image Using Gaussian Kernel” on page 23-147
• “Convert Image Color Space from RGB to YCbCr” on page 23-150
• “Convert Data Type and Color Space of Image from RGB to HSV” on page 23-153
• “Perform Gamma Correction of Image” on page 23-156
• “Adjust Contrast of Image” on page 23-159
• “Remove Impulse Noise from Image” on page 23-162
• “Draw Hough Lines on Image” on page 23-165
• “Construct Laplacian Pyramid Image” on page 23-167
• “Apply Affine Transformation to Image” on page 23-170
• “Trace Boundary of Object in Image” on page 23-173
• “Convert Grayscale Image to Binary Image” on page 23-177
• “Perform Chroma Resampling of Image” on page 23-180
• “Compute Variance of ROIs” on page 23-183
• “Smooth Image Using Gaussian Kernel” on page 23-187
• “Plot Hough Transform of Image” on page 23-190
• “Apply Vertical Shear Transformation to Image” on page 23-194
• “Resize ROI in Image” on page 23-197
• “Demosaic an Image” on page 23-200
• “Rotate an Image in Simulink” on page 23-202
• “Filter Image Using FIR Filter” on page 23-205
• “Visualize Point Cloud Sequence” on page 23-209

<xi:include href="urn:mathworks:ex:vision/ApplyVerticalShearToTransformImageExample.xml"
xmlns:xi="http://www.w3.org/2001/XInclude">

23 Vision Blocks Examples

23-2

<xi:fallback><!-- Fallback for vision/ApplyVerticalShearToTransformImageExample --><link
xmlns="http://docbook.org/ns/docbook"/></xi:fallback>

</xi:include>

 Portable C Code Generation for Functions That Use OpenCV Library

23-3

Rotate ROI in Image

This example shows how to apply rotation transformation to a region of interest (ROI) in the input
image.

Example Model

Open the Simulink® model.

modelname = 'ex_rotatewarp.slx';
open_system(modelname)

The model reads an input image by using the Image From File block. To apply rotation transformation
to a particular region in the input image, you must

• specify the rotation transformation matrix
• specify the ROI

The model then rotates the selected ROI by using the Warp block with these parameter values:

• Transformation matrix source - Input port. This enables the TForm input port. Specify the

rotation transformation matrix value as by using the Constant block.
• Interpolation method - Bilinear
• Background fill value - 0
• Output image position source - Same as input image
• Select the Enable ROI input port parameter. Specify the value for ROI input port as

 by using the Constant block.

23 Vision Blocks Examples

23-4

Simulate and Display Results

Run the model and display the results by using the Video Viewer block.

sim(modelname);

 Rotate ROI in Image

23-5

23 Vision Blocks Examples

23-6

Apply Horizontal Shear Transformation to Image

Read an image into the MATLAB workspace.

I = imread('peppers.png');

Display the input image.

figure
imshow(I)
title('Input Image')

Open the Simulink® model.

modelname = 'ex_shearblkwarp.slx';
open_system(modelname)

 Apply Horizontal Shear Transformation to Image

23-7

The model reads the input image from the workspace by using the Image From Workspace block. To
apply horizontal shear transformation, you must specify the transformation matrix at the input by
using TForm input port.

The model then shears the image to the horizontal direction by using the Warp block with these
parameter values:

• Transformation matrix source - Input port. This enables the TForm input port. Specify the

horizontal shear transformation matrix value as by using the Constant block.
• Interpolation method - Bilinear
• Background fill value - 0
• Output image position source - Custom
• Output image position vector [x y width height] - [-20 -20 740 430]

Run the model and display the output transformed image by using the Video Viewer block.

sim(modelname);

23 Vision Blocks Examples

23-8

 Apply Horizontal Shear Transformation to Image

23-9

Find Location of Object in Image Using Template Matching

Read the reference image and the template image into the MATLAB workspace.

img = imread('stopSignTest.jpg');
tempImg = imread('vipwarningsigns_stop_template.png');

Display the images. The reference image is a scene containing the stop sign board. The template is a
low spatial resolution image of the stop sign board.

figure
imshow(img)
title('Reference Image')
figure
imshow(tempImg)
title('Template')

23 Vision Blocks Examples

23-10

Open the Simulink® model.

modelname = 'ex_blktemplatematching.slx';
open_system(modelname)

The model reads the images by using the Image From Workspace block. To perform template
matching, you must first convert the input color images to intensity images by using the Color Space
Conversion block. Then, find the location of the template image in the reference image by using the
Template Matching block with these parameter values:

• Match Metric - Sum of absolute differences
• Output - Best match location
• Search method - Three-step

The Template Matching block outputs a location in the reference image for which the pixel regions
around it best matches with the template image.

Run the model.

out = sim(modelname);

Read the output value.

location = out.simout;

Draw a circle to highlight the region around the best matching pixel location. Display the results.

 Find Location of Object in Image Using Template Matching

23-11

img = insertShape(img,'circle',[location(1) location(2) 20]);
figure
imshow(img);
hold on
plot(location(1),location(2),'*r')
title('Results of Template Matching')

23 Vision Blocks Examples

23-12

Compute Optical Flow Velocities

This example shows how to compute the optical flow velocities for a moving object in a video or
image sequence.

Read two image frames from an image sequence into the MATLAB workspace.

I1 = imread('car_frame1.png');
I2 = imread('car_frame2.png');

Open the Simulink® model.

modelname = 'ex_blkopticalflow.slx';
open_system(modelname)

The model reads the images by using the Image From Workspace block. To compute the optical flow
velocities, you must first convert the input color images to intensity images by using the Color Space
Conversion block. Then, find the velocities by using the Optical Flow block with these parameter
values:

• Method - Horn-Schunck
• Compute optical flow between - Two images
• Smoothness factor - 1
• Stop iterative solution - When maximum number of iterations is reached
• Maximum number of iterations - 10
• Velocity output - Horizontal and vertical components in complex form

Overlay both the image frames by using the Compositing block and use the overlaid image to plot the
results.

Run the model.

out = sim(modelname);

 Compute Optical Flow Velocities

23-13

Read the output velocities and the overlaid image.

Vx = real(out.simout);
Vy = imag(out.simout);
img = out.simout1;

Create an optical flow object by using the opticalFlow function.

flow = opticalFlow(Vx,Vy);

Display the overlaid image and plot the velocity vectors by using the plot function.

figure
imshow(img)
hold on
plot(flow,'DecimationFactor',[5 5],'ScaleFactor',40)

23 Vision Blocks Examples

23-14

Rotate an Image

Open the Simulink® model.

modelname = 'ex_blkrotate.slx';
open_system(modelname)

The model reads image by using the Image From File block. To rotate the input image, use the
Rotate block with these parameter values:

• Output size - Same as input image
• Rotation angle source - Specify via dialog
• Angle (radians) - pi/4
• Sine value computation method - Table lookup
• Background fill value - 255
• Interpolation method - Bilinear

To display the input and the output images, use the Video Viewer block.

Run the model.

sim(modelname);

 Rotate an Image

23-15

23 Vision Blocks Examples

23-16

 Rotate an Image

23-17

Generate Image Histogram

This example shows how to generate the histogram of an image using 2-D Histogram block. The
model outputs a bar plot that shows the frequency of occurrence for pixels values in the input image.

Read an input image to the MATLAB workspace.

I = imread('cameraman.tif');

Find the maximum intensity value in the input image.

maxI = max(I(:));

Open the simulink model. The model reads the image stored in variable I from the MATLAB
workspace. The Upper limit of histogram parameter of the 2-D Histogram block is set to the
maximum value of the intensity image. The Number of Bins parameter of the 2-D Histogram block
is set to 128 and the histogram is computed for the entire input.

modelname = 'ex_blkhistogram.slx';
open_system(modelname);

The model outputs a time series that specifies the frequency of occurrence of pixels within each bin.
Export the histogram values to MATLAB workspace and plot the histogram.

out = sim(modelname);
bar(out.hist.data)
xlabel('Histogram Bins')
ylabel('Frequency')

23 Vision Blocks Examples

23-18

 Generate Image Histogram

23-19

Export Image to MATLAB Workspace

This model shows how to export an image from Simulink to MATLAB workspace by using the Video
To Workspace block.

Example Model

This model takes a color image as the input, converts it into a gray scale image and exports the
converted image to MATLAB workspace.

modelname='ex_blkvideotoworkspace.slx';
open_system(modelname);

To convert the original image into gray scale, set the Conversion parameter of Color Space
Conversion block to R'G'B to intensity. The original image is of size 384-by-512-by-3 and the
gray scale image output from the Color Space Conversion block is of size 384-by-512.

Export the converted image to MATLAB workspace as a variable named ConvertedImage using the
Video To Workspace block. You can display the original image using the Video Viewer block.

Simulate and Display Results

sim(modelname);

23 Vision Blocks Examples

23-20

The Video To Workspace block exports the converted image as a video with two identical frames
and is of size 384-by-512-by-2. Use the imshow function to display the first frame in the video.

imshow(ConvertedImage(:,:,1))

 Export Image to MATLAB Workspace

23-21

23 Vision Blocks Examples

23-22

Import Video from MATLAB Workspace

This example shows how to import a video from MATLAB to Simulink workspace by using Video
From Workspace block.

Load the video data to MATLAB workspace.

load('videosignal.mat')

Open the Simulink model.

modelname='ex_blkvideofromworkspace.slx';
open_system(modelname);

The model reads the video data from MATLAB workspace. Set the Form output after final value
by parameter of the Video From Workspace block to Holding final value. This parameter
setting repeats the last frame of the video after generating all the frames.

Simulate the model and display the imported video signal by using Video Viewer block.

sim(modelname);

 Import Video from MATLAB Workspace

23-23

23 Vision Blocks Examples

23-24

Find Minimum Value in ROI

This example shows how to calculate the minimum value in an image ROI by using the 2-D Minimum
block. By using the minimum value, the model removes indistinct pixels in the image regions.

Example Model

The model reads the original image and the binary mask comprising the ROI for which the minimum
value has to be computed. The original image consists of regions with large image structures that are
circular in shape and regions with small, indistinct image structures. The binary mask isolates the
indistinct structures from the distinct image structures.

Load the binary mask containing the ROI to MATLAB workspace. The ROI corresponding to indistinct
structures have intensity value 1 in the binary mask.

load('binarymask.mat');

Open the model.

modelname='ex_blk2dminimum';
open_system(modelname);

For the 2-D Minimum block to output only the computed minimum, the Mode parameter of the block
is set to Value. To perform ROI processing, the Find the minimum value over parameter is set to
Entire input. The ROI input to the 2-D Minimum block is a binary image. Hence, the ROI Type
parameter is set to Binary mask. The block computes the minimum value of the pixels in the original
image that lie in the ROI specified by the binary mask.

The MATLAB function block replaces pixel values in the ROI with the computed minimum.

 Find Minimum Value in ROI

23-25

Simulate and Display Results

The model outputs a clean image with only distinct image structures.

 sim(modelname);

23 Vision Blocks Examples

23-26

 Find Minimum Value in ROI

23-27

23 Vision Blocks Examples

23-28

Write Image to Binary File

This example shows how to write an image data to a binary file in a custom format using the Write
Binary File block.

Open the Simulink model.

modelname = 'ex_blkwritebinaryfile.slx';
open_system(modelname);

The input to the model is a RGB color image. The model coverts the color image to grayscale using
the Color Space Conversion block. The Conversion parameter of Color Space Conversion
block is set to R'G'B to intensity. The output binary file name is specified in the File name
parameter of the Write Binary File block as outputimage.bin. The parameters of the Write
Binary File block are configured so the block outputs a custom binary file.

• Video Format : Custom
• Number of inputs : 1
• Component order in binary file : 1

Simulate the model.

sim(modelname);

The model outputs a binary file named outputimage.bin to the MATLAB workspace. You can read
this binary file using the Read Binary File block.

 Write Image to Binary File

23-29

Compute Standard Deviation of ROIs

This example shows how to compute the standard deviation of regions-of-interest (ROIs) in the input
image. The input image is composed of different texture regions and ROIs are selected to contain
these texture regions.

Read an image into the MATLAB workspace.

I = imread('multitextures.png');

Load the mask image that specifies the ROIs in the input image.

load('binaryROI.mat')

Example Model

Open the Simulink model.

modelname='ex_blk2dstd.slx';
open_system(modelname);

The model computes the coordinates for the ROIs by using the Blob Analysis block. The maximum
number of blobs parameter in the Blob Analysis block is set to 5, the number of ROIs.

The 2-D Standard Deviation block computes the standard deviation value for each ROI.

Set these parameters of the 2-D Standard Deviation block to the specified value inorder to
compute individual statistics for each ROI.

23 Vision Blocks Examples

23-30

• Set Find the standard deviation value over parameter to Entire input
• Select Enable ROI processing parameter
• Set ROI type parameter to Rectangles
• Set Output parameter to Individual statistics for each ROI

Simulate and Display Results

The values of the standard deviation indicate the dispersion of the pixel values in ROI from the
corresponding mean value.

out = sim(modelname);

 Compute Standard Deviation of ROIs

23-31

The model also displays the input image and the label matrix that correspond to the selected ROIs.
The rectangles overlayed on the input image represents the ROIs for which the standard deviation is
computed.

Display the standard deviation value for each ROI. The first standard deviation value correspond to
the region with label value 1. Similarly, the second standard deviation value correspond to the region
with label value 2 and so on.

out.std

ans =

 0.0534
 0.1203
 0.0775
 0.1463
 0.1629

23 Vision Blocks Examples

23-32

Read Video Stored as Binary Data

This example shows how to read a video data stored in binary format by using the Read Binary File
block.

Example Model

Open the Simulink model.

modelname = 'ex_blkreadbinaryfile.slx';
open_system(modelname);

The model reads the binary file specified as 'vipmen.bin' in the File name parameter of the Read
Binary File block. The file is played until the end of the simulation because the Number of times
to play file parameter of the Read Binary File block is set to inf.

Simulate and Display Results

Run the simulation.

sim(modelname);

 Read Video Stored as Binary Data

23-33

23 Vision Blocks Examples

23-34

 Read Video Stored as Binary Data

23-35

The model outputs the luminance, blue difference, and red difference components of the input video
stored as binary data. The Read Binary File block exports the binary data to the MATLAB
workspace as video data with a frame size of 120-by-160 pixels. The Video Viewer blocks display the
components of the binary data.

23 Vision Blocks Examples

23-36

Compare Image Quality Using PSNR

This example shows how to compare the quality of a noisy and denoised image from the PSNR value
computed using the PSNR block.

Read an image into the MATLAB workspace.

I = imread('cameraman.tif');

Read the corresponding noisy image into the MATLAB workspace.

noisyI = imread('noisyCameraman.tif');

Example Model

Open the Simulink model. The model reads the original and the noisy images from the MATLAB
workspace and denoises the noisy image by using the Median Filter block.

modelname='ex_blkpsnr.slx';
open_system(modelname);

The model computes the PSNR value for the noisy and the denoised image with respect to the
original image and outputs as variables named psnr_noisy and psnr_denoised respectively. The
denoised image and the computed PSNR values are exported to the MATLAB workspace.

Simulate and Display Results

Simulate the model.

out = sim(modelname);

Display the noisy image and the corresponding PSNR value

imshow(noisyI,[]);
title(['PSNR = ', num2str(out.psnr_noisy)]);

 Compare Image Quality Using PSNR

23-37

Display the denoised image and the corresponding PSNR value. The denoised image is of better
perceptual quality than the noisy image and hence, has comparatively high PSNR value.

imshow(out.denoisedImage,[]);
title(['PSNR = ', num2str(out.psnr_denoised)]);

23 Vision Blocks Examples

23-38

Compute Autocorrelation of Input Matrix

This example shows how to compute autocorrelation of a 5-by-5 input matrix using the 2-D
Autocorrelation block.

The output of the model is a 9-by-9 matrix consisting of autocorrelation coefficients.

The coefficient values shows the similarity between the input matrix and its shifted form. The value of
the autocorrelation coefficient at a point (i, j) is high, if the values in the original matrix and the
shifted matrix are similar.

model = 'ex_blkautocorrelation.slx';
open_system(model)

Run the model and export the computed autocorrelation coefficients to MATLAB workspace. Display
the coefficients using disp function.

out = sim(model);
disp(out.val)

 0 0 0 0 0 0 0 0 0
 1 0 1 0 1 0 0 0 0
 2 2 2 2 2 1 0 0 0
 2 3 4 5 6 3 2 1 1
 2 2 5 5 11 5 5 2 2
 1 1 2 3 6 5 4 3 2
 0 0 0 1 2 2 2 2 2
 0 0 0 0 1 0 1 0 1
 0 0 0 0 0 0 0 0 0

 Compute Autocorrelation of Input Matrix

23-39

Compute Correlation between Two Matrices

This example shows how to compute correlation between two matrices using 2-D XCORR block.

Example Model

Open the simulink model.

open_system('ex_blkxcorr.slx');

The model consists of 5-by-5 and 3-by-3 matrices as inputs. To return correlation values that are
computed without zero-padding, the Output size parameter is set to Valid. The range for output
correlation value is set to [0 1] by enabling the Normalized output parameter.

Simulate and Display Results

Run the model and display the output value. The output of the model is an array of correlation
coefficients. The correlation value signifies the similarity between the values of the input matrices
within a chosen window. The correlation coefficient is high (1) when both the input matrices have
similar values within a window.

A = sim('ex_blkxcorr.slx');
disp(A.xcorr);

 0.6000 0.4472 0.6000
 0.6000 1.0000 0.6761
 0.2582 0.4472 0.7303

23 Vision Blocks Examples

23-40

Find Statistics of Circular Blobs in Image

This example shows how to find the centroid, perimeter, and bounding box coordinates of circular
blobs in an image by using the Blob Analysis block. The model also outputs the label matrix for
reference.

Load Data To MATLAB Workspace

Read an image into the MATLAB workspace.

I = imread('coins.png');

Load a binary mask containing the blobs that represent the segmented objects in the input image.

load('maskImage','BW');

Display the input image and the corresponding binary mask. The binary mask consists of 10 circular
blobs of varied statistics.

figure
subplot(1,2,1)
imshow(I,[]);
title('Original Image');
subplot(1,2,2)
imshow(BW)
title('Circular Blobs');

 Find Statistics of Circular Blobs in Image

23-41

Example Model

Open the simulink model.

open_system('ex_blkblobanalysis.slx')

The model computes the centroid, perimeter, and bounding box coordinates for the blobs in the
binary image. The computed statistics is overlayed on the input image by using the Draw Markers
and Draw Rectangles blocks.

The number of output blobs parameter of Blob Analysis block is set equal to the number of blobs
in the binary mask. The Draw Markers block plots the computed centroids and the Draw
Rectangles block draws the bounding boxes. The perimeter values are exported as variable
perimeter to the MATLAB workspace. The label matrix is exported as variable label to the
MATLAB workspace.

Simulate and Display Results

Run the model and display the results using the Video Viewer block. The computed centroid and the
bounding box are overlayed on the original image. The circular markers specifies the centroid of each
blob and the rectangles around each blob specifies the computed bounding boxes.

out = sim('ex_blkblobanalysis.slx');

23 Vision Blocks Examples

23-42

The first value in all the computed statistics correspond to the blob with label value 1. Similarly, the
second values correspond to the blob with label value 2 and so on. The label value 0 corresponding to
the background of the mask must be ignored.

Read the unique label values from the label matrix.

lb = unique(out.label);

Display the perimeter values and the corresponding label values as a table.

table(lb(2:end),out.perimeter,'VariableNames',{'Label','Perimeter'})

ans =

 10x2 table

 Label Perimeter
 _____ _________

 1 194.17
 2 170.02
 3 191.58
 4 156.37
 5 195.58
 6 186.51
 7 190.75

 Find Statistics of Circular Blobs in Image

23-43

 8 192.17
 9 167.44
 10 168.85

Display the label matrix.

figure
imshow(out.label,[]);
colorbar
title('Label Matrix');

23 Vision Blocks Examples

23-44

Replace Intensity Values in ROI with its Maximum Value

This example shows how to find maximum intensity value of region of interests (ROI) in the input
image and replace the pixels in the ROI with its maximum value

Load Data to MATLAB Workspace

The input to the model is the original image, label matrix, and the label values. The label matrix
contain the desired ROIs in the input image. Load the label matrix into MATLAB workspace.

load Snowflakes_mask.mat

Find the unique label values in the label matrix. The label value 0 corresponds to the background and
must be ignored.

lb = unique(Labelmatrix);
label = lb(2:end);

Example Model

Open the Simulink model. The model reads the input image using the Image From File block.

open_system('ex_blk2dmaximum.slx');

The model computes the maximum intensity value for each ROI and replaces all the pixel values in
the ROI to maximum value. The model computes the maximum value for each ROI individually by
setting these 2-D Maximum block parameters to the specified value,

• Set the Mode parameter to Value.
• Set the Find the maximum value over parameter to Entire input.
• Set the Enable ROI processing parameter and set the ROI type parameter as Label matrix.

 Replace Intensity Values in ROI with its Maximum Value

23-45

The Matlab Function block replaces the individual ROI's with its maximum intensity value and
outputs the resultant image.

Simulate and Display Results

Run the model and display the images using Video Viewer block.

sim('ex_blk2dmaximum.slx');

23 Vision Blocks Examples

23-46

 Replace Intensity Values in ROI with its Maximum Value

23-47

23 Vision Blocks Examples

23-48

Median based Image Thresholding

This example shows how to perfom image thresholding with the median value of the image as a
global threshold.

Example Model

Open the simulink model.

open_system('ex_blk2dmedian.slx');

The model computes the median value of an input image by setting the Find the median value
over parameter to Entire input in 2-D Median block. The output of the 2-D Median block is a
scalar. The Matlab Function block performs image thresholding by taking the output median as a
global threshold. If the intensity value in the input image is greater than the median value, it is set to
'1'. Otherwise, the intensity value is set to '0'. The output of the model is the thresholded image.

Simulate and Display Results

Run the model and display the results using Video Viewer block.

sim('ex_blk2dmedian.slx');

 Median based Image Thresholding

23-49

23 Vision Blocks Examples

23-50

 Median based Image Thresholding

23-51

Import Image From MATLAB Workspace

This example shows how to import an image from MATLAB to Simulink workspace using Image From
Workspace block.

Load a .mat file containing the image to import from MATLAB workspace. The image is stored in the
variable Im. Set the Value parameter of the Image From Workspace block to the variable in
MATLAB workspace.

load('inputimage.mat')

Open the Simulink model.

open_system('ex_blkimagefromworkspace.slx');

Run the model. The model exports the image to the Simulink workspace and displays the output
image.

sim('ex_blkimagefromworkspace.slx');

23 Vision Blocks Examples

23-52

 Import Image From MATLAB Workspace

23-53

Import Image from Specified Location

This example shows how to import an image from a file in the specified location to Simulink
workspace by using the Image From File block.

Example Model

Open the simulink model.

open('ex_readcolorimage');

The model imports a color image to the Simulink workspace and displays the R, G, and B color
components of the image by using the Video Viewer block. The Image Signal parameter of the
Image From File block is set to Separate color signals inorder to import the RGB color
components separately.

Simulate and Display Results

sim('ex_readcolorimage');

23 Vision Blocks Examples

23-54

 Import Image from Specified Location

23-55

23 Vision Blocks Examples

23-56

 Import Image from Specified Location

23-57

Remove Interlacing Effect From Image

This example shows you how to remove interlacing effects from an image by using the
Deinterlacing block.

Example Model

Open the model by calling the open function in MATLAB command prompt. Specify the name of the
Simulink file to open.

open('blk_deinterlace.slx');

The model uses the Image From File block to read an interlaced image from a specified file location.
The Method parameter of the Deinterlacing block is set to Linear interpolation. Hence, the
model converts the interlaced image at the input into a deinterlaced image by using the linear
interpolation technique. The fixed-point parameters and the data types are set to default values. The
model displays the interlaced input image and the deinterlaced output image by using the Video
viewer block.

Run Model

Simulate the model and display the results.

sim('blk_deinterlace.slx');

23 Vision Blocks Examples

23-58

 Remove Interlacing Effect From Image

23-59

The interlaced image has jagged lines that are the result of the temporal lag between the top and the
bottom fields of the image. The Deinterlacing block removes the jagged lines and the output
image is free from visible artifacts.

23 Vision Blocks Examples

23-60

Estimate Motion between Two Images

This example shows how to use the Block Matching block to estimate motion between two images.

Read image frames for which motion has to be estimated.

I1 = imread('car_frame1.png');
I2 = imread('car_frame2.png');

Example Model

Open the model by calling the open function in MATLAB command prompt. Specify the name of the
Simulink file to open.

open_system('ex_blockmatching.slx');

Load the images into the model workspace by using the Image From Workspace block. To directly
read images from a file location, use the Image From File block instead. The model estimates
motion between two RGB images of a moving car that are captured at different time intervals. The
model uses the three step block matching algorithm for motion estimation. The cost function for
matching the non-overlapping macro blocks is set to mean square error (MSE). The size of the macro
blocks is set to 35-by-35 and maximum displacement (in horizontal and vertical direction) allowed for
the matching blocks is set to 7 pixels. The velocity output from the Block Matching block consists of
both the horizontal and vertical components of the motion vector in complex form.

You can use the Compositing block to overlay both the images.

Run Model

Simulate the model and save the model output to MATLAB workspace. The model outputs the motion
vector and the overlayed image.

out = sim('ex_blockmatching.slx');

 Estimate Motion between Two Images

23-61

Display Results

Read the output motion vector and the overlayed image.

vx = real(out.simout.Data);
vy = imag(out.simout.Data);
imageOverlay = out.simout1.Data;

Specify the points on the image plane relative to the size of the macro blocks.

x = 1:35:size(imageOverlay,1);
y = 1:35:size(imageOverlay,2);

Display the overlayed image and plot the horizontal and vertical components of the motion vector by
using the quiver function.

figure,imshow(imageOverlay);
hold on
quiver(y',x,vx,vy,0);

23 Vision Blocks Examples

23-62

Enhance Contrast of Grayscale Image Using Histogram
Equalization

This example shows how to enhance the contrast of a grayscale image using the Histogram
Equalization block.

Example Model

Open the Simulink® model.

modelname = 'ex_blkHistEq.slx';
open_system(modelname)

The model reads an input image using the Image From File block. The input image in this example
has very low contrast. To enhance the contrast of the input image, the model uses the Histogram
Equalization block with these default parameters:

• Target Histogram: Uniform
• Number of bins: 64

Simulate and Display Results

Run the model and verify the change in contrast from the input image to the output image. For
comparison, the model displays the input image and the output image using Video Viewer blocks.

sim(modelname);

 Enhance Contrast of Grayscale Image Using Histogram Equalization

23-63

23 Vision Blocks Examples

23-64

 Enhance Contrast of Grayscale Image Using Histogram Equalization

23-65

Enhance Contrast of Color Image Using Histogram Equalization

This example shows how to enhance the contrast of a color image using the Histogram Equalization
block.

Example Model

Open the Simulink® model.

modelname = 'ex_blkHistEqColor.slx';
open_system(modelname)

Initialize Parameters

The model uses the initialization function callback InitFcn to initialize the input parameters. To
configure the InitFcn, on the Modeling tab, click Model Settings and select Model Properties.
In the Model Properties dialog box, click the Callbacks tab and select InitFcn from the list.

The InitFcn of this model executes the following code to read an indexed image and convert it to an
RGB image.

[X,map] = imread('shadow.tif');
shadow = ind2rgb(X,map);

This model reads the input image from workspace using the Image From Workspace block with these
block parameters:

• Value: shadow
• Image signal: Separate color signals

Enhance Contrast of Image

The model extracts luminance information from the color image by converting it from the RGB color
space to L*a*b* color space, using the Color Space Conversion block with these parameters:

• Conversion: sR'G'B' to L*a*b*
• Image signal: Separate color signals

23 Vision Blocks Examples

23-66

The values of the luminance parameter L* range from 0 to 100. The Histogram Equalization block
expects floating point input values in the range from [0, 1]. The model normalizes the luminance
values of the image by using a Constant block with the Constant value parameter set to 100 and a
Divide block with default parameters.

To enhance the contrast of the image, the model uses a Histogram Equalization block with default
parameters. The block transforms the normalized luminance values in the input color image such that
the histogram of the output image is approximately uniform.

The model uses a Product block with default parameters and the existing Constant block to scale the
luminance of the histogram-equalized output image to a range of 0 to 100. The model then converts
the output image from the L*a*b* color space to the RGB color space using a Color Space Conversion
block with these parameters:

• Conversion: L*a*b* to sR'G'B'
• Image signal: Separate color signals

Simulate and Display Results

Run the model and verify the change in contrast from input image to the output image. For
comparison, the model displays the input image and the output image using Video Viewer blocks. The
Image signal parameter of each Video Viewer block is set to Separate Color Signals .

sim(modelname);

 Enhance Contrast of Color Image Using Histogram Equalization

23-67

23 Vision Blocks Examples

23-68

Compute Mean of ROIs in Image

This example shows how to compute the mean of regions of interest (ROIs) in an input image.

Example Model

Open the Simulink® model.

modelname = 'ex_blk2dmean.slx';
open_system(modelname)

The model reads an input image using the Image From File source block. The input image in the
example has two different texture regions. To compute the mean of these regions of interest, the
model uses a 2-D Mean block with these parameters:

• Running mean: off
• Find the mean value over: Entire input
• Enable ROI processing: Rectangles
• ROI portion to process: Entire ROI
• Output: Individual statistics for each ROI

The Constant block specifies the coordinates and dimensions for two rectangular ROIs. The Draw
Shapes block overlays the bounding boxes for each rectangular ROI onto the output image. The
model also displays the computed mean values in the output image using an Insert Text block.

Simulate and Display Results

Run the model. The model displays both the input image and output image using Video Viewer blocks.
Verify that the ROI around the darker region of the image shows a lower mean value than the ROI

 Compute Mean of ROIs in Image

23-69

around the brighter region. The lower mean value indicates that the darker region has a lower
average intensity value than the brighter region.

sim(modelname);

23 Vision Blocks Examples

23-70

 Compute Mean of ROIs in Image

23-71

Detect Corners in Image

This example shows how to detect corners in an image using the Corner Detection block.

Example Model

Open the Simulink® model.

modelname = 'ex_blkCornerDetection.slx';
open_system(modelname)

Read Input Image

The model reads an RGB input image using the Image From File block and converts it to an intensity
image using the Color Space Conversion block.

Detect and Visualize Corners

To detect corners in the input image, the model uses the Corner Detection block. The block uses the
Harris corner detection method, and the value of the Maximum number of corners parameter is
25.

The model uses a Draw Markers block and a Video Viewer block to display all the corners detected in
the input image.

Filter Detected Corners

The displayed image shows some spurious corners within the dark background of the image. The
model uses other blocks in the Filter Corner Points area to remove these spurious corners and retain
the corners of the flower only. The Filter Corner Points area selects fixed-size, square regions of
interest (ROIs) around each detected corner point, and then finds the mean value of each ROI. The
mean values of ROIs around corners detected in the dark background are lower than the other ROIs.
To filter these spurious corners, the model selects the desired number of corners from those
corresponding to the ROIs with the highest mean values. The Filter Corner Points area includes these
blocks:

• Select ROI — This MATLAB Function (Simulink) block generates the specifications of the square
ROIs around each detected corner. The specifications include the coordinates of the upper-left
corner and the width and height parameters of each ROI in the form [x y width height].

23 Vision Blocks Examples

23-72

Since each ROI is square, the values of the width and the height parameters are equal. The model
uses a Constant (Simulink) block to set the width of each ROI to 50.

• 2-D Mean — This block computes the mean value of each selected ROI in input image.
• Select Corners — This MATLAB Function (Simulink) block selects the desired number of corner

points corresponding to the ROIs with the highest mean values. The model uses a Constant
(Simulink) block to set the desired number of corner points to 10.

Simulate and Display Results

To display the filtered corner points in the image, the model uses a Draw Markers block and a Video
Viewer block. Simulate the model and display the results.

sim(modelname);

 Detect Corners in Image

23-73

23 Vision Blocks Examples

23-74

 Detect Corners in Image

23-75

Edge Detection of Intensity Image

This example shows how to detect edges in an intensity image using the Canny edge detector.

Example Model

Open the Simulink® model.

modelname = 'ex_EdgeDetection.slx';
open_system(modelname)

The model reads an input image using the Image From File block and converts the image data type to
single using the Image Data Type Conversion block. The model then detects the edges in the input
image using the Edge Detection block with these parameter values:

• Method — Canny
• User-defined threshold — off
• Approximate percentage of weak edge and nonedge pixels (used to automatically

calculate threshold values) — 90
• Standard deviation of Gaussian filter — 1

Simulate and Display Results

Run the model and display the results using Video Viewer blocks.

sim(modelname);

23 Vision Blocks Examples

23-76

 Edge Detection of Intensity Image

23-77

23 Vision Blocks Examples

23-78

Read, Process, and Write Video Frames to File

This example shows you how to read video frames from a multimedia file, process them, and write
them back to a new multimedia file.

Example Model

Open the Simulink® model.

modelname = 'ex_blkMultiMediaFile.slx';
open_system(modelname)

The model reads an input video file using a From Multimedia File block with these parameters:

• File name — rhinos.avi
• Output color format — YCbCr 4:2:2

To adjust the contrast of the input video, the model uses a Contrast Adjustment block with default
settings. This block adjusts the contrast of the luminance (Y) component of each frame of the video.

The model writes the processed video frames to a file using a To Multimedia File block with the File
color format parameter set to YCbCr 4:2:2. This block uses the default output file name of
output.avi.

Simulate Model

Run the model and confirm that the model writes the output file to the working directory. Play the
output video and verify the change in contrast from the input video to the output video as shown in
this figure. The top image shows one frame of the input video file, with default contrast, and the
bottom image shows the corresponding frame of the output video file, with adjusted contrast.

sim(modelname);

 Read, Process, and Write Video Frames to File

23-79

23 Vision Blocks Examples

23-80

Find Local Maxima in Image

This example shows you how to find local maxima in an image.

Example Model

Open the Simulink® model.

modelname = 'ex_blkLocalMaxima.slx';
open_system(modelname)

The model reads an RGB input image from a file using the Image From File block, and then converts
it to an intensity image using the Color Space Conversion block. The Find Local Maxima block with
Neighborhood size parameter of [75 75], finds two local maxima in the intensity image. The Draw
Markers block then draws the locations of the detected local maxima on the input image.

Simulate and Display Results

Run the model. The model displays the input image and the output image using Video Viewer blocks.
Notice that the Find Local Maxima block indicates that the two brightest pixels correspond to the
headlights of the front car in the input image.

sim(modelname);

 Find Local Maxima in Image

23-81

23 Vision Blocks Examples

23-82

 Find Local Maxima in Image

23-83

Read, Convert, and View Video from File

This example shows you how to read RGB video frames from a multimedia file, convert them to
intensity frames, and display them using the To Video Display block.

Example Model

Open the Simulink® model.

modelname = 'ex_blkToVideoDisplay.slx';
open_system(modelname)

The model reads an input video file using a From Multimedia File block with these parameters:

• File name — visionface.avi
• Output color format — RGB

To convert the RGB video frames to intensity frames, the model uses the Color Space Conversion
block with the Conversion parameter set to R'G'B' to intensity. This block converts each RGB
frame of the video to an intensity frame.

The model displays the original RGB video frames and the converted intensity video frames using To
Video Display blocks with default parameters.

Simulate Model

Run the model. The model opens two display windows: one for the RGB frames and the other for the
converted intensity frames. In the following figure, the top image shows the last RGB frame of the
input video file, and the bottom image shows the corresponding converted intensity frame.

sim(modelname);

23 Vision Blocks Examples

23-84

 Read, Convert, and View Video from File

23-85

Read and Display YCbCr Video from File

This example shows you how to read video frames from a multimedia file as their luma and
chrominance components, and then display them.

Example Model

Open the Simulink® model.

modelname = 'ex_blkToVideoDisplayYCbCr.slx';
open_system(modelname)

The model reads an input video file using a From Multimedia File block with these parameters:

• File name — viptrain.avi
• Output color format — YCbCr 4:2:2

The model displays the video frames using a To Video Display block with the Input Color Format
parameter set to YCbCr 4:2:2. The Y port of each block represents the luma component and the Cb
and Cr ports represent the blue-difference and red-difference chrominance components, respectively,
of the input video frames.

Simulate the Model

Run the model. The model displays the video frames in a viewer window.

sim(modelname);

23 Vision Blocks Examples

23-86

 Read and Display YCbCr Video from File

23-87

Display Frame Rate of Input Video

This example shows you how to display the frame rate of input video data.

Example Model

Open the Simulink® model.

modelname = 'ex_blkFrameRateDisplay.slx';
open_system(modelname)

The model reads an input video file using a From Multimedia File block with these parameters:

• File name — viptrain.avi
• Output color format — RGB

The model calculates the video frame rate using a Frame Rate Display block with the Update rate
parameter set to 10.

Simulate the Model

Run the model. The Frame Rate Display block displays the frame rate of the input video on the block
mask. You can change the Update rate parameter in the Frame Rate Display block to control how
often the block calculates the frame rate and updates the display on the block mask.

sim(modelname);

23 Vision Blocks Examples

23-88

Draw Rectangles on Image

This example shows you how to draw rectangles on an image by overwriting the pixel values of the
input image.

Example Model

Open the Simulink® model.

modelname = 'ex_blkDrawShapesRectangles.slx';
open_system(modelname)

This model reads an input image using a Image From File block with the File name parameter set to
peppers.png.

The model then changes the data type of the input image to double, using an Image Data Type
Conversion block with the Output data type parameter set to double.

The model draws filled, translucent rectangles at the locations specified by the Rectangular Shape
Coordinates Constant (Simulink) block by using a Draw Shapes block with these parameters:

• Shape — Rectangles
• Fill shapes — on
• Fill color — White
• Opacity factor (between 0 and 1) — 0.4

The Draw Shapes block overwrites the value of each pixel in the specified rectangular areas of the
original image.

Simulate Model

Run the model. The model displays the shape-embedded output image by using a Video Viewer block..

sim(modelname);

 Draw Rectangles on Image

23-89

23 Vision Blocks Examples

23-90

Draw Circles on Image

This example shows you how to draw circles on an image by overwriting the pixel values of the input
image.

Example Model

Open the Simulink® model.

modelname = 'ex_blkDrawShapesCircles.slx';
open_system(modelname)

This model reads the input image using a Image From File block with the File name parameter set to
coins.png.

The model then changes the data type of the input image to double, using an Image Data Type
Conversion block with the Output data type parameter set to double.

The model draws filled, translucent circles at the locations specified by the Circular Shape
Coordinates Constant (Simulink) block by using a Draw Shapes block with these parameters:

• Shape — Circles
• Line width — 3
• Border color — White

The Draw Shapes block overwrites the value of each pixel along the circumferences of the specified
areas of the original image.

Simulate the Model

Run the model. The model displays the output image, with white circles over two coins, by using a
Video Viewer block.

sim(modelname);

 Draw Circles on Image

23-91

23 Vision Blocks Examples

23-92

Overlay Images Using Binary Mask

This example shows you how to overlay one image on another image using a binary mask.

Example Model

Open the Simulink® model.

modelname = 'ex_blkCompositingMask.slx';
open_system(modelname)

This model reads two input binary images using Image From File blocks with their File name
parameters set to text.png and logo.tif, respectively.

To overlay one image over another image and perform masking, the model uses these parameters for
the Compositing block:

• Operation — Binary mask
• Mask source — Input port
• Location source — Specify via dialog
• Location [x y] — [19 89]

This model overlays the input Image2 on Image1. Location [x y] parameter specify the row and
column coordinates in Image1 on which the upper left corner pixel of Image2 has to be positioned.

The Constant block specifies a 2-D binary mask, the same size as the image input to Image2, to the
Mask port of the Compositing block.

Simulate the Model

Run the model. The Video Viewer block display the input images, the mask, and the masked output
image.

 Overlay Images Using Binary Mask

23-93

sim(modelname);

23 Vision Blocks Examples

23-94

 Overlay Images Using Binary Mask

23-95

23 Vision Blocks Examples

23-96

 Overlay Images Using Binary Mask

23-97

Linearly Combine Two Images

This example shows you how to linearly combine two images using the blend operation.

Example Model

Open the Simulink® model.

modelname = 'ex_blkCompositingBlend.slx';
open_system(modelname)

This model reads two input images using Image From File blocks with their File name parameters
set to peppers.png and greens.jpg, respectively.

To linearly combine two images using blend operation, the model uses these following parameters for
the Compositing block:

• Operation — Blend
• Opacity factor(s) source — Specify via dialog
• Opacity factor(s) — 0.5
• Location source — Specify via dialog
• Location [x y] — [7 50]

Simulate the Model

Run the model. The Video Viewer blocks display the input images and the blended output image. You
can change the Opacity factor(s) parameter to any value in the range [0, 1], and see how this affects
the blended output image.

sim(modelname);

23 Vision Blocks Examples

23-98

 Linearly Combine Two Images

23-99

23 Vision Blocks Examples

23-100

 Linearly Combine Two Images

23-101

Pad Zeros to Image

This example shows you how to add rows and columns of zeros to an image by using a padding
operation.

Example Model

Open the Simulink® model.

modelname = 'ex_blkImagePad.slx';
open_system(modelname)

This model reads an input image using an Image From File block with the File name parameter set
to cameraman.tif.

The model pads zeros to all four sides of the input image by using an Image Pad block with these
parameters:

• Method — Constant
• Pad value source — Specify via dialog
• Pad value — 0
• Specify — Pad size
• Add columns to — Both left and right
• Number of added columns — [10,10]
• Add rows to — Both top and bottom
• Number of added rows — [10,10]

Simulate the Model

Run the model. The model displays the input image and the zero-padded output image by using a
Video Viewer block. The padded zeros create the black border of the output image.

sim(modelname);

23 Vision Blocks Examples

23-102

 Pad Zeros to Image

23-103

23 Vision Blocks Examples

23-104

Insert Text into Image

This example shows you how to insert colored text into an input image.

Example Model

Open the Simulink® model.

modelname = 'ex_blkInsertText.slx';
open_system(modelname)

This model reads an input image using an Image From File block with the File name parameter set
to yellowlily.jpg.

The model inserts text into the input image by using an Insert Text block with these parameters:

• Text — 'Yellow Lilly'
• Color value source — Specify via dialog
• Color value — [255,255,0]
• Location source — Specify via dialog
• Location [x y] — [600,50]
• Opacity — 1
• Font face — LucidaSansDemiBold
• Font size (points) — 100

Simulate the Model

Run the model. The model displays both the original input image and the output image with the
inserted bold, yellow text by using Video Viewer blocks.

sim(modelname);

 Insert Text into Image

23-105

23 Vision Blocks Examples

23-106

 Insert Text into Image

23-107

Compress Image Using 2-D DCT

This example shows how to compress an image using a 2-D discrete cosine transform (DCT). The
example computes the 2-D DCT of 8-by-8 nonoverlapping blocks of the input image, discards (sets to
zero) all but 10 of the 64 DCT coefficients in each block, and then reconstructs the image using the 2-
D inverse discrete cosine transform (IDCT) of each block.

Example Model

Open the Simulink® model.

modelname = 'ex_blk2ddct.slx';
open_system(modelname)

The model reads an input image using the Image From File block, and converts the data type of the
image to double using the Image Data Type Conversion block.

Process Image Block-by-Block

The Block Processing block performs the operations defined in this subsystem on each block of the
input image.

23 Vision Blocks Examples

23-108

The subsystem first computes the 2-D DCT of a block of the input image. The Product, Matrix
Multiply (Simulink) block then multiplies the DCT coefficients by the elements of the mask, defined
using the Constant (Simulink) block, to discard all but 10 of the 64 DCT coefficients. The 2-D IDCT
block then reconstructs the processed image.

Simulate and Display Results

Simulate the model. The Video Viewer blocks display the input and output images. Notice that,
despite some loss of quality, the output image is clearly recognizable even after discarding nearly
85% of the DCT coefficients of the input image.

sim(modelname);

 Compress Image Using 2-D DCT

23-109

23 Vision Blocks Examples

23-110

 Compress Image Using 2-D DCT

23-111

Draw Markers on Image

This example shows you how to draw markers of different colors on an image.

Example Model

Open the Simulink® model.

modelname = 'ex_blkDrawMarkers.slx';
open_system(modelname)

The model reads an input image using the Image From File block. The Constant (Simulink) block,
which has a Constant value parameter of [35 210;270 70], specifies the pixel coordinates at
which to draw two markers. The Draw Markers block then draws the markers on the input image.
These markers are filled circles colored green and yellow, respectively. The Draw Markers block uses
these nondefault parameters:

• Marker size — 5
• Filled — on
• Fill color source — Specify via dialog
• Fill color — User-specified value
• Color value(s) — [0 255 0;255 255 0]

Simulate and Display Results

Run the model and visualize the two markers in the output image. The model uses Video Viewer
blocks to display the input and output images.

sim(modelname);

23 Vision Blocks Examples

23-112

 Draw Markers on Image

23-113

23 Vision Blocks Examples

23-114

Read and Display RGB Video from File

This example shows you how to read video frames from a multimedia file as their separate red, green,
and blue components, and then display the video frames.

Example Model

Open the Simulink® model.

modelname = 'ex_blkVideoViewer.slx';
open_system(modelname)

The model reads an input video file using a From Multimedia File block with these parameters:

• File name — vippedtracking.mp4
• Output color format — RGB
• Image signal — Separate color signals

The model displays the video frames using a Video Viewer block with the Separate Color Signals
parameter enabled. The R, G, and B ports of each block represent the red, green and blue color
channels, respectively, of the input video frames.

Simulate the Model

Run the model. The model displays the video frames in a viewer window.

sim(modelname);

 Read and Display RGB Video from File

23-115

23 Vision Blocks Examples

23-116

Label Objects in Binary Image

This example shows you how to label objects in a binary image.

Example Model

Open the Simulink® model.

modelname = 'ex_blkLabel.slx';
open_system(modelname)

The model reads an input intensity image using the Image From File block. The Autothreshold block
converts the intensity image into a binary image using a Threshold scaling factor parameter value
of 3. To label the objects in the binary image, the model uses the Label block with these nondefault
parameters:

• Output — Label matrix
• Output data type — uint8

To visualize the labeled objects, the Contrast Adjustment block adjusts the range of intensity values of
the output label matrix of the Label block.

Simulate and Display Results

Run the model. The model displays the input image, the binary image, and the output image using
Video Viewer blocks. Observe how the output image shows three labeled objects using different
shades of gray.

sim(modelname);

 Label Objects in Binary Image

23-117

23 Vision Blocks Examples

23-118

 Label Objects in Binary Image

23-119

23 Vision Blocks Examples

23-120

Boundary Extraction of Binary Image

This example shows how to extract a boundary from a binary image.

Example Model

Open the Simulink® model.

modelname = 'ex_blkErosion.slx';
open_system(modelname);

The model reads an input binary image using the Image From File block. The Erosion block erodes
the input image using the default 4 pixel wide, square structuring element. To extract the boundary of
the input image, the model uses the Subtract block to subtract the eroded image from the input
image. The Data Type Conversion (Simulink) block converts the data type of the resulting image to
Boolean, to match it with the data type of the input image.

Simulate and Display Results

Run the model and visualize the extracted boundary of the input binary image. The model displays
the input image, eroded image, and output image using Video Viewer blocks.

sim(modelname);

 Boundary Extraction of Binary Image

23-121

23 Vision Blocks Examples

23-122

 Boundary Extraction of Binary Image

23-123

23 Vision Blocks Examples

23-124

Select String to Insert into Image

This example shows you how to select a text string and insert it into an image when the Insert Text
block contains multiple text strings.

Example Model

Open the Simulink® model.

modelname = 'ex_blkInsertTextSelect.slx';
open_system(modelname)

This model reads an input image using an Image From File block with the File name parameter set
to yellowlily.jpg.

The block selects and inserts a text string into the input image by using an Insert Text block with
these parameters:

• Text — {'Lilly 1','Lilly 2'}
• Color value source — Specify via dialog
• Color value — [255,255,0]
• Location source — Specify via dialog
• Location [x y] — [600,50]
• Opacity — 1
• Font face — LucidaSansDemiBold
• Font size (points) — 100

A Manual Switch (Simulink) block enables you to select which input string to display.

Simulate Model

Run the model. The model displays the output image with inserted bold, yellow text by using a Video
Viewer block. Double-click the Manual Switch (Simulink) block to select the other string and display
an output image with that string inserted.

sim(modelname);

 Select String to Insert into Image

23-125

23 Vision Blocks Examples

23-126

 Select String to Insert into Image

23-127

Insert Two Strings into Image at Different Locations

This example shows you how to insert two strings of different colors into an image at different
location within the image.

Example Model

Open the Simulink® model.

modelname = 'ex_blkInsertTextLocation.slx';
open_system(modelname)

This model reads an input image using an Image From File block with the File name parameter set
to yellowlily.jpg.

The model inserts two strings into the input image at different locations by using the Insert Text block
with these parameters:

• Text — '%s'
• Color value source — Input port
• Location source — Specify via dialog
• Location [x y] — [300 250;100 1400]
• Opacity — 1
• Image signal — One multidimensional signal
• Font face — LucidaSansDemiBold
• Font size (points) — 100

The Specify two variables Constant (Simulink) block changes the text of the inserted strings,
and the Specify two color source Constant (Simulink) block changes their color.

Simulate Model

Run the model. The model uses a Video Viewer block to display the output image with an inserted
pair of bold text strings in different colors and at different locations.

sim(modelname);

23 Vision Blocks Examples

23-128

 Insert Two Strings into Image at Different Locations

23-129

Dilation of Binary Image

This example shows how to increase the size of a binary image object and fill holes in it.

Example Model

Open the Simulink® model.

modelname = 'ex_blockDilation.slx';
open_system(modelname);

The model reads an input binary image using the Image From File block. The Dilation block dilates
the input image using a 5-pixel wide square structuring element. The model displays the resulting
dilated image using the Video Viewer block.

Simulate and Display Results

Run the model to visualize the dilated image. The Dilation block fills the holes in the white object and
also increases its size.

sim(modelname);

23 Vision Blocks Examples

23-130

 Dilation of Binary Image

23-131

Find Complement of Intensity Image

This example shows how to obtain the complement of an intensity image.

Example Model

Open the Simulink® model.

modelname = 'ex_blockImageComplement.slx';
open_system(modelname);

The model reads an input intensity image using the Image From File block. The Image Complement
block computes the complement of this image. The model displays the resulted output image using
the Video Viewer block.

Simulate and Display Results

Run the model to visualize the output image. It can clearly be seen that the dark areas became lighter
and the light areas became darker in the output image.

sim(modelname);

23 Vision Blocks Examples

23-132

 Find Complement of Intensity Image

23-133

23 Vision Blocks Examples

23-134

Perform Top-Hat Filtering of Binary Image

This example shows how to perform top-hat filtering on a binary image object.

Example Model

Open the Simulink® model.

modelname = 'ex_blockTophat.slx';
open_system(modelname);

The model reads an input binary image using the Image From File block. The Top-hat block performs
top-hat filtering on the input image using a square-shaped structuring element of width 4. The Input
image type parameter of the block is set to 'Binary'. The model displays the resulted filtered image
using the Video Viewer block.

Simulate and Display Results

Run the model to visualize the filtered image. The Top-hat block first performs the opening operation
on the input image and then subtracts the result of this operation from the input image. Here, the
block removes the white objects that are larger than the structuring element and retains the smaller
white objects, as can be seen.

sim(modelname);

 Perform Top-Hat Filtering of Binary Image

23-135

23 Vision Blocks Examples

23-136

 Perform Top-Hat Filtering of Binary Image

23-137

Perform Bottom-hat Filtering of Binary Image

This example shows how to perform bottom-hat filtering on a binary image object.

Example Model

Open the Simulink® model.

modelname = 'ex_blockBottomhat.slx';
open_system(modelname);

The model reads an input binary image using the Image From File block. The Bottom-hat block
performs bottom-hat filtering on the input image using a disk-shaped structuring element of radius 5.
The Input image type parameter of the block is set to 'Binary'. The model displays the resulted
filtered image using the Video Viewer block.

Simulate and Display Results

Run the model to visualize the filtered image. The Bottom-hat block first performs the closing
operation on the input image and then subtracts the input image from the result of this operation.
Hence, the logo which was originally the image background, is now the white image object, as can be
seen.

sim(modelname);

23 Vision Blocks Examples

23-138

 Perform Bottom-hat Filtering of Binary Image

23-139

23 Vision Blocks Examples

23-140

Perform Opening of Binary Image

This example shows how to break narrow bridges between two main sections of a binary image object
and eliminate thin protruding elements.

Example Model

Open the Simulink® model.

modelname = 'ex_blockOpening.slx';
open_system(modelname);

The model reads an input binary image using the Image From File block. The Opening block performs
the opening operation on the input image using a disk-shaped structuring element with a radius of 4.
The model displays the resulted opened image using the Video Viewer block.

Simulate and Display Results

Run the model to visualize the opened image. The Opening block eliminates the narrow connecting
bridge and the thin protrusions of the white object, as can be seen.

sim(modelname);

 Perform Opening of Binary Image

23-141

23 Vision Blocks Examples

23-142

 Perform Opening of Binary Image

23-143

Perform Closing of Binary Image

This example shows how to eliminate small holes in a binary image by using closing operation.

Example Model

Open the Simulink® model.

modelname = 'ex_blockClosing.slx';
open_system(modelname);

The model reads an input binary image by using the Image From File block. The Closing block
performs the closing operation on the input image. The model uses a disk-shaped structuring element
with a radius of 4. The model displays the output image by using the Video Viewer block.

Simulate and Display Results

Run the model and display the result. You can see that the closing operation reduced the size of the
leftmost intrusion on the boundary of the white object and smoothed the sections of the contour.

sim(modelname);

23 Vision Blocks Examples

23-144

 Perform Closing of Binary Image

23-145

23 Vision Blocks Examples

23-146

Blur Image Using Gaussian Kernel

This example shows you how to perform 2-D convolution to blur an image using the Gaussian kernel.

Example Model

Open the Simulink® model.

modelname = "ex_blk2DConvolution.slx";
open_system(modelname);

This model reads a PNG image using the Image From File block, which outputs it as a matrix of data
type double.

The model then blurs the image by using a 2-D Convolution block to convolve the input image with a
5-by-5 representation of the Gaussian kernel.

Simulate the Model

Run the model. The model displays the input image and the blurred output image using Video Viewer
blocks.

sim(modelname);

 Blur Image Using Gaussian Kernel

23-147

23 Vision Blocks Examples

23-148

 Blur Image Using Gaussian Kernel

23-149

Convert Image Color Space from RGB to YCbCr

This example shows you how to convert an image color space from RGB to YCbCr.

Example Model

Open the Simulink® model.

modelname = "ex_blkconvertcolorspace.slx";
open_system(modelname);

This model reads an input image using the Image From File block, then converts the input image
from the RGB color space to the YCbCr color space by using a Color Space Conversion block with
these parameter values:

• Conversion — R'G'B' to Y'CbCr
• Use conversion specified by — Rec. 601 (SDTV)
• Image signal — One multidimensional signal

Simulate the Model

Run the model. The model displays the RGB color space input image and the converted YCbCr color
space output image using Video Viewer blocks.

sim(modelname);

23 Vision Blocks Examples

23-150

 Convert Image Color Space from RGB to YCbCr

23-151

23 Vision Blocks Examples

23-152

Convert Data Type and Color Space of Image from RGB to HSV

This example shows you how to convert the data type and color space of an input image from the RGB
to the HSV color space.

Example Model

Open the Simulink® model.

modelname = "ex_blkconvertdatatypeandcolorspace.slx";
open_system(modelname);

This model reads an input image using an Image From File block with the File name parameter set
to peppers.png. The input image has a data type of uint8.

To convert the image data type to double, the model uses an Image Data Type Conversion block with
Output data type set to double.

To convert the input image from the RGB to the HSV color space, the model uses a Color Space
Conversion block with these parameters:

• Conversion — R'G'B' to HSV
• Image signal — One multidimensional signal

The Video Viewer blocks display the input RGB image and the output HSV image.

Simulate the Model

Run the model. The Video Viewer blocks display the input image and the output image converted to
the HSV color space.

sim(modelname);

 Convert Data Type and Color Space of Image from RGB to HSV

23-153

23 Vision Blocks Examples

23-154

 Convert Data Type and Color Space of Image from RGB to HSV

23-155

Perform Gamma Correction of Image

This example shows you how to perform gamma correction of an image.

Example Model

Open the Simulink® model.

modelname = "ex_blkgammacorrection.slx";
open_system(modelname);

This model reads an input image using an Image From File block with the File name parameter set
to peppers.png.

To perform gamma correction of an image, the model uses a Gamma Correction block with default
parameters.

Simulate the Model

Run the model. The Video Viewer blocks display the input image and the gamma-corrected output
image.

sim(modelname);

23 Vision Blocks Examples

23-156

 Perform Gamma Correction of Image

23-157

23 Vision Blocks Examples

23-158

Adjust Contrast of Image

This example shows you how to adjust the contrast of an image by linearly scaling pixel values.

Example Model

Open the Simulink® model.

modelname = "ex_blkcontrastadjustment.slx";
open_system(modelname);

This model reads an input image using an Image From File block with the File name parameter set
to pout.tif.

To adjust the contrast of the image by linearly scaling pixel values, the model uses a Contrast
Adjustment block.

Simulate the Model

Run the model. The Video Viewer blocks displays the input image and the contrast-adjusted output
image.

sim(modelname);

 Adjust Contrast of Image

23-159

23 Vision Blocks Examples

23-160

 Adjust Contrast of Image

23-161

Remove Impulse Noise from Image

This example shows you how to remove impulse noise from an image by using a median filter.

Create Noisy Image

Read an image into the MATLAB® workspace.

I = imread("coins.png");

Add salt-and-pepper noise.

J = imnoise(I,"salt & pepper",0.03);

Explore Model

Open the simulink® model. The model reads the image stored in the variable J from the MATLAB
workspace by using an Image From Workspace block.

modelname = "ex_blkmedianfilter.slx";
open_system(modelname);

To remove impulse noise, the model uses a Median Filter block with the default parameters.

The Video Viewer blocks display the noisy image and the median-filtered output image.

Simulate the Model

Run the model. The Video Viewer blocks display the noisy image and the median-filtered output
image.

sim(modelname);

23 Vision Blocks Examples

23-162

 Remove Impulse Noise from Image

23-163

23 Vision Blocks Examples

23-164

Draw Hough Lines on Image

This example shows you how to find the Cartesian coordinates of lines using rho and theta pairs, and
draw those lines on an image.

Example Model

Open the Simulink® model.

modelname = "ex_blkhoughlines.slx";
open_system(modelname);

This model reads an input image using an Image From File block with the File name parameter set
to bricks.jpg.

To find the Cartesian coordinates of lines by using rho and theta pairs, the model uses a Hough Lines
block with the Sine value computation method set to Trigonometric function.

To draw lines on the image, the model uses a Draw Shapes block with these parameters:

• Shape — Lines
• Line width — 15

The Video Viewer block displays the line-embedded output image.

Simulate the Model

Run the model. The Video Viewer block displays the cartesian coordinates and the line-embedded
output image.

sim(modelname);

 Draw Hough Lines on Image

23-165

23 Vision Blocks Examples

23-166

Construct Laplacian Pyramid Image

This example shows you how to construct a Laplacian pyramid image.

Example Model

Open the Simulink® model.

modelname = "ex_blklaplasianpyramid.slx";
open_system(modelname);

This model reads an input image using an Image From File block with the File name parameter set
to cameraman.tif and Output data type parameter set to single.

To construct a Laplacian pyramid the Resize block resizes the input image to 253-by-253 pixels, and
performs reduce and expand opertions using Gaussian Pyramid blocks. At the initial level, the
Laplacian pyramid reduces the resized input image, expands the reduced image, and then subtracts
the output from the resized input image. At the next level, the Laplacian pyramid performs a reduce
operation on the already reduced image, expands this second-order reduction, and then subtracts it
from the first-order reduced image.

The Video Viewer blocks display the input image and output images from each level of the Laplacian
pyramid.

Simulate the Model

Run the model. The Video Viewer blocks display the input image and the Laplacian pyramid output
images.

sim(modelname);

 Construct Laplacian Pyramid Image

23-167

23 Vision Blocks Examples

23-168

 Construct Laplacian Pyramid Image

23-169

Apply Affine Transformation to Image

This example shows you how to perform a horizontal shear transformation of an image by calculating
an affine transformation matrix.

Example Model

Open the Simulink® model.

modelname = "ex_blkestimategeometrictransformation.slx";
open_system(modelname)

This model reads an input image using an Image From File block with the File name parameter set
to peppers.png.

To estimate the Affine transformation matrix, this model uses the Estimate Geometric Transformation
block with default parameters.

To apply a horizontal shear transformation to the input image, the model uses a Warp block that
accepts the input image at the Image input port and the estimated transformation matrix at the
TForm input port. The block then horizontally shears the image by using these parameters:

• Transformation matrix source — Input port.
• Interpolation method — Bilinear
• Background fill value — 0
• Output image position source — Custom
• Output image position vector [x y width height] — [-20 -20 740 430]

23 Vision Blocks Examples

23-170

Simulate the Model

Run the model. The Video Viewer blocks display the input image and the transformed output image.

sim(modelname);

 Apply Affine Transformation to Image

23-171

23 Vision Blocks Examples

23-172

Trace Boundary of Object in Image

This example shows you how to trace the boundary of an object in an input image and draw that
boundary on the input image.

Example Model

Open the Simulink® model.

modelname = "ex_blktraceboundary.slx";
open_system(modelname)

Note: The model uses the Fixed-step solver type. For more information on solver types, see
“Choose a Solver” (Simulink).

This model reads the input image using the Image From File block with the File name parameter set
to coins.png.

The model then converts the input image to a binary image, using the Autothreshold block.

The values at the Start Pt input port of the Trace Boundary block specify the location of the object to
start tracing. This block traces boundaries of that object using these parameters:

• Connectivity — 4
• Initial search direction — East
• Trace direction — Clockwise
• Maximum number of boundary pixels — 250

The Draw Markers block draws the traced boundaries using these parameters:

• Marker shape — Plus
• Marker size — 3
• Border color — White

Simulate the Model

Run the model. The model displays the input image, the binary image, and the image with a boundary
traced as a white circle around one coin by using Video Viewer blocks.

sim(modelname);

 Trace Boundary of Object in Image

23-173

23 Vision Blocks Examples

23-174

 Trace Boundary of Object in Image

23-175

23 Vision Blocks Examples

23-176

Convert Grayscale Image to Binary Image

This example shows you how to convert a grayscale image to a binary image using a global threshold.

Example Model

Open the Simulink® model.

modelname = "ex_blkautothreshold.slx";
open_system(modelname)

This model reads the input image using an Image From File block with the File name parameter set
to coins.png.

The model then converts the input image to a binary image by using the Autothreshold block with
default parameters. The Autothreshold block performs the thresholding operation using Otsu's
method.

Simulate the Model

Run the model. The model displays the input intensity image and the output binary image using Video
Viewer blocks.

sim(modelname);

 Convert Grayscale Image to Binary Image

23-177

23 Vision Blocks Examples

23-178

 Convert Grayscale Image to Binary Image

23-179

Perform Chroma Resampling of Image

This example shows you how to downsample and upsample the chrominance components of an image.

Example Model

Open the Simulink® model.

modelname = "ex_blkchromaresampling.slx";
open_system(modelname)

This model reads an input image using the Image From File block with the File name parameter set
to peppers.png and Image signal parameter set to Separate color signals.

The model then converts the input image from the RGB color space to the YCbCr color space by using
a Color Space Conversion block with these parameter values:

• Conversion — R'G'B' to Y'CbCr
• Use conversion specified by — Rec. 601 (SDTV)
• Image signal — Separate color signals

The model downsamples the chrominance components by using a Chroma Resampling block with
these parameters:

• Resampling — 4:4:4 to 4:2:2
• Antialising filter — Default

The model then upsamples the chrominance components by using another Chroma Resampling block
with these parameters:

• Resampling — 4:2:2 to 4:4:4
• Antialising filter — Default

The model then converts the Y', Cb, and Cr components back to the RGB color space by using a Color
Space Conversion block with these parameter values:

• Conversion — Y'CbCr to R'G'B'
• Use conversion specified by — Rec. 601 (SDTV)
• Image signal — Separate color signals

23 Vision Blocks Examples

23-180

Simulate the Model

Run the model. The Chroma Resampling blocks downsamples the chrominance components from a
size of 384-by-512 pixels to a size of 384-by-256 pixels, and then upsamples them back to a size of
384-by-512 pixels. The model displays the original input image and the resampled output image by
using Video Viewer blocks.

sim(modelname);

 Perform Chroma Resampling of Image

23-181

23 Vision Blocks Examples

23-182

Compute Variance of ROIs

This example shows how to compute the variance of regions of interest (ROIs) in the input image. The
input image consists of different texture regions, and a mask image specifies ROIs selected to contain
the texture regions.

Read the image into the MATLAB® workspace.

I = imread("multitextures.png");

Load the mask image that specifies the ROIs in the input image.

load("binaryROI.mat")

Example Model

Open the Simulink® model.

modelname = "ex_blk2DVariance.slx";
open_system(modelname)

The model computes the coordinates for the ROIs by using a Blob Analysis block. The The value of the
Maximum number of blobs parameter of the Blob Analysis block is 5, corresponding to the number
of ROIs in the image.

The 2-D Variance block computes the variance value for each ROI.

Set these parameters of the 2-D Variance block to the specified value to compute individual statistics
for each ROI.

 Compute Variance of ROIs

23-183

• Find the variance value over - Entire input
• Enable ROI processing - on
• ROI type - Rectangles
• Output - Individual statistics for each ROI

Simulate and Display Results

Run the model. The Video Viewer blocks display the input image and the label matrix that
corresponds to the selected ROIs. The rectangles overlaid on the input image represent the ROIs for
which the model computes the variance.

output = sim(modelname)

23 Vision Blocks Examples

23-184

output =
 Simulink.SimulationOutput:

 std: [5x1 double]
 tout: [51x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

The variance value for an ROI indicates the dispersion of the pixel values in that ROI from the mean
value in the ROI. Display the variance value for each ROI. The first variance value corresponds to the
region with label value 1, the second variance value corresponds to the region with label value 2, and
so on.

output.std

 Compute Variance of ROIs

23-185

ans = 5×1

 0.0029
 0.0145
 0.0060
 0.0214
 0.0265

23 Vision Blocks Examples

23-186

Smooth Image Using Gaussian Kernel

This example shows you how to smooth an image using the Gaussian kernel.

Example Model

Open the Simulink® model.

modelname = "ex_blk2DCorrelation.slx";
open_system(modelname)

This model reads a PNG image using the Image From File block, which outputs it as a matrix of data
type double.

The model then smoothes the image by using a 2-D Correlation block to correlate the input image
with a 5-by-5 representation of the Gaussian kernel.

Simulate the Model

Run the model. The model displays the input image and the smoothed output image using Video
Viewer blocks.

output = sim(modelname)

 Smooth Image Using Gaussian Kernel

23-187

23 Vision Blocks Examples

23-188

output =
 Simulink.SimulationOutput:

 tout: [51x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

 Smooth Image Using Gaussian Kernel

23-189

Plot Hough Transform of Image

This example shows you how to plot the Hough Transform of an image.

Example Model

Open the Simulink® model.

modelname = "ex_blkHoughTransform.slx";
open_system(modelname)

The model reads an input image using an Image From File block with the File name parameter set to
bricks.jpg and the Sample time parameter set to 0.1. The Autothreshold block converts the
input image to a binary matrix.

To find the Hough Transform of the binary image, the model uses a Hough Transform block. To
enable you to plot the Hough Transform, the Output theta and rho values parameter of the Hough
Transform block is on, enabling the Theta and Rho output ports of the block.

The Video Viewer blocks display the input image and the binary image.

The MATLAB Function (Simulink) block implements the custom function displayHough to plot the
Hough Transform.

Simulate the Model

Run the model. The Video Viewer blocks display the input image and its binary form. The plot
displays the Hough Transform of the binary image.

output = sim(modelname)

23 Vision Blocks Examples

23-190

 Plot Hough Transform of Image

23-191

23 Vision Blocks Examples

23-192

output =
 Simulink.SimulationOutput:

 tout: [101x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

 Plot Hough Transform of Image

23-193

Apply Vertical Shear Transformation to Image

This example shows how to apply shear transformation to an input image in the vertical direction.

Example Model

Add the input image folder to the MATLAB® path.

imDir = fullfile(matlabroot,"toolbox","vision","visiondata","imageSets","books");
addpath(imDir)

Open the Simulink® model.

modelname = "ex_shearblkvertical.slx";
open_system(modelname)

The model reads an input image using the Image From File block.

To shear the image in the vertical direction, the model uses the Shear block with these parameter
values:

• Shear direction — Vertical
• Output size after shear — Same as input image size
• Shear values source — Input port. This selection enables the S input port on the block and

the Maximum shear value parameter. The Constant block specifies a vector of shear values,
[10 70], to the S port.

• Maximum shear value — 200
• Background fill value — [10 10 140]
• Interpolation method — Bilinear

Simulate and Display the Results

Run the model. The model displays the input image and the transformed output image by using Video
Viewer blocks. The transformed output image is sheared along the vertical direction.

sim(modelname);

23 Vision Blocks Examples

23-194

 Apply Vertical Shear Transformation to Image

23-195

23 Vision Blocks Examples

23-196

Resize ROI in Image

This example shows how to resize a region of interest (ROI) in the input image.

Example Model

Open the Simulink® model.

modelname = "ex_resize_ROI.slx";
open_system(modelname)

This model reads an input image using the Image From File block with the File name parameter set
to peppers.png.

To resize the ROI in input image, you must

• Enable ROI processing
• Specify the ROI

The model resizes the ROI in the input image by using the Resize block with these parameters:

• Specify — Number of output rows and columns
• Number of output rows and columns — [400 400]
• Interpolation method — Bilinear
• Select the Enable ROI processing parameter. This enables the ROI port. Specify the ROI value

as [180 78 100 100] by using the Constant block.
• Select the Output flag indicating if ROI is within the image bounds parameter. This enables

the Flag port. The boolean value as the result of the simulation is indicated by the Flag port. The
value is visualised using the Scope and the Display blocks.

Simulate and Display Results

Run the model and display the input and output images using the Video Viewer block.

 Resize ROI in Image

23-197

sim(modelname);

23 Vision Blocks Examples

23-198

 Resize ROI in Image

23-199

Demosaic an Image

This example shows you how to demosaic a Bayer-pattern image.

Example Model

Open the Simulink® model.

modelname = "ex_blkDemosaic.slx";
open_system(modelname)

The model reads an input image using an Image From File block with the File name parameter set to
mandi.tif and the Sample time parameter set to inf. To demosaic the input image, the model
uses a Demosaic block with the Sensor alignment set to BGGR.

Simulate the Model

Run the model. The Video Viewer blocks display the input image and the output image. You can zoom
out to better inspect the images.

sim(modelname)

23 Vision Blocks Examples

23-200

ans =
 Simulink.SimulationOutput:

 tout: [51x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

 Demosaic an Image

23-201

Rotate an Image in Simulink

This example shows you how to rotate an image.

Example Model

Open the Simulink® model.

modelname = "ex_blkrotatepeppers.slx";
open_system(modelname)

The model reads an input image using an Image From File block with the File name parameter set to
peppers.png and the Sample time parameter set to inf. To rotate the input image, the model uses
a Rotate block with the Angle (radians) parameter set to pi/6 radians and the Output size
parameter set to Expanded to fit rotated input image.

Simulate the Model

Run the model. The Video Viewer blocks display the input image and the output image containing the
rotated image. Note that, due to the specified Output size value, the output image crops the corners
of the rotated image to fit the original image dimensions..

output = sim(modelname)

23 Vision Blocks Examples

23-202

 Rotate an Image in Simulink

23-203

output =
 Simulink.SimulationOutput:

 tout: [51x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

23 Vision Blocks Examples

23-204

Filter Image Using FIR Filter

This example shows you how to filter an image using an FIR filter.

Create the FIR Filter

Create a 3-by-3 average filter to smooth an image.

H = fspecial("average",3)

H = 3×3

 0.1111 0.1111 0.1111
 0.1111 0.1111 0.1111
 0.1111 0.1111 0.1111

Using separable filter coefficients reduces the number of calculations required to compute the
output. Check if the filter H is separable, and compute the vertical and horizontal filter coefficients.

[sep,HV,HH] = isfilterseparable(H)

sep = logical
 1

HV = 3×1

 -0.3333
 -0.3333
 -0.3333

HH = 1×3

 -0.3333 -0.3333 -0.3333

Example Model

Open the Simulink® model.

modelname = "ex_blk2DFIRFilter.slx";
open_system(modelname)

 Filter Image Using FIR Filter

23-205

The model reads a PNG image using an Image From File block with the File name parameter set to
coins.png. To filter the input image, the model uses a 2-D FIR Filter block with the Separable
filter coefficients option selected, Vertical coefficients (across height) parameter set to HV,
Horizontal coefficients (across width) parameter set to HH, and the Output size parameter set to
Same as input port I.

Simulate the Model

Run the model. The model displays the input image and the filtered output image using Video Viewer
blocks.

output = sim(modelname)

23 Vision Blocks Examples

23-206

 Filter Image Using FIR Filter

23-207

output =
 Simulink.SimulationOutput:

 tout: [51x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

23 Vision Blocks Examples

23-208

Visualize Point Cloud Sequence

This example shows how to visualize a streaming point cloud sequence by using a Point Cloud Viewer
block.

Load the location data for a point cloud sequence into the MATLAB® workspace.

load("pcLocationSeq.mat")

Load the color data for the point cloud sequence into the MATLAB workspace.

load("pcColorSeq.mat")

Example Model

Open the Simulink® model.

modelname = "ex_blkpointcloudviewer.slx";
open_system(modelname)

The model reads the point cloud sequence location data from the MATLAB workspace using a Video
From Workspace block with these parameters:

• Signal — pcLocationSeq.mat
• Sample Time — 1

The model reads the point cloud sequence color data from the MATLAB workspace using a Video
From Workspace block with these parameters:

• Signal — pcColorSeq.mat
• Sample Time — 1

The Image output ports of the Video From Workspace blocks send the location and color information
of the 3-D point cloud sequence, frame by frame, to the Location and Color ports, respectively, of
the Point Cloud Viewer block.

Simulate the model

Run the model and display the streaming 3-D point cloud sequence in the Point Cloud Viewer window.

sim(modelname);

 Visualize Point Cloud Sequence

23-209

23 Vision Blocks Examples

23-210

	Camera Calibration and SfM Examples
	Monocular Visual-Inertial Odometry Using Factor Graph
	Visual SLAM with an RGB-D Camera
	Import Stereo Camera Parameters from ROS
	Import Camera Intrinsic Parameters from ROS
	Develop Visual SLAM Algorithm Using Unreal Engine Simulation
	Visual Localization in a Parking Lot
	Stereo Visual SLAM for UAV Navigation in 3D Simulation
	Camera Calibration Using AprilTag Markers
	Configure Monocular Fisheye Camera
	Monocular Visual Simultaneous Localization and Mapping
	Structure From Motion From Two Views
	Stereo Visual Simultaneous Localization and Mapping
	Evaluating the Accuracy of Single Camera Calibration
	Measuring Planar Objects with a Calibrated Camera
	Depth Estimation From Stereo Video
	Structure From Motion From Multiple Views
	Uncalibrated Stereo Image Rectification

	Code Generation and Third-Party Examples
	Code Generation for Object Detection by Using Single Shot Multibox Detector
	Code Generation for Object Detection by Using YOLO v2
	Introduction to Code Generation with Feature Matching and Registration
	Code Generation for Face Tracking with PackNGo
	Code Generation for Depth Estimation From Stereo Video
	Detect Face (Raspberry Pi2)
	Track Face (Raspberry Pi2)
	Video Display in a Custom User Interface
	Generate Code for Detecting Objects in Images by Using ACF Object Detector

	Deep Learning, Semantic Segmentation, and Detection Examples
	Recognize Seven-Segment Digits Using OCR
	Train an OCR Model to Recognize Seven-Segment Digits
	Automate Ground Truth Labeling for OCR
	Object Detection In Large Satellite Imagery Using Deep Learning
	Augmented Reality Using AprilTag Markers
	Multiclass Object Detection Using YOLO v2 Deep Learning
	Generate Adversarial Examples for Semantic Segmentation
	Classify Defects on Wafer Maps Using Deep Learning
	Detect Image Anomalies Using Explainable FCDD Network
	Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings
	Detect Defects on Printed Circuit Boards Using YOLO v4 Network
	Train Object Detectors in Experiment Manager
	Activity Recognition Using R(2+1)D Video Classification
	Activity Recognition from Video and Optical Flow Data Using Deep Learning
	Evaluate a Video Classifier
	Extract Training Data for Video Classification
	Classify Streaming Webcam Video Using SlowFast Video Classifier
	Gesture Recognition using Videos and Deep Learning
	Explore Semantic Segmentation Network Using Grad-CAM
	Point Cloud Classification Using PointNet Deep Learning
	Object Detection Using SSD Deep Learning
	Object Detection in a Cluttered Scene Using Point Feature Matching
	Semantic Segmentation Using Deep Learning
	Calculate Segmentation Metrics in Block-Based Workflow
	Semantic Segmentation of Multispectral Images Using Deep Learning
	3-D Brain Tumor Segmentation Using Deep Learning
	Image Category Classification Using Bag of Features
	Image Category Classification Using Deep Learning
	Image Retrieval Using Customized Bag of Features
	Create SSD Object Detection Network
	Train YOLO v2 Network for Vehicle Detection
	Import Pretrained ONNX YOLO v2 Object Detector
	Export YOLO v2 Object Detector to ONNX
	Estimate Anchor Boxes From Training Data
	Object Detection Using YOLO v3 Deep Learning
	Object Detection Using YOLO v2 Deep Learning
	Create YOLO v2 Object Detection Network
	Train Object Detector Using R-CNN Deep Learning
	Object Detection Using Faster R-CNN Deep Learning
	Train Classification Network to Classify Object in 3-D Point Cloud
	Estimate Body Pose Using Deep Learning
	Generate Image from Segmentation Map Using Deep Learning
	Train Simple Semantic Segmentation Network in Deep Network Designer
	Train ACF-Based Stop Sign Detector
	Train Fast R-CNN Stop Sign Detector
	Perform Instance Segmentation Using Mask R-CNN
	Object Detection Using YOLO v4 Deep Learning

	Feature Detection and Extraction Examples
	Automatically Detect and Recognize Text Using MSER and OCR
	Automatically Detect and Recognize Text Using Pretrained CRAFT Network and OCR
	Digit Classification Using HOG Features
	Find Image Rotation and Scale Using Automated Feature Matching
	Feature Based Panoramic Image Stitching
	Cell Counting
	Object Counting
	Pattern Matching
	Recognize Text Using Optical Character Recognition (OCR)
	Cell Counting

	Lidar and Point Cloud Processing Examples
	Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment
	Ground Plane and Obstacle Detection Using Lidar
	Augment Point Cloud Data For Deep Learning
	Import Point Cloud Data For Deep Learning
	Encode Point Cloud Data For Deep Learning
	Build a Map from Lidar Data
	Build a Map from Lidar Data Using SLAM
	3-D Point Cloud Registration and Stitching

	Computer Vision with Simulink Examples
	Multicore Simulation of Video Processing System
	Concentricity Inspection
	Object Counting
	Video Focus Assessment
	Video Compression
	Motion Detection
	Pattern Matching
	Scene Change Detection
	Surveillance Recording
	Traffic Warning Sign Recognition
	Abandoned Object Detection
	Color-based Road Tracking
	Detect and Track Face
	Lane Departure Warning System
	Tracking Cars Using Foreground Detection
	Tracking Cars Using Optical Flow
	Tracking Based on Color
	Video Mosaicking
	Video Stabilization
	Periodic Noise Reduction
	Rotation Correction
	Barcode Recognition Using Live Video Acquisition
	Edge Detection Using Live Video Acquisition
	Noise Removal and Image Sharpening
	Track Marker Using Simulink Images

	Video and Image Ground Truth Labeling
	Export Ground Truth Object to Custom and COCO JSON Files
	Automate Ground Truth Labeling for Semantic Segmentation
	Convert Image Labeler Polygons to Labeled Blocked Image for Semantic Segmentation
	Automate Ground Truth Labeling for Object Detection

	Tracking and Motion Estimation Examples
	Visual Tracking of Occluded and Unresolved Objects
	Implement Simple Online and Realtime Tracking
	Import Camera-Based Datasets in MOT Challenge Format for Object Tracking
	Video Stabilization
	Video Stabilization Using Point Feature Matching
	Face Detection and Tracking Using CAMShift
	Face Detection and Tracking Using the KLT Algorithm
	Face Detection and Tracking Using Live Video Acquisition
	Motion-Based Multiple Object Tracking
	Tracking Pedestrians from a Moving Car
	Use Kalman Filter for Object Tracking
	Detect Cars Using Gaussian Mixture Models

	Semantic Segmentation With Deep Learning
	Analyze Training Data for Semantic Segmentation
	Create a Semantic Segmentation Network
	Train A Semantic Segmentation Network
	Evaluate and Inspect the Results of Semantic Segmentation
	Import Pixel Labeled Dataset For Semantic Segmentation

	Faster R-CNN Examples
	Create R-CNN Object Detection Network
	Create Fast R-CNN Object Detection Network
	Create Faster R-CNN Object Detection Network

	Labelers
	View Summary of ROI and Scene Labels
	Create Automation Algorithm Function for Labeling
	How to Specify an Automation Function in an App
	Use a Function to Automate Labeling with Your Custom Detector
	Create an Automation Algorithm Function

	Create Automation Algorithm for Labeling
	Create New Algorithm
	Import Existing Algorithm
	Custom Algorithm Execution

	Label Large Images in the Image Labeler
	Import Blocked Image into Image Labeler
	Work with Blocked Images in the Image Labeler
	Use Blocked Image Automation with Images
	Postprocess Exported Labels to Create a Labeled Blocked Image

	Label Pixels for Semantic Segmentation
	Start Pixel Labeling
	Label Pixels Using Flood Fill Tool
	Label Pixels Using Superpixel Tool
	Label Pixels Using Smart Polygon Tool
	Label Pixels Using Polygon Tool
	Label Pixels Using Assisted Freehand Tool
	Replace Pixel Labels
	Refine Labels Using Brush Tool
	Visualize Pixel Labels
	Tips

	Label Objects Using Polygons
	About Polygon Labels
	Load Unlabeled Data
	Create Polygon Labels
	Draw Polygon ROI Labels
	Modify Polygon Preferences and Stacking Order
	Postprocess Exported Labels for Instance or Semantic Segmentation Networks

	Get Started with the Image Labeler
	Load Images
	Layout of the Image Labeler App
	Create Label Definitions
	Label Images
	Export Labeled Images

	Choose an App to Label Ground Truth Data
	Get Started with the Video Labeler
	Load Unlabeled Data
	Create Label Definitions
	Label Ground Truth
	Export Labeled Ground Truth
	Label Data
	Save App Session

	Use Custom Image Source Reader for Labeling
	Create Custom Reader Function
	Import Data Source into Video Labeler App
	Import Data Source into Ground Truth Labeler App

	Keyboard Shortcuts and Mouse Actions for Video Labeler
	Label Definitions
	Frame Navigation and Time Interval Settings
	Labeling Window
	Polyline Drawing
	Polygon Drawing
	Zooming and Panning
	App Sessions

	Keyboard Shortcuts and Mouse Actions for Image Labeler
	Label Definitions
	Image Browsing and Selection
	Labeling Window
	Polyline Drawing
	Polygon Drawing
	Zooming
	Zooming and Panning
	App Sessions
	Label and Sublabel Attribute Panel
	View Labels, Sublabels, and Attributes Right-Panel
	Attribute Column: Drop-down Menu
	Attribute Column: Edit Field

	Share and Store Labeled Ground Truth Data
	Share Ground Truth
	Move Ground Truth
	Store Ground Truth
	Extract Labeled Video Scenes

	View Summary of Ground Truth Labels
	View Label Summary
	Compare Selected Labels

	Temporal Automation Algorithms
	Create Temporal Automation Algorithm
	Run Temporal Automation Algorithm

	Blocked Image Automation Algorithms
	Create Blocked Image Automation Algorithm
	Run Blocked Image Automation Algorithm

	Use Sublabels and Attributes to Label Ground Truth Data
	When to Use Sublabels vs. Attributes
	Draw Sublabels
	Copy and Paste Sublabels
	Delete Sublabels
	Sublabel Limitations

	Training Data for Object Detection and Semantic Segmentation
	Create Automation Algorithm
	Create New Algorithm
	Import Existing Algorithm
	Custom Algorithm Execution

	Featured Examples
	Localize and Read Multiple Barcodes in Image
	Monocular Visual Odometry
	Detect and Track Vehicles Using Lidar Data
	Semantic Segmentation Using Dilated Convolutions
	Define Custom Pixel Classification Layer with Tversky Loss
	Track a Face in Scene
	Create 3-D Stereo Display
	Measure Distance from Stereo Camera to a Face
	Reconstruct 3-D Scene from Disparity Map
	Visualize Stereo Pair of Camera Extrinsic Parameters
	Remove Distortion from an Image Using Camera Parameters Object

	Structure from Motion and Visual SLAM
	Choose SLAM Workflow Based on Sensor Data
	Choose SLAM Workflow

	Implement Visual SLAM in MATLAB
	Terms Used in Visual SLAM
	Typical Feature-based Visual SLAM Workflow
	Key Frame and Map Data Management
	Map Initialization
	Tracking
	Local Mapping
	Loop Detection
	Drift Correction
	Visualization

	Point Cloud Processing
	Choose a Point Cloud Viewer
	Getting Started with Point Clouds Using Deep Learning
	Import Point Cloud Data
	Augment Data
	Encode Point Cloud Data to Image-like Format
	Train a Deep Learning Classification Network with Encoded Point Cloud Data

	Implement Point Cloud SLAM in MATLAB
	Mapping and Localization Workflow
	Manage Data for Mapping and Localization
	Preprocess Point Clouds
	Register Point Clouds
	Detect Loops
	Correct Drift
	Assemble Map
	Localize Vehicle in Map
	Alternate Workflows

	The PLY Format
	File Header
	Data
	Common Elements and Properties

	Using the Installer for Computer Vision System Toolbox Product
	Install Computer Vision Toolbox Add-on Support Files
	Install OCR Language Data Files
	Installation
	Pretrained Language Data and the ocr function

	Install and Use Computer Vision Toolbox Interface for OpenCV in MATLAB
	Installation
	Support Package Contents

	Build MEX-Files for OpenCV Interface
	Create MEX-File from OpenCV C++ file
	Create Your Own OpenCV MEX-files
	Run OpenCV Examples

	Use Prebuilt MATLAB Interface to OpenCV
	Call MATLAB Functions
	Call Functions in OpenCV Library
	Display Help for MATLAB Functions
	Display Help for MATLAB Interface to OpenCV Library
	Limitations

	Perform Edge-Preserving Image Smoothing Using OpenCV in MATLAB
	Subtract Image Background by Using OpenCV in MATLAB
	Perform Face Detection by Using OpenCV in MATLAB
	Install and Use Computer Vision Toolbox Interface for OpenCV in Simulink
	Installation
	Import OpenCV Code into Simulink
	Limitations

	Draw Different Shapes by Using OpenCV Code in Simulink
	Convert RGB Image to Grayscale Image by Using OpenCV Importer
	Smile Detection by Using OpenCV Code in Simulink
	Shadow Detection by Using OpenCV Code in Simulink
	Vehicle and Pedestrian Detector by Using OpenCV Importer
	Video Cartoonizer by Using OpenCV Code in Simulink
	Convert Between Simulink Image Type and Matrices
	Copy Example Model to a Writable Location
	Example Model
	Simulate Model
	Generate C++ Code

	Input, Output, and Conversions
	Export to Video Files
	Setting Block Parameters for this Example
	Configuration Parameters

	Import from Video Files
	Setting Block Parameters for this Example
	Configuration Parameters

	Batch Process Image Files
	Configuration Parameters

	Convert R'G'B' to Intensity Images
	Process Multidimensional Color Video Signals
	Video Formats
	Defining Intensity and Color
	Video Data Stored in Column-Major Format

	Image Formats
	Binary Images
	Intensity Images
	RGB Images

	Display and Graphics
	Choose Function to Visualize Detected Objects
	Display, Stream, and Preview Videos
	View Streaming Video in MATLAB
	Preview Video in MATLAB
	View Video in Simulink

	Draw Shapes and Lines
	Rectangle
	Line and Polyline
	Polygon
	Circle

	Registration and Stereo Vision
	Select Calibration Pattern and Set Properties
	Prepare Camera and Capture Images
	Camera Setup
	Capture Images

	Calibration Patterns
	What Are Calibration Patterns?
	Supported Patterns
	Checkerboard Pattern
	Circle Grid Patterns
	Custom Pattern Detector

	Fisheye Calibration Basics
	Fisheye Camera Model
	Fisheye Camera Calibration in MATLAB

	Using the Single Camera Calibrator App
	Camera Calibrator Overview
	Choose a Calibration Pattern
	Capture Calibration Images
	Using the Camera Calibrator App

	Using the Stereo Camera Calibrator App
	Stereo Camera Calibrator Overview
	Choose a Calibration Pattern
	Capture Calibration Images
	Using the Stereo Camera Calibrator App

	What Is Camera Calibration?
	Camera Models
	Pinhole Camera Model
	Camera Calibration Parameters
	Distortion in Camera Calibration

	Structure from Motion Overview
	Structure from Motion from Two Views
	Structure from Motion from Multiple Views

	Object Detection
	Train Custom OCR Model
	Prepare Training Data
	Train an OCR model
	Evaluate OCR training

	Getting Started with OCR
	Text Detection
	Text Recognition
	Troubleshoot OCR Function Results
	Train Custom OCR Models
	Create Ground Truth Data
	Evaluate and Quantize OCR Results

	Getting Started with Anomaly Detection Using Deep Learning
	Prepare Training and Calibration Data
	Train the Model
	Calibrate and Evaluate the Model
	Perform Classification Using the Model
	Deploy the Model

	Getting Started with Video Classification Using Deep Learning
	Create Training Data for Video Classification
	Create Video Classifier
	Train Video Classifier and Evaluate Results
	Classify Using Deep Learning Video Classifiers

	Choose an Object Detector
	Getting Started with SSD Multibox Detection
	Predict Objects in the Image
	Design an SSD Detection Network
	Train an Object Detector and Detect Objects with an SSD Model
	Transfer Learning
	Code Generation
	Label Training Data for Deep Learning

	Getting Started with Object Detection Using Deep Learning
	Create Training Data for Object Detection
	Create Object Detection Network
	Train Detector and Evaluate Results
	Detect Objects Using Deep Learning Detectors
	Detect Objects Using Pretrained Object Detection Models
	MathWorks GitHub

	How Labeler Apps Store Exported Pixel Labels
	Location of Pixel Label Data Folder
	View Exported Pixel Label Data
	Examples

	Anchor Boxes for Object Detection
	What Is an Anchor Box?
	Advantage of Using Anchor Boxes
	How Do Anchor Boxes Work?
	Anchor Box Size

	Getting Started with YOLO v2
	Predicting Objects in the Image
	Transfer Learning
	Design a YOLO v2 Detection Network
	Train an Object Detector and Detect Objects with a YOLO v2 Model
	Code Generation
	Label Training Data for Deep Learning

	Getting Started with YOLO v3
	Predicting Objects in the Image
	Design a YOLO v3 Detection Network
	Transfer Learning
	Train an Object Detector and Detect Objects with a YOLO v3 Model
	Label Training Data for Deep Learning

	Getting Started with YOLO v4
	Predict Objects Using YOLO v4
	Create YOLO v4 Object Detection Network
	Train and Detect Objects Using YOLOv4 Network
	Transfer Learning
	Label Training Data for Deep Learning

	Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN
	Object Detection Using R-CNN Algorithms
	Comparison of R-CNN Object Detectors
	Transfer Learning
	Design an R-CNN, Fast R-CNN, and a Faster R-CNN Model
	Label Training Data for Deep Learning

	Getting Started with Mask R-CNN for Instance Segmentation
	Design Mask R-CNN Model
	Prepare Mask R-CNN Training Data
	Train Mask R-CNN Model
	Perform Instance Segmentation and Evaluate Results

	Getting Started with Semantic Segmentation Using Deep Learning
	Label Training Data for Semantic Segmentation
	Train and Test a Semantic Segmentation Network
	Segment Objects Using Pretrained DeepLabv3+ Network

	Point Feature Types
	Functions That Return Points Objects
	Functions That Accept Points Objects

	Local Feature Detection and Extraction
	What Are Local Features?
	Benefits and Applications of Local Features
	What Makes a Good Local Feature?
	Feature Detection and Feature Extraction
	Choose a Feature Detector and Descriptor
	Use Local Features
	Image Registration Using Multiple Features

	Get Started with Cascade Object Detector
	Why Train a Detector?
	What Kinds of Objects Can You Detect?
	How Does the Cascade Classifier Work?
	Create a Cascade Classifier Using the trainCascadeObjectDetector
	Troubleshooting
	Examples
	Train Stop Sign Detector

	Using OCR Trainer App
	Open the OCR Trainer App
	Train OCR
	App Controls

	Create a Custom Feature Extractor
	Example of a Custom Feature Extractor

	Image Retrieval with Bag of Visual Words
	Retrieval System Workflow
	Evaluate Image Retrieval

	Image Classification with Bag of Visual Words
	Step 1: Set Up Image Category Sets
	Step 2: Create Bag of Features
	Step 3: Train an Image Classifier With Bag of Visual Words
	Step 4: Classify an Image or Image Set

	Motion Estimation and Tracking
	Multiple Object Tracking
	Detection
	Prediction
	Data Association
	Track Management

	Filters, Transforms, and Enhancements
	Adjust the Contrast of Intensity Images
	Adjust the Contrast of Color Images
	Remove Salt and Pepper Noise from Images
	Sharpen an Image

	Statistics and Morphological Operations
	Correct Nonuniform Illumination
	Count Objects in an Image

	Fixed-Point Design
	Fixed-Point Signal Processing
	Fixed-Point Features
	Benefits of Fixed-Point Hardware
	Benefits of Fixed-Point Design with System Toolboxes Software

	Fixed-Point Concepts and Terminology
	Fixed-Point Data Types
	Scaling
	Precision and Range

	Arithmetic Operations
	Modulo Arithmetic
	Two's Complement
	Addition and Subtraction
	Multiplication
	Casts

	Fixed-Point Support for MATLAB System Objects
	Getting Information About Fixed-Point System Objects
	Setting System Object Fixed-Point Properties

	Specify Fixed-Point Attributes for Blocks
	Fixed-Point Block Parameters
	Specify System-Level Settings
	Inherit via Internal Rule
	Specify Data Types for Fixed-Point Blocks

	Code Generation and Shared Library
	Simulink Shared Library Dependencies
	Accelerating Simulink Models
	Portable C Code Generation for Functions That Use OpenCV Library
	Limitations

	Vision Blocks Examples
	Rotate ROI in Image
	Apply Horizontal Shear Transformation to Image
	Find Location of Object in Image Using Template Matching
	Compute Optical Flow Velocities
	Rotate an Image
	Generate Image Histogram
	Export Image to MATLAB Workspace
	Import Video from MATLAB Workspace
	Find Minimum Value in ROI
	Write Image to Binary File
	Compute Standard Deviation of ROIs
	Read Video Stored as Binary Data
	Compare Image Quality Using PSNR
	Compute Autocorrelation of Input Matrix
	Compute Correlation between Two Matrices
	Find Statistics of Circular Blobs in Image
	Replace Intensity Values in ROI with its Maximum Value
	Median based Image Thresholding
	Import Image From MATLAB Workspace
	Import Image from Specified Location
	Remove Interlacing Effect From Image
	Estimate Motion between Two Images
	Enhance Contrast of Grayscale Image Using Histogram Equalization
	Enhance Contrast of Color Image Using Histogram Equalization
	Compute Mean of ROIs in Image
	Detect Corners in Image
	Edge Detection of Intensity Image
	Read, Process, and Write Video Frames to File
	Find Local Maxima in Image
	Read, Convert, and View Video from File
	Read and Display YCbCr Video from File
	Display Frame Rate of Input Video
	Draw Rectangles on Image
	Draw Circles on Image
	Overlay Images Using Binary Mask
	Linearly Combine Two Images
	Pad Zeros to Image
	Insert Text into Image
	Compress Image Using 2-D DCT
	Draw Markers on Image
	Read and Display RGB Video from File
	Label Objects in Binary Image
	Boundary Extraction of Binary Image
	Select String to Insert into Image
	Insert Two Strings into Image at Different Locations
	Dilation of Binary Image
	Find Complement of Intensity Image
	Perform Top-Hat Filtering of Binary Image
	Perform Bottom-hat Filtering of Binary Image
	Perform Opening of Binary Image
	Perform Closing of Binary Image
	Blur Image Using Gaussian Kernel
	Convert Image Color Space from RGB to YCbCr
	Convert Data Type and Color Space of Image from RGB to HSV
	Perform Gamma Correction of Image
	Adjust Contrast of Image
	Remove Impulse Noise from Image
	Draw Hough Lines on Image
	Construct Laplacian Pyramid Image
	Apply Affine Transformation to Image
	Trace Boundary of Object in Image
	Convert Grayscale Image to Binary Image
	Perform Chroma Resampling of Image
	Compute Variance of ROIs
	Smooth Image Using Gaussian Kernel
	Plot Hough Transform of Image
	Apply Vertical Shear Transformation to Image
	Resize ROI in Image
	Demosaic an Image
	Rotate an Image in Simulink
	Filter Image Using FIR Filter
	Visualize Point Cloud Sequence

